Source: https://doc.rust-lang.org/cargo/commands/general-commands.html
bold = very useful
cargo --version (actual version)
cargon --list (list installed commands)
cargo --help (provide helps)
cargo --explain code (explain specific functions)
# copy and paste the script on a Jupyter Notebook to have the | |
# table printed on screen | |
import numpy as np | |
import pandas as pd | |
from scipy.integrate import quad | |
def normal_probability_density(x): | |
constant = 1.0 / np.sqrt(2 * np.pi) | |
return(constant * np.exp((-x**2) / 2)) |
app.location.recordings.each(function (recording) { | |
recording.tracks.each(function (track) { | |
track.downloadFromLocal(window.location.href); | |
}) | |
}) |
Source: https://doc.rust-lang.org/cargo/commands/general-commands.html
bold = very useful
cargo --version (actual version)
cargon --list (list installed commands)
cargo --help (provide helps)
cargo --explain code (explain specific functions)
-- create our table | |
CREATE TABLE Videogiochi ( | |
ID INT PRIMARY KEY AUTO_INCREMENT, | |
Nome VARCHAR(100) NOT NULL, | |
AnnoUscita INT NOT NULL, | |
Rating INT CHECK (Rating >= 1 AND Rating <= 5) | |
); | |
-- insert the data | |
INSERT INTO Videogiochi (Nome, AnnoUscita, Rating) VALUES |
""" | |
I'm starting to like the Variance-Gamma model quite a bit. | |
Here is a quick and dirty Octave (Matlab) code for generating the IV skew given VG parameters | |
I took the parameters from the Madan, Carr and Chang paper. | |
Instead of evaluating a double integral I use the mixing formula, which results in a single integral. | |
From Linkedin profile of Frido Rolloos | |
"" | |
import numpy as np |
# --- 1. Libraries --- | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from datetime import timedelta | |
# --- 2. Load the Excel file --- | |
# Replace with your actual filename | |
df = pd.read_excel('20240101_20241231_sample.xlsx') |
# Add useful time-based features | |
df['Hour'] = df.index.hour | |
df['Day'] = df.index.day | |
df['Weekday'] = df.index.weekday # Monday=0, Sunday=6 | |
df['Month'] = df.index.month | |
df['Date'] = df.index.date # useful for grouping by day | |
plt.figure(figsize=(10, 4)) | |
sns.histplot(df['Value'], bins=50, kde=True) | |
plt.title('Distribution of values') |
import matplotlib.dates as mdates | |
# 1. Riorganizza i dati: pivot con giorni sulle righe, ore sulle colonne | |
heatmap_data = df.copy() | |
heatmap_data['Date'] = heatmap_data.index.date | |
heatmap_data['Hour'] = heatmap_data.index.hour | |
pivot = heatmap_data.pivot_table(index='Date', columns='Hour', values='Value') | |
# 2. Plot della heatmap |
from statsmodels.tsa.statespace.sarimax import SARIMAX | |
from sklearn.metrics import mean_squared_error | |
# Drop NaNs from differencing (if any) | |
daily_data = df['Value'].resample('D').mean() | |
daily_data = daily_data.asfreq('D') # daily average | |
daily_data = daily_data.fillna(method='ffill') # safety fill if any missing | |
subset = daily_data['2024-01-01':'2024-03-31'] |