Created
March 22, 2013 10:57
-
-
Save c3c/5220474 to your computer and use it in GitHub Desktop.
vrp with window as subtour elimination constraint
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/********************************************* | |
* OPL 12.5 Model | |
* Author: crash | |
* Creation Date: Mar 6, 2013 at 3:33:35 PM | |
*********************************************/ | |
using CP; | |
// Nodes | |
tuple node { string name; int x; int y; int tmin; int tmax; } | |
{node} AllNodes = ...; | |
int N = card(AllNodes); | |
range nodes = 0..N-1; | |
// Edges | |
tuple edge {int i; int j;} | |
setof(edge) AllEdges = { <i,j> | i,j in nodes : i != j }; // not filtered! | |
setof(edge) OrderedEdges = { <i,j> | ordered i,j in nodes}; | |
int Dist[OrderedEdges] = ...; | |
// Deliveries | |
tuple delivery {int destination; int from; int numpalettes;} | |
{delivery} Deliveries = ...; | |
// Remove superfluous thingies | |
sorted {int} clients = { d.from | d in Deliveries : d.numpalettes > 0 } union { d.destination | d in Deliveries : d.numpalettes > 0 }; | |
sorted {int} cities = {0} union clients; | |
int numCities = card(cities); | |
int demand[t in cities] = sum (d in Deliveries : d.destination == t) d.numpalettes; | |
int outgoing[t in cities] = sum (d in Deliveries : d.from == t) d.numpalettes; | |
//int tmin[t in cities] = item(AllNodes, t).tmin; | |
//int tmax[t in cities] = item(AllNodes, t).tmax; | |
setof(edge) Edges = { <i,j> | i,j in cities : i != j }; // filtered! :) | |
// | |
//execute { | |
// writeln(AllEdges); | |
// writeln(tmin); | |
// writeln(tmax); | |
//} | |
// Camions | |
tuple camion {key int id;int capacity; int maxweight; int maxtime;} | |
{camion} Camions = ...; | |
// Travel time | |
int vitesse = 65; // km/h | |
int tempstrajet[<i,j> in OrderedEdges] = ftoi(round(Dist[<i,j>]/vitesse*60)); | |
int tempsservice = 30; | |
// Decision variables | |
dvar boolean x[Edges,Camions]; | |
dvar boolean y[cities,Camions]; | |
dvar int arrival[Camions][cities] in 0..numCities-2; | |
dvar int+ quantity[cities][Camions]; | |
//dvar interval timeofdelivery[i in clients][m] in i.tmin..i.tmax size 30; | |
dvar int arrivee[Camions][cities]; | |
execute { | |
// cp.param.NoOverlapInferenceLevel = "Medium"; | |
// cp.param.ElementInferenceLevel = "Low"; | |
//cp.param.TemporalRelaxation = "Off"; | |
cp.param.TimeMode = "ElapsedTime"; | |
cp.param.TimeLimit = 60; | |
}; | |
//tuple Subtour { | |
// int ssize; | |
// camion truck; | |
// int subtour[cities]; | |
//}; | |
//{Subtour} subtours = ...; | |
minimize sum (<i,j> in Edges, m in Camions) Dist[<minl(i,j), maxl(i,j)>]*x[<i,j>,m]; | |
subject to { | |
forall (k in Camions, j in cities) | |
(sum(i in cities : j!=i) x[<i,j>][k]) == 1; | |
forall (k in Camions, j in cities) | |
(sum(i in cities : j!=i) x[<j,i>][k]) == 1; | |
// continuité | |
forall (p in cities, k in Camions) | |
((sum(i in cities : i!=p) x[<i,p>][k]) - (sum(j in cities : j!=p) x[<p,j>][k])) == 0; | |
// chaque véhicule entre et sort qu'un seul fois du dépôt | |
// forall (k in Camions) | |
// (sum(j in clients) x[<0,j>][k]) == 1; | |
// | |
// forall (k in Camions) | |
// (sum(i in clients) x[<i,0>][k]) == 1; | |
forall (k in Camions, <i,j> in Edges : i!=0 && j != 0) | |
(x[<i,j>][k] == 1) => (arrival[k][i] + 1 == arrival[k][j]); | |
// // Quantity per camion for each client <= demand of node | |
// forall (k in Camions, i in cities) | |
// quantity[i][k] <= demand[i];//*y[i][k]; | |
// For each client, the aggregated quantity of all trucks must match the demand | |
forall (i in cities) | |
sum(k in Camions) quantity[i][k] == demand[i]; | |
// The amount of palettes the truck is going to deliver must be inferior|equal to his capacity | |
// (perhaps include dvar (c12) | |
forall (m in Camions) | |
sum(i in cities) quantity[i][m] <= m.capacity; | |
// // respect timewindows | |
// forall (<i,j> in Edges : i!=0, k in Camions) | |
// (x[<i,j>][k] == 1) => ((arrival[k][i] + tempstrajet[<minl(i,j), maxl(i,j)>]) <= arrival[k][j]); | |
// | |
// min max timeframe for entry at client | |
// forall(i in clients, k in Camions) | |
// (tmin[i] <= arrival[k][i]) && (arrival[k][i] <= tmax[i]); | |
// truck can't be longer than e.g. 12h on route | |
// forall (m in Camions) | |
// m.maxtime >= sum (<i,j> in Edges) x[<i,j>,m]*(tempstrajet[<minl(i,j),maxl(i,j)>]+tempsservice); | |
// | |
// // Delivery at node 2 must be later than delivery at node 1 | |
// forall (<i,j> in Edges, d in Deliveries : d.destination == j && d.from == i, m in Camions) | |
// (x[<i,j>][m] == 1) => (arrival[i][m] <= arrival[j][m]); | |
// | |
// forall (j in clients, k in Camions) | |
// (x[<0,j>][k] == 1) => (arrival[k][0] == max(x in cities) arrival[k][x]); | |
}; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment