Last active
June 23, 2022 19:17
-
-
Save carlos-adir/f31b8ec35ee370f03a08e16a40f17630 to your computer and use it in GitHub Desktop.
Vibrations exercices
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import sympy as sp | |
sin, cos = sp.sin, sp.cos | |
k1, k2 = sp.symbols("k1 k2", real=True, positive=True) | |
L1, L2 = sp.symbols("L1 L2", real=True, positive=True) | |
a, p, m= sp.symbols("a p m", real=True, positive=True) | |
theta = sp.symbols("theta") | |
dtheta = sp.symbols("dtheta") | |
C0 = np.array([0, p, 0]) | |
P0 = C0 + np.array([0, a, 0]) | |
P1 = P0 - np.array([L1, 0, 0]) | |
P2 = P0 + np.array([L2, 0, 0]) | |
C = np.array([p*theta, p, 0]) | |
P = C + a*np.array([sin(theta), cos(theta), 0]) | |
# Energia potencial elastica | |
x1 = sp.sqrt(sum((P-P1)**2)) - sp.sqrt(sum((P0-P1)**2)) | |
print("x1 = ", x1) | |
x1ser = sp.series(x1, theta, n=2).removeO() | |
print("x1 series = ", x1ser) | |
x2 = sp.sqrt(sum((P-P2)**2)) - sp.sqrt(sum((P0-P2)**2)) | |
print("x2 = ", x2) | |
x2ser = sp.series(x2, theta, n=2).removeO() | |
print("x2 series = ", x2ser) | |
V = (k1*x1ser**2+k2*x2ser**2)/2 | |
V = sp.simplify(V) | |
print("V = ", V) | |
# Energia cinetica | |
Ec1 = (1/2)*m*p**2 * dtheta**2 | |
Ec2 = (1/2)*(1/2)*m*p**2 * dtheta**2 | |
T = Ec1 + Ec2 | |
print("T = ", T) | |
# Lagrangian | |
t = sp.symbols("t") | |
Theta = sp.Function("Theta")(t) | |
dTheta = sp.diff(Theta, t) | |
L = T - V | |
L = L.subs(theta, Theta) | |
L = L.subs(dtheta, dTheta) | |
equation = sp.diff(sp.diff(L, dTheta), t) - sp.diff(L, Theta) | |
print("Final Equation = ") | |
print(equation) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sympy as sp | |
import numpy as np | |
sin, cos, pi = sp.sin, sp.cos, sp.pi | |
h = sp.symbols("h", positive = True, real=True) | |
if True: | |
R, e = sp.symbols("R e", positive=True, real=True) | |
Re = R + sp.Rational(1, 2)*e | |
Ri = R - sp.Rational(1, 2)*e | |
else: | |
Ri, Re = sp.symbols("Ri Re", positive=True, real=True) | |
R = sp.Rational(1, 2) * (Ri+Re) | |
e = Re-Ri | |
r, t, z = sp.symbols("r t z") | |
x = r * cos(t) | |
y = r * sin(t) | |
p = np.array([x, y, z]) | |
pip = np.inner(p, p) | |
pop = np.tensordot(p, p, axes=0) | |
rho = 1 | |
m = sp.integrate(rho*r, (r, Ri, Re)) | |
m = sp.integrate(m, (t, pi/2, 3*pi/2)) | |
m = sp.integrate(m, (z, -h/2, h/2)) | |
m = sp.simplify(m) | |
V = sp.integrate(r, (r, Ri, Re)) | |
V = sp.integrate(V, (t, pi/2, 3*pi/2)) | |
V = sp.integrate(V, (z, -h/2, h/2)) | |
V = sp.simplify(V) | |
CM = sp.integrate(rho*sp.Matrix(p)*r, (r, Ri, Re)) | |
CM = sp.integrate(CM, (t, pi/2, 3*pi/2)) | |
CM = sp.integrate(CM, (z, -h/2, h/2)) | |
CM /= m | |
CM = sp.simplify(CM) | |
II = pip * sp.eye(3) - sp.Matrix(pop) | |
II = sp.integrate(rho*II*r, (r, Ri, Re)) | |
II = sp.integrate(II, (t, pi/2, 3*pi/2)) | |
II = sp.integrate(II, (z, -h/2, h/2)) | |
II /= m | |
II = sp.simplify(II) | |
print("V = ", V) | |
print("CM = ", CM) | |
print("II = ", II) | |
a = -CM[0] | |
print("a = ", a) | |
g = sp.symbols("g") | |
m = sp.symbols("m") | |
theta = sp.symbols("theta") | |
dtheta = sp.symbols("dtheta") | |
# Energia potencial | |
V = -m*g*a*cos(theta) | |
print("V = ") | |
print(V) | |
# Energia cinetica | |
Ec1 = sp.Rational(1, 2)*m*Re**2 *dtheta**2 | |
Ec2 = sp.Rational(1, 2)*m*R**2 *(1+sp.Rational(1, 4)*e**2/R**2)*dtheta**2 | |
T = Ec1 + Ec2 | |
T = sp.simplify(T) | |
print("T = ") | |
print(T) | |
# Lagrangiano | |
L = T - V | |
Theta = sp.Function("Theta")(t) | |
dTheta = sp.diff(Theta, t) | |
L = L.subs(theta, Theta) | |
L = L.subs(dtheta, dTheta) | |
equation = sp.diff(sp.diff(L, dTheta), t) - sp.diff(L, Theta) | |
equation = sp.simplify(equation) | |
print("Final Equation = ") | |
print(equation) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment