访问WR703N在OpenWrt的[Wiki页][wr703n-openwrt],然后在Flashing一节中找到下载链接:[squashfs-factory.bin][flash.bin],下载后别忘了[比对md5][md5sum]。[1]
进入路由器管理界面,出厂配置为http://192.168.1.1
,用户名和密码均为admin
,然后进入固件更新,选择下载的文件,然后更新。
var parser = document.createElement('a'); | |
parser.href = "http://example.com:3000/pathname/?search=test#hash"; | |
parser.protocol; // => "http:" | |
parser.hostname; // => "example.com" | |
parser.port; // => "3000" | |
parser.pathname; // => "/pathname/" | |
parser.search; // => "?search=test" | |
parser.hash; // => "#hash" | |
parser.host; // => "example.com:3000" |
require 'eventmachine' | |
require 'em-http-request' | |
# Reference: | |
# https://github.com/igrigorik/em-http-request/wiki/Parallel-Requests | |
# http://rdoc.info/github/eventmachine/eventmachine/master/EventMachine/Iterator | |
urls = ['http://www.google.com', 'http://www.cloudamqp.com'] |
<?php | |
/** | |
* CIDR.php | |
* | |
* Utility Functions for IPv4 ip addresses. | |
* Supports PHP 5.3+ (32 & 64 bit) | |
* @author Jonavon Wilcox <[email protected]> | |
* @revision Carlos Guimarães <[email protected]> | |
* @version Wed Mar 12 13:00:00 EDT 2014 | |
*/ |
test: | |
clear | |
nosetests --with-coverage --cover-package name_utils test_name_utils.py | |
clean: | |
find -regex '.*\.pyc' -exec rm {} \; | |
find -regex '.*~' -exec rm {} \; | |
.PHONY: test clean |
<?php | |
function http_get($host) { | |
// create event base | |
$base_fd = event_base_new(); | |
// create a new event | |
$event_fd = event_new(); | |
// resource to be monitored |
These weights are often combined into a tf-idf value, simply by multiplying them together. The best scoring words under tf-idf are uncommon ones which are repeated many times in the text, which lead early web search engines to be vulnerable to pages being stuffed with repeated terms to trick the search engines into ranking them highly for those keywords. For that reason, more complex weighting schemes are generally used, but tf-idf is still a good first step, especially for systems where no one is trying to game the system. | |
There are a lot of variations on the basic tf-idf idea, but a straightforward implementation might look like: | |
<?php | |
$tfidf = $term_frequency * // tf | |
log( $total_document_count / $documents_with_term, 2); // idf | |
?> | |
It's worth repeating that the IDF is the total document count over the count of the ones containing the term. So, if there were 50 documents in the collection, and two of them contained the term in question, the IDF would be 50/2 = 25. To be accurate, we s |
<?php | |
/** | |
* Sends statistics to the stats daemon over UDP | |
* | |
**/ | |
class StatsD { | |
/** |
<?php | |
$posting = $database->postlist_begin( $search_id ); | |
$enquire = new XapianEnquire( $database ); | |
$rset = new XapianRset(); | |
$rset->add_document( $posting->get_docid() ); | |
$eset = $enquire->get_eset(20, $rset); | |
$i = $eset->begin(); | |
$terms = array(); |