Created
November 20, 2013 21:05
-
-
Save calmhandtitan/7571008 to your computer and use it in GitHub Desktop.
Prime factorization of an Integer using Pollard Rho Algorithm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
Algo: Pollar Rho | |
Task: Prime Factorization of an Integer | |
Author: Chandan Mittal | |
*/ | |
#include "stdio.h" | |
#include "stdlib.h" | |
#include "string.h" | |
#include "time.h" | |
const int MAX = 100000000; | |
const int LMT = 10000; | |
bool isprime[MAX]; | |
void sieve() //Sieve of Eratosthenes | |
{ | |
memset(isprime, true, sizeof(isprime)); | |
int i, k, j; | |
isprime[1] = false; | |
for (i = 4; i <= MAX; i+=2) | |
{ | |
isprime[i] = false; | |
} | |
for (i = 3; i <= LMT; i+=2) | |
{ | |
if(isprime[i]) | |
for (j = i*i, k = i<<1; j <= MAX; j+=k) | |
{ | |
isprime[j] = false; | |
} | |
} | |
} | |
int abso(int a) //fn to return absolute value | |
{ | |
return a>0?a:-a; | |
} | |
int gcd(int a,int b) //Euclidean GCD recursive fn | |
{ | |
if(b==0) | |
return a; | |
else | |
return gcd(b,a%b); | |
} | |
int pollard_rho(int n) //pollard rho implementation | |
{ | |
if(n%2==0) | |
return 2; | |
int x = rand()%n+1; | |
int c = rand()%n+1; | |
int y = x; | |
int g = 1; | |
//fn is f(x) = x*x + c | |
while(g==1) | |
{ | |
x = ((x*x)%n + c)%n; | |
y = ((y*y)%n + c)%n; | |
y = ((y*y)%n + c)%n; | |
g = gcd(abso(x-y),n); | |
} | |
return g; | |
} | |
int factors[MAX/100], total; | |
void factorize(int n) //fn to factorize the number | |
{ | |
if(n == 1) | |
return; | |
if(isprime[n]) //if n is prime,store it | |
{ | |
factors[total++] = n; | |
return; | |
} | |
int divisor = pollard_rho(n); //get a divisor of n | |
factorize(divisor); | |
factorize(n/divisor); | |
} | |
int main() //Driver Program | |
{ | |
srand(time(NULL)); | |
sieve(); | |
int n; | |
scanf("%d",&n); | |
total = 0; | |
factorize(n); | |
for (int i = 0; i < total; ++i) | |
{ | |
printf("%d ",factors[i] ); | |
} | |
printf("\n"); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment