Created
April 23, 2025 10:15
-
-
Save carloocchiena/ebab556d90630817e7c88cf92daf50e0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# --- 1. Libraries --- | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from datetime import timedelta | |
# --- 2. Load the Excel file --- | |
# Replace with your actual filename | |
df = pd.read_excel('20240101_20241231_sample.xlsx') | |
# --- 3. Rename and parse columns --- | |
df.columns = ['Date', 'Time', 'Value'] | |
# Convert 'Data' to datetime | |
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True) | |
# Convert 'Ora' from 1–24 to 0–23 (Python datetime uses 0–23) | |
df['Time'] = df['Time'] - 1 | |
# Create a full timestamp | |
df['Timestamp'] = df['Date'] + pd.to_timedelta(df['Time'], unit='h') | |
df.set_index('Timestamp', inplace=True) | |
# --- 4. Convert 'Prezzo' to float --- | |
# Handle comma as decimal separator | |
df['Value'] = df['Value'].astype(str).str.replace(',', '.').astype(float) | |
# --- 5. Preview the data --- | |
print(df.head()) | |
# --- 6. Descriptive statistics --- | |
print(df['Value'].describe()) | |
# --- 7. Time series plot --- | |
plt.figure(figsize=(16, 5)) | |
plt.plot(df.index, df['Value'], linewidth=0.5) | |
plt.title('Andamento time series', fontsize=14) | |
plt.xlabel('Date') | |
plt.ylabel('Value') | |
plt.grid(True) | |
plt.tight_layout() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment