Source: https://doc.rust-lang.org/cargo/commands/general-commands.html
bold = very useful
cargo --version (actual version)
cargon --list (list installed commands)
cargo --help (provide helps)
cargo --explain code (explain specific functions)
| from statsmodels.tsa.statespace.sarimax import SARIMAX | |
| from sklearn.metrics import mean_squared_error | |
| # Drop NaNs from differencing (if any) | |
| daily_data = df['Value'].resample('D').mean() | |
| daily_data = daily_data.asfreq('D') # daily average | |
| daily_data = daily_data.fillna(method='ffill') # safety fill if any missing | |
| subset = daily_data['2024-01-01':'2024-03-31'] |
| import matplotlib.dates as mdates | |
| # 1. Riorganizza i dati: pivot con giorni sulle righe, ore sulle colonne | |
| heatmap_data = df.copy() | |
| heatmap_data['Date'] = heatmap_data.index.date | |
| heatmap_data['Hour'] = heatmap_data.index.hour | |
| pivot = heatmap_data.pivot_table(index='Date', columns='Hour', values='Value') | |
| # 2. Plot della heatmap |
| # Add useful time-based features | |
| df['Hour'] = df.index.hour | |
| df['Day'] = df.index.day | |
| df['Weekday'] = df.index.weekday # Monday=0, Sunday=6 | |
| df['Month'] = df.index.month | |
| df['Date'] = df.index.date # useful for grouping by day | |
| plt.figure(figsize=(10, 4)) | |
| sns.histplot(df['Value'], bins=50, kde=True) | |
| plt.title('Distribution of values') |
| # --- 1. Libraries --- | |
| import pandas as pd | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| from datetime import timedelta | |
| # --- 2. Load the Excel file --- | |
| # Replace with your actual filename | |
| df = pd.read_excel('20240101_20241231_sample.xlsx') |
| """ | |
| I'm starting to like the Variance-Gamma model quite a bit. | |
| Here is a quick and dirty Octave (Matlab) code for generating the IV skew given VG parameters | |
| I took the parameters from the Madan, Carr and Chang paper. | |
| Instead of evaluating a double integral I use the mixing formula, which results in a single integral. | |
| From Linkedin profile of Frido Rolloos | |
| "" | |
| import numpy as np |
| -- create our table | |
| CREATE TABLE Videogiochi ( | |
| ID INT PRIMARY KEY AUTO_INCREMENT, | |
| Nome VARCHAR(100) NOT NULL, | |
| AnnoUscita INT NOT NULL, | |
| Rating INT CHECK (Rating >= 1 AND Rating <= 5) | |
| ); | |
| -- insert the data | |
| INSERT INTO Videogiochi (Nome, AnnoUscita, Rating) VALUES |
Source: https://doc.rust-lang.org/cargo/commands/general-commands.html
bold = very useful
cargo --version (actual version)
cargon --list (list installed commands)
cargo --help (provide helps)
cargo --explain code (explain specific functions)
| app.location.recordings.each(function (recording) { | |
| recording.tracks.each(function (track) { | |
| track.downloadFromLocal(window.location.href); | |
| }) | |
| }) |
| # copy and paste the script on a Jupyter Notebook to have the | |
| # table printed on screen | |
| import numpy as np | |
| import pandas as pd | |
| from scipy.integrate import quad | |
| def normal_probability_density(x): | |
| constant = 1.0 / np.sqrt(2 * np.pi) | |
| return(constant * np.exp((-x**2) / 2)) |
| # TSP with heuristic dynamic programming | |
| # Solution is based on "always picking the shortest route available" on the matrix | |
| from itertools import permutations | |
| def travel_salesman_problem(graph: list, path_sum: int = 0) -> int: | |
| vertex = [] | |
| min_path = [] | |