Created
March 27, 2023 06:01
-
-
Save cako/1ab76591b6b6cf07fc195568499a82d5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Decorator to monitor memory of CUDA kernels | |
# Good read: | |
# https://github.com/numba/nvidia-cuda-tutorial/#session-5-memory-management | |
import gc | |
import numpy as np | |
from numba import cuda | |
def fmtsize(num, maxunit="TiB"): | |
units = ["B", "KiB", "MiB", "GiB", "TiB"] | |
units = units[: units.index(maxunit)] | |
sign = np.sign(num) | |
num *= sign | |
for unit in units: | |
if num < 1024.0: | |
return f"{sign*num:.1f} {unit}" | |
num /= 1024.0 | |
return f"{sign*num:.1f} {maxunit}" | |
class CUDAMemory: | |
def __init__(self, device_id=None, force_deallocation=False): | |
self.membefore = None | |
self.memafter = None | |
self.original_device = cuda.get_current_device() | |
self.new_device = self.original_device | |
self.force_deallocation = force_deallocation | |
if device_id is not None and device_id != self.original_device.id: | |
self.new_device = cuda.select_device(device_id) | |
def __enter__(self): | |
self.membefore = cuda.current_context().get_memory_info() | |
return self | |
def __exit__(self, type, value, traceback): | |
if self.force_deallocation: # No idea if these work | |
gc.collect() | |
cuda.current_context().deallocations.clear() | |
self.memafter = cuda.current_context().get_memory_info() | |
if self.original_device.id != self.new_device.id: | |
cuda.select_device(self.original_device.id) | |
def __str__(self): | |
if self.membefore is None: | |
msgbefore = f"free_before=None, total_before=None" | |
else: | |
msgbefore = ( | |
f"free_before={fmtsize(self.membefore.free)}, " | |
f"total_before={fmtsize(self.membefore.total)}" | |
) | |
if self.memafter is None: | |
msgafter = f"free_after=None, total_after=None" | |
else: | |
msgafter = ( | |
f"free_after={fmtsize(self.memafter.free)}, " | |
f"total_after={fmtsize(self.memafter.total)}" | |
) | |
if self.membefore is not None and self.memafter is not None: | |
msgdiff = ( | |
f"free_diff={fmtsize(self.memafter.free - self.membefore.free)}, " | |
f"total_diff={fmtsize(self.memafter.total - self.membefore.total)}" | |
) | |
return ( | |
f"CUDAMemory({msgbefore};\n {msgafter};\n {msgdiff})" | |
) | |
else: | |
return f"CUDAMemory({msgbefore};\n {msgafter})" | |
def __repr__(self): | |
return self.__str__() | |
if __name__ == "__main__": | |
n = 100_000_000 | |
dtype = np.float32 | |
itemsize = np.dtype(dtype).itemsize | |
with CUDAMemory() as mem: | |
out = cuda.device_array((n,), dtype) | |
fb = fmtsize(mem.membefore.free, maxunit="MiB") | |
fa = fmtsize(mem.memafter.free, maxunit="MiB") | |
sz = fmtsize(n * itemsize, maxunit="MiB") | |
print(f"Free before {fb} | Free after {fa} | Array size {sz}") | |
print(mem) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment