-
-
Save c42f/7daa9c64670df0cc7600be7f8cf65e91 to your computer and use it in GitHub Desktop.
Simply symbolic manipulations and some matrix math for Euler angle rotations
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module SimpleSymbolic | |
immutable S{Ex} | |
x::Ex | |
end | |
macro S(ex) | |
Expr(:call, :S, Expr(:quote, ex)) | |
end | |
Base.show(io::IO, s::S) = print(io, s.x) | |
import Base: +, *, -, / | |
-(a::S) = S(:(-$(a.x))) | |
+(a::S, b::S) = S(:($(a.x) + $(b.x))) | |
+(a::S, b::Number) = b == 0 ? a : a + S(b) | |
+(a::Number, b::S) = a == 0 ? b : S(a) + b | |
-(a::S, b::S) = S(:($(a.x) - $(b.x))) | |
-(a::S, b::Number) = b == 0 ? -a : a - S(b) | |
-(a::Number, b::S) = a == 0 ? b : S(a) - b | |
*(a::S, b::S) = S(:($(a.x) * $(b.x))) | |
*(a::S, b::Number) = b == 0 ? 0 : b == 1 ? a : a * S(b) | |
*(a::Number, b::S) = a == 0 ? 0 : a == 1 ? b : S(a) * b | |
/(a::S, b::S) = S(:($(a.x) / $(b.x))) | |
/(a::S, b::Number) = b == 1 ? a : a / S(b) | |
/(a::Number, b::S) = a == 0 ? 0 : S(a) / b # Hmm, assumes b != 0 | |
export S, @S | |
end # module | |
#------------------------------------------------------------------------------- | |
using SimpleSymbolic | |
s1 = @S sin(θ₁) | |
c1 = @S cos(θ₁) | |
s2 = @S sin(θ₂) | |
c2 = @S cos(θ₂) | |
s3 = @S sin(θ₃) | |
c3 = @S cos(θ₃) | |
mx1 = [1 0 0; | |
0 c1 -s1; | |
0 s1 c1] | |
my1 = [c1 0 s1; | |
0 1 0; | |
-s1 0 c1] | |
mz1 = [c1 -s1 0; | |
s1 c1 0; | |
0 0 1] | |
mx2 = [1 0 0; | |
0 c2 -s2; | |
0 s2 c2] | |
my2 = [c2 0 s2; | |
0 1 0; | |
-s2 0 c2] | |
mz2 = [c2 -s2 0; | |
s2 c2 0; | |
0 0 1] | |
mx3 = [1 0 0; | |
0 c3 -s3; | |
0 s3 c3] | |
my3 = [c3 0 s3; | |
0 1 0; | |
-s3 0 c3] | |
mz3 = [c3 -s3 0; | |
s3 c3 0; | |
0 0 1] | |
v = [@S(v[1]), @S(v[2]), @S(v[3])] | |
myx = my1 * mx2 | |
mxy = mx1 * my2 | |
mxz = mx1 * mz2 | |
mzx = mz1 * mx2 | |
mzy = mz1 * my2 | |
myz = my1 * mz2 | |
myxy = my1 * mx2 * my3 | |
myxz = my1 * mx2 * mz3 | |
mxyx = mx1 * my2 * mx3 | |
mxyz = mx1 * my2 * mz3 | |
mxzx = mx1 * mz2 * mx3 | |
mxzy = mx1 * mz2 * my3 | |
mzxz = mz1 * mx2 * mz3 | |
mzxy = mz1 * mx2 * my3 | |
mzyz = mz1 * my2 * mz3 | |
mzyx = mz1 * my2 * mx3 | |
myzy = my1 * mz2 * my3 | |
myzx = my1 * mz2 * mx3 | |
Oops, just fixed a rather horrible copy & paste bug
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@awbsmith for your amusement, here's a way to construct symbolic representations of Euler rotations directly in Julia. Just a refactor of what @andyferris has been hacking on.