Skip to content

Instantly share code, notes, and snippets.

@caomw
Forked from GilLevi/README.md
Created March 1, 2016 00:43
Show Gist options
  • Save caomw/fd080c493ad55e5a91b0 to your computer and use it in GitHub Desktop.
Save caomw/fd080c493ad55e5a91b0 to your computer and use it in GitHub Desktop.
Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns

Gil Levi and Tal Hassner, Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns

Convolutional neural networks for emotion classification from facial images as described in the following work:

Gil Levi and Tal Hassner, Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns, Proc. ACM International Conference on Multimodal Interaction (ICMI), Seattle, Nov. 2015

Project page: http://www.openu.ac.il/home/hassner/projects/cnn_emotions/

If you find our models useful, please add suitable reference to our paper in your work.

gist_id: 54aee1b8b0397721aa4b

###Emotion Classification CNN - RGB

caffemodel: VGG_S_rgb/EmotiW_VGG_S.caffemodel

caffemodel_url: https://dl.dropboxusercontent.com/u/38822310/demodir/VGG_S_rgb/EmotiW_VGG_S.caffemodel

mean_file_proto: https://dl.dropboxusercontent.com/u/38822310/demodir/VGG_S_rgb/mean.binaryproto

###Emotion Classification CNN - LBP

caffemodel: VGG_S_lbp/EmotiW_VGG_S.caffemodel

caffemodel_url: https://dl.dropboxusercontent.com/u/38822310/demodir/VGG_S_lbp/EmotiW_VGG_S.caffemodel

mean_file_proto: https://dl.dropboxusercontent.com/u/38822310/demodir/VGG_S_lbp/mean.binaryproto

###Emotion Classification CNN - Cyclic LBP

caffemodel: VGG_S_cyclic_lbp/EmotiW_VGG_S.caffemodel

caffemodel_url: https://dl.dropboxusercontent.com/u/38822310/demodir/VGG_S_cyclic_lbp/EmotiW_VGG_S.caffemodel

mean_file_proto: https://dl.dropboxusercontent.com/u/38822310/demodir/VGG_S_cyclic_lbp/mean.binaryproto

###Emotion Classification CNN - Cyclic LBP-5

caffemodel: VGG_S_cyclic_lbp_5/EmotiW_VGG_S.caffemodel

caffemodel_url: https://dl.dropboxusercontent.com/u/38822310/demodir/VGG_S_cyclic_lbp_5/EmotiW_VGG_S.caffemodel

mean_file_proto: https://dl.dropboxusercontent.com/u/38822310/demodir/VGG_S_cyclic_lbp_5/mean.binaryproto

###Emotion Classification CNN - Cyclic LBP-10

caffemodel: VGG_S_cyclic_lbp_10/EmotiW_VGG_S.caffemodel

caffemodel_url: https://dl.dropboxusercontent.com/u/38822310/demodir/VGG_S_cyclic_lbp_10/EmotiW_VGG_S.caffemodel

mean_file_proto: https://dl.dropboxusercontent.com/u/38822310/demodir/VGG_S_cyclic_lbp_10/mean.binaryproto


Copyright 2015, Gil Levi and Tal Hassner

The SOFTWARE provided in this page is provided "as is", without any guarantee made as to its suitability or fitness for any particular use. It may contain bugs, so use of this tool is at your own risk. We take no responsibility for any damage of any sort that may unintentionally be caused through its use.

name: "CaffeNet"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 224
input_dim: 224
layers {
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
convolution_param {
num_output: 96
kernel_size: 7
stride: 2
}
}
layers {
name: "relu1"
type: RELU
bottom: "conv1"
top: "conv1"
}
layers {
name: "norm1"
type: LRN
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0005
beta: 0.75
}
}
layers {
name: "pool1"
type: POOLING
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 3
}
}
layers {
name: "conv2"
type: CONVOLUTION
bottom: "pool1"
top: "conv2"
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
}
}
layers {
name: "relu2"
type: RELU
bottom: "conv2"
top: "conv2"
}
layers {
name: "pool2"
type: POOLING
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
name: "conv3"
type: CONVOLUTION
bottom: "pool2"
top: "conv3"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
name: "relu3"
type: RELU
bottom: "conv3"
top: "conv3"
}
layers {
name: "conv4"
type: CONVOLUTION
bottom: "conv3"
top: "conv4"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
name: "relu4"
type: RELU
bottom: "conv4"
top: "conv4"
}
layers {
name: "conv5"
type: CONVOLUTION
bottom: "conv4"
top: "conv5"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
name: "relu5"
type: RELU
bottom: "conv5"
top: "conv5"
}
layers {
name: "pool5"
type: POOLING
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 3
}
}
layers {
name: "fc6"
type: INNER_PRODUCT
bottom: "pool5"
top: "fc6"
inner_product_param {
num_output: 4048
}
}
layers {
name: "relu6"
type: RELU
bottom: "fc6"
top: "fc6"
}
layers {
name: "drop6"
type: DROPOUT
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "fc7"
type: INNER_PRODUCT
bottom: "fc6"
top: "fc7"
inner_product_param {
num_output: 4048
}
}
layers {
name: "relu7"
type: RELU
bottom: "fc7"
top: "fc7"
}
layers {
name: "drop7"
type: DROPOUT
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "fc8_cat"
type: INNER_PRODUCT
bottom: "fc7"
top: "fc8"
inner_product_param {
num_output: 7
}
}
layers {
name: "prob"
type: SOFTMAX
bottom: "fc8"
top: "prob"
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment