Rationale: Indicate type of model being loaded more explicitly in code.
// Before:
await tf.loadModel('http://server/model.json');
A Pen by Shanqing Cai on CodePen.
import keras | |
import tensorflowjs as tfjs | |
model = keras.applications.mobilenet.MobileNet(alpha=0.25) | |
tfjs.converters.save_keras_model(model, '/tmp/mobilnet_0.25') |
const tf = require('@tensorflow/tfjs'); | |
require('@tensorflow/tfjs-node-gpu'); | |
(async function() { | |
const inputShape = [43, 232, 1]; | |
const numClasses = 10; | |
const model = tf.sequential(); | |
model.add(tf.layers.conv2d({ | |
filters: 8, kernelSize: [2, 8], |
import time | |
import tensorflow as tf | |
tf.enable_eager_execution() | |
# with tf.device('gpu:0'): | |
def model(xs): | |
ys = tf.keras.layers.Conv2D(8, [2, 8], activation='relu')(xs) | |
ys = tf.keras.layers.MaxPool2D([2, 2], strides=[2, 2])(ys) |
// To see the callback live, uncomment the following lines for and try the | |
// code out with ts-node. | |
// (async function() { | |
// const model = tfl.sequential({layers: [ | |
// tfl.layers.dense({units: 100, inputShape: [20], activation: 'relu'}), | |
// tfl.layers.dense({units: 1}) | |
// ]}); | |
// model.compile({loss: 'meanSquaredError', optimizer: 'sgd'}); | |
// const xs = tfc.ones([500, 20]); |