Last active
August 29, 2015 14:06
-
-
Save cancan101/2d6d1ba07b3ba45c6e46 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
os.environ['THEANO_FLAGS']="optimizer_including=conv_fft_valid:conv_fft_full" | |
from pylearn2.config import yaml_parse | |
from pylearn2.datasets.dense_design_matrix import DenseDesignMatrix | |
import numpy as np | |
train_str = """!obj:pylearn2.train.Train { | |
dataset: &train !import '__main__ .train_set', | |
model: null, | |
algorithm: !obj:pylearn2.training_algorithms.sgd.SGD { | |
batch_size: 6, | |
learning_rate: .005, | |
learning_rule: !obj:pylearn2.training_algorithms.learning_rule.Momentum { | |
init_momentum: 0.15 | |
}, | |
cost: !obj:pylearn2.costs.mlp.dropout.Dropout { | |
input_include_probs: { 'h0' : 0.8, }, | |
input_scales: { 'h0' : 1.25,} | |
}, | |
monitor_iteration_mode : "even_shuffled_sequential", | |
train_iteration_mode : "even_shuffled_sequential", | |
monitoring_dataset: { | |
'valid' : !import '__main__ .valid' | |
}, | |
termination_criterion: !obj:pylearn2.termination_criteria.And { | |
criteria: [ | |
!obj:pylearn2.termination_criteria.MonitorBased { | |
channel_name: "valid_y_misclass", | |
prop_decrease: 0.01, | |
N: 30 | |
}, | |
!obj:pylearn2.termination_criteria.EpochCounter { | |
max_epochs: 50 | |
}, | |
] | |
}, | |
}, | |
extensions: [ | |
!obj:pylearn2.training_algorithms.learning_rule.MomentumAdjustor { | |
start: 1, | |
saturate: 40, | |
final_momentum: 0.60 | |
}, | |
!obj:pylearn2.training_algorithms.sgd.LinearDecayOverEpoch { | |
start: 20, | |
saturate: 100, | |
decay_factor: 0.1 | |
}, | |
] | |
}""" | |
y_labels = 4 | |
labels = [0] * 100 | |
y = np.array(labels)[:,np.newaxis] | |
y[0] = 1 | |
y[0] = 2 | |
y[0] = 3 | |
train_set = DenseDesignMatrix(topo_view=np.zeros((100,300,400,1)), y=y, y_labels=y_labels) | |
valid = DenseDesignMatrix(topo_view=np.zeros((100,300,400,1)), y=y, y_labels=y_labels) | |
train = yaml_parse.load(train_str) | |
model_str = """ | |
!obj:pylearn2.models.mlp.MLP { | |
input_space: !obj:pylearn2.space.Conv2DSpace { | |
shape: [300, 400], | |
num_channels: 1 | |
}, | |
layers: [ | |
!obj:pylearn2.models.mlp.ConvRectifiedLinear { | |
layer_name: 'h0', | |
output_channels: 32, | |
irange: .05, | |
kernel_shape: [11, 11], | |
pool_shape: [4, 4], | |
pool_stride: [2, 2], | |
}, !obj:pylearn2.models.mlp.ConvRectifiedLinear { | |
layer_name: 'h1', | |
output_channels: 30, | |
irange: .05, | |
kernel_shape: [5, 5], | |
pool_shape: [2, 2], | |
pool_stride: [2, 2], | |
}, !obj:pylearn2.models.mlp.ConvRectifiedLinear { | |
layer_name: 'h2', | |
output_channels: 28, | |
irange: .05, | |
kernel_shape: [3, 3], | |
pool_shape: [2, 2], | |
pool_stride: [2, 2], | |
}, !obj:pylearn2.models.mlp.Softmax { | |
layer_name: 'y', | |
n_classes: 4, | |
irange: 0.005000 | |
} | |
], | |
} | |
""" | |
model = yaml_parse.load(model_str) | |
train.model = model | |
train.main_loop() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment