Last active
May 2, 2020 18:48
-
-
Save caffeinatedgaze/cd2c28017c2bd688d3def7774b17ce74 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [H] = my_dft(signal) | |
len = length(signal) | |
H = zeros(1:len) | |
for i = 1:len - 1 | |
for j = 1:len | |
H(i) = H(i) + signal(j) * exp(-2 * %i * %pi * j * i / len) | |
end | |
end | |
endfunction | |
function [H] = my_fft(signal) | |
disp('computing cooley-turkey') | |
// cooley-turkey | |
len = length(signal) | |
disp(signal) | |
disp(len) | |
disp('^^^^^') | |
if len == 1 | |
H = signal | |
return | |
end | |
half_index = ceil(len / 2) | |
even = zeros(1:half_index) | |
odd = zeros(1:half_index) | |
disp('computing odds and evens') | |
even_k = 1 | |
odd_k = 1 | |
for i = 1:len | |
if modulo(i, 2) == 0 | |
even(even_k) = signal(i) | |
even_k = even_k + 1 | |
else | |
odd(odd_k) = signal(i) | |
odd_k = odd_k + 1 | |
end | |
end | |
output = zeros(1:len) | |
disp('Starting to define submatrix') | |
output(1:half_index) = my_fft(even) | |
output(half_index + 1:len) = my_fft(odd) | |
disp('Computing the final result') | |
for k = 1:half_index | |
t = output(k) | |
exponent = exp(-2 * %i * %pi * k / len) | |
output(k) = t + exponent * output(k + half_index) | |
output(k + half_index) = t - exponent * output(k + half_index) | |
end | |
H = output | |
disp('terminating') | |
endfunction | |
function [H] = compute_mse(x1, x2) | |
H = (x1 - x2) ** 2 / length(x1) | |
endfunction | |
// result = my_fft(ones(1:16)) | |
signal = sin(2 * %pi * linspace(0, 10, 128)) | |
mine = abs(my_dft(signal)) | |
theirs = abs(fft(signal)) | |
mine = cat(2, [0], mine)(1:length(mine)) | |
freq = (0:length(mine) - 1) * length(signal) / 10 / length(mine) | |
ball_size = 10 | |
red = [144, 0, 0] | |
green = [0, 176, 0] | |
subplot(211) ; freq_len = round(length(freq) / 2) | |
plot2d(freq, mine, rect=[0, -10, round(max(freq) / 2), max(mine) * 1.5], style=color('red')) ; title("My fft") | |
scatter(freq(1:freq_len), mine(1:freq_len), ball_size) | |
// subplot(412) | |
// plot2d(freq, theirs, rect=[0, -10, round(max(freq) / 2), max(theirs) * 1.5], style=color('green')) ; title("Canonical dft") | |
// scatter(freq(1:freq_len), theirs(1:freq_len), ball_size) | |
subplot(212) | |
mse = (theirs - mine) ** 2 / length(theirs) | |
plot2d(freq, mse, rect=[0, min(mse) - 2.5, round(max(freq) / 2), max(mse) + 2.5], style=color('green')) ; title("Mean Square Error") | |
scatter(freq(1:freq_len), mse(1:freq_len), ball_size) | |
// subplot(414) | |
// plot2d(signal, rect=[0, min(signal) * 1.5, length(signal), max(signal) * 1.5]) ; title("Original signal") | |
// scatter(1:length(signal), signal, ball_size * 0.5) | |
// |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
A = 1 | |
function [H] = sin1(x) | |
H = A * sin(2 / 3 * 2 * %pi * x) // T = 1.5 // red | |
endfunction | |
function [H] = sin2(x) | |
H = A * sin(2.5 * 2 * %pi * x) // T = 4 // green | |
endfunction | |
function [H] = sin3(x) | |
H = A * sin(5 * 2 * %pi * x) // T = 0.2 // blue // T = 10 / 3 f = 0.3 would work tho | |
endfunction | |
function [H] = compute(x) | |
H = sin1(x) + sin2(x) + sin3(x) // + sin(1 * 2 * %pi * x) // sin(0.1 * 2 * %pi * x) | |
endfunction | |
if ~exists("import_definitions", "local") then | |
import_definitions = 1 == 0 | |
end | |
if import_definitions | |
disp('Definitions are imported') | |
return | |
end | |
interval = 10.5 // time period | |
orig_Fs = 40 // .045 // > 3.5 * 2 | |
orig_samples = orig_Fs * interval | |
ball_size = 10 | |
x = linspace(0, interval, orig_samples); // (0:255); // | |
func = compute(x); | |
std = 411 | |
sanity = std // std // 111 | |
Xs = linspace(0, interval, interval * 100); | |
Ys = compute(Xs); | |
subplot(sanity); plot2d(Xs, Ys, rect=[0, -4, 10.5, 4]); title('orig signal'); | |
// subplot(sanity); scatter(Xs, Ys, ball_size * 0.1); | |
subplot(412); plot2d(Xs, sin1(Xs), rect=[0, -1.5, 10.5, 1.5], style=color('red')); title('constituent frequencies'); | |
subplot(412); plot2d(Xs, sin2(Xs), style=color('green')); | |
subplot(412); plot2d(Xs, sin3(Xs), style=color('blue')); | |
if sanity == 111 | |
return | |
end | |
subplot(413); scatter(x, func, ball_size); | |
subplot(413); plot2d(x, func, rect=[0, -4, 10.5, 4]); title('sampled signal'); | |
fourier_image_orig = floor(abs(fft(func))); | |
orig_freq = (0:length(fourier_image_orig) - 1) * orig_samples / interval / length(fourier_image_orig); | |
fourier_image_orig = fourier_image_orig(1:round(length(fourier_image_orig) / 2)) | |
orig_freq = orig_freq(1:round(length(orig_freq) / 2)) | |
miny_orig = max(fourier_image_orig) + 0.3 * max(fourier_image_orig) | |
minx_orig = max(orig_freq) / 2 | |
scf(0); | |
subplot(414) | |
scatter(orig_freq, fourier_image_orig, ball_size); | |
plot2d(orig_freq, fourier_image_orig, rect=[0, 0, minx_orig, miny_orig]); title('canonical fft'); | |
// subplot(222); | |
// plot2d(orig_freq, abs(my_fft(func))); title('my fft'); | |
// to show these values in the terminal | |
interval = interval | |
orig_samples = orig_samples |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import_definitions = 1 == 1 ; exec('task2.sci') | |
interval = 20 | |
Fs = 20 | |
samples_n = Fs * interval | |
x = linspace(0, interval, samples_n); // (0:255); // | |
func = compute(x) | |
func_padded = resize_matrix(func, 1, samples_n * 2) | |
fourier_padded = abs(fft(func_padded)) | |
fourier = abs(fft(func)) | |
freq = (0:length(fourier) - 1) * samples_n / interval / length(fourier); | |
freq_padded = (0:length(fourier_padded) - 1) * samples_n / interval / length(fourier_padded); | |
miny_orig = max(fourier) + 0.3 * max(fourier) | |
minx_orig = max(freq) / 2 | |
subplot(211) | |
plot2d(freq_padded, fourier_padded, rect=[0, 0, minx_orig, miny_orig]) ; title("Frequency of the padded sampled signal") | |
subplot(212) | |
plot2d(freq, fourier, rect=[0, 0, minx_orig, miny_orig]) ; title("Frequency of the orig sampled signal") | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [H] = cosine_signal(x, A, f) | |
H = A * cos(f * 2 * %pi * x); | |
endfunction | |
interval = 1 // seconds | |
Fs = 200 // S/s // 570 | |
samples_n = Fs * interval | |
x = linspace(0, interval, samples_n) | |
signal1 = cosine_signal(x, 0.5, 190); | |
signal2 = cosine_signal(x, 2, 10); | |
freq1 = (0:length(signal1) - 1) * Fs / length(signal1); | |
freq2 = freq1; | |
fourier1 = abs(fft(signal1)); | |
fourier2 = abs(fft(signal2)); | |
miny1 = max(fourier1) + 0.3 * max(fourier1) | |
minx1 = max(freq1) / 2 | |
miny2 = max(fourier2) + 0.3 * max(fourier2) | |
minx2 = max(freq2) / 2 | |
subplot(411) | |
plot2d(x, signal1, style=color('magenta')) | |
orig_x = linspace(0, interval, 8196) | |
plot2d(orig_x, cosine_signal(orig_x, 0.5, 190) , style=color('red')) | |
subplot(412) | |
plot2d(x, signal2, style=color('green')) | |
subplot(413) | |
plot2d(freq1, fourier1, rect=[0, 0, minx1, miny1]) ; title("Frequency of sinusoid 1") | |
subplot(414) | |
plot2d(freq2, fourier2, rect=[0, 0, minx2, miny2]) ; title("Frequency of sinusoid 2") | |
samples_n = samples_n | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment