Last active
October 21, 2021 22:02
-
-
Save captainjackrana/0df3bae3a41ebc049f975f72ad1aa762 to your computer and use it in GitHub Desktop.
Routine for predicting electrical conductivity of materials using the matminer library.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from matminer.datasets import load_dataset | |
from pymatgen.core import Composition | |
from matminer.featurizers.structure import DensityFeatures | |
from matminer.featurizers.conversions import StrToComposition | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import mean_absolute_error | |
from sklearn.dummy import DummyRegressor | |
import pprint | |
from automatminer import MatPipe | |
from automatminer import get_preset_config | |
from automatminer.automl.adaptors import TPOTAdaptor | |
# Custom config for TDOT to avoid error. See https://matsci.org/t/error-found-array-with-0-feature-s/4848/10 | |
config_dict_1={'sklearn.ensemble.RandomForestRegressor': {'n_estimators': [20, 100, 200, 500, 1000], | |
'max_features': [0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95], | |
'min_samples_split': range(2, 21, 3), | |
'min_samples_leaf': range(1, 21, 3), | |
'bootstrap': [True, False]}, | |
'sklearn.ensemble.GradientBoostingRegressor': {'n_estimators': [20, 100, 200, 500, 1000], | |
'loss': ['ls', 'lad', 'huber', 'quantile'], | |
'learning_rate': [0.01, 0.1, 0.5, 1.0], | |
'max_depth': range(1, 11, 2), | |
'min_samples_split': range(2, 21, 3), | |
'min_samples_leaf': range(1, 21, 3), | |
'subsample': [0.05, 0.1 , 0.15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55, | |
0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.], | |
'max_features': [0.05, 0.1 , 0.15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55, | |
0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.], | |
'alpha': [0.75, 0.8, 0.85, 0.9, 0.95, 0.99]}, | |
'sklearn.ensemble.ExtraTreesRegressor': {'n_estimators': [20, 100, 200, 500, 1000], | |
'max_features': [0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95], | |
'min_samples_split': range(2, 21, 3), | |
'min_samples_leaf': range(1, 21, 3), | |
'bootstrap': [True, False]}, | |
'sklearn.tree.DecisionTreeRegressor': {'max_depth': range(1, 11, 2), | |
'min_samples_split': range(2, 21, 3), | |
'min_samples_leaf': range(1, 21, 3)}, | |
'sklearn.neighbors.KNeighborsRegressor': {'n_neighbors': range(1, 101), | |
'weights': ['uniform', 'distance'], | |
'p': [1, 2]}, | |
'sklearn.linear_model.Lasso': {'alpha': [1e-2, 1e-1, 1e0, 1e1, 1e2]}, #J alpha values taken from Takigawa-2019 | |
'sklearn.linear_model.LassoLarsCV': {'normalize': [True, False]}, | |
'sklearn.linear_model.RidgeCV': {}, | |
'sklearn.linear_model.ElasticNetCV': {'l1_ratio': [0., 0.05, 0.1 , 0.15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55, 0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.], | |
'tol': [1e-05, 0.0001, 0.001, 0.01, 0.1]}, | |
'sklearn.preprocessing.MaxAbsScaler': {}, | |
'sklearn.preprocessing.RobustScaler': {}, | |
'sklearn.preprocessing.StandardScaler': {}, | |
'sklearn.preprocessing.MinMaxScaler': {}, | |
'sklearn.preprocessing.Normalizer': {'norm': ['l1', 'l2', 'max']}, | |
'sklearn.preprocessing.PolynomialFeatures': {'degree': [2], | |
'include_bias': [False], | |
'interaction_only': [False]}, | |
'sklearn.kernel_approximation.RBFSampler': {'gamma': [0., 0.05, 0.1 , 0.15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55, 0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]}, | |
'sklearn.kernel_approximation.Nystroem': {'kernel': ['rbf', 'cosine', 'chi2', 'laplacian', 'polynomial', 'poly', 'linear', 'additive_chi2','sigmoid'], | |
'gamma': [0., 0.05, 0.1 , 0.15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55, 0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.], | |
'n_components': range(1, 11)}, | |
'tpot.builtins.ZeroCount': {}, | |
'tpot.builtins.OneHotEncoder': {'minimum_fraction': [0.05, 0.1, 0.15, 0.2, 0.25], | |
'sparse': [False], | |
'threshold': [10]}, | |
'sklearn.preprocessing.Binarizer': {'threshold': [0., 0.05, 0.1 , 0.15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , | |
0.55, 0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]}, | |
'sklearn.cluster.FeatureAgglomeration': {'linkage': ['ward', 'complete', 'average'], | |
'affinity': ['euclidean', 'l1', 'l2', 'manhattan', 'cosine']}, | |
'sklearn.feature_selection.SelectPercentile': {'percentile': range(1, 100), | |
'score_func': {'sklearn.feature_selection.f_regression': None}}, | |
'sklearn.decomposition.PCA': {'svd_solver': ['randomized'], | |
'iterated_power': range(1, 11)}, | |
'sklearn.decomposition.FastICA': {'tol': [0., 0.05, 0.1 , 0.15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , | |
0.55, 0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]}, | |
'sklearn.feature_selection.VarianceThreshold': {'threshold': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2]}} | |
# Start ML | |
# Load power factor dataset | |
df = load_dataset("boltztrap_mp") | |
# Automatically converted to composition in pipeline | |
#df = StrToComposition(target_col_id='composition').featurize_dataframe(df, 'formula') | |
df = df.rename(columns={'formula':'composition'}) | |
print(df) | |
#Convert power_factor to sigma value | |
df['sigma'] = df['pf_p']/(df['s_p']*df['s_p']) | |
ml_df = df[['sigma', 'composition']] | |
train_df, test_df = train_test_split(ml_df, test_size=0.2, shuffle=True, random_state=20191014) | |
# Our target property | |
target = 'sigma' | |
prediction_df = test_df.drop(columns=[target]) | |
#pipe = MatPipe.from_preset("express") | |
config = get_preset_config("express") | |
config['learner'] = TPOTAdaptor(max_time_mins=1440, | |
max_eval_time_mins=20, | |
cv=5, | |
verbosity=3, | |
memory='auto', | |
template='Selector-Transformer-Regressor', | |
scoring='neg_mean_absolute_error', | |
config_dict=config_dict_1) | |
pipe = MatPipe(**config) | |
# Fit the model | |
pipe.fit(train_df, target) | |
# Time for prediction | |
prediction_df = pipe.predict(prediction_df) | |
# Check the predictions | |
prediction_df.head() | |
# Save pipeline for future | |
pipe.save("sigma_conductivity_pipeline.p") | |
# Start model accuracy evaluation | |
dr = DummyRegressor() | |
dr.fit(train_df["composition"], train_df[target]) | |
dummy_test = dr.predict(test_df["composition"]) | |
# Score dummy and MatPipe | |
true = test_df[target] | |
matpipe_test = prediction_df[target + " predicted"] | |
mae_matpipe = mean_absolute_error(true, matpipe_test) | |
mae_dummy = mean_absolute_error(true, dummy_test) | |
print("Dummy MAE: {}".format(mae_dummy)) | |
print("MatPipe MAE: {}".format(mae_matpipe)) | |
summary = pipe.summarize(filename="MatPipe_comp_summary.json") | |
pprint.pprint(summary) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment