Created
December 11, 2018 23:22
-
-
Save carolosf/bb03b56b10817ba4ec6289aba3e50ef9 to your computer and use it in GitHub Desktop.
Instructions for getting started with jupyter notebooks on python with visual studio code and code samples
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Download Anaconda https://www.anaconda.com/download/ | |
# Anaconda is a standalone python environment that doesn't mess with your system python and comes with useful libraries pre-installed | |
# execute anaconda | |
# cd ~/Downloads | |
# bash Anaconda3-5.3.1-Linux-x86_64.sh | |
# rm Anaconda3-5.3.1-Linux-x86_64.sh | |
# download visual studio code and start it up | |
# go to extensions tab (win linux: ctrl+shift+x) | |
# search for and download python extension for vscode | |
# search for and download jupyter extension for vscode | |
# Open the Command Palette (Command+Shift+P on macOS and Ctrl+Shift+P on Windows/Linux) and type in one of the following commands: | |
# Python: Select Interpreter | |
# Choose anaconda directory python | |
# restart visual studio code | |
# Copy and paste this in a file e.g. test.py and click Run Cell above #%% | |
# Useful reference | |
# https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf | |
# http://mcsp.wartburg.edu/zelle/python/graphics/graphics.pdf | |
#%% | |
import matplotlib.pyplot as plt | |
import matplotlib as mpl | |
import numpy as np | |
x = np.linspace(0, 20, 100) | |
plt.plot(x, np.sin(x)) | |
plt.show() | |
#%% | |
import matplotlib.pyplot as plt | |
import matplotlib as mpl | |
import numpy as np | |
x = np.linspace(0, 20, 100) | |
plt.plot(x, x) | |
plt.show() | |
#%% | |
import matplotlib.pyplot as plt | |
import matplotlib as mpl | |
import numpy as np | |
import pandas as pd | |
import scipy as sp | |
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/school_earnings.csv") | |
df | |
#%% | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)) | |
ts = ts.cumsum() | |
ts.plot() | |
#%% | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD')) | |
df['e'] = pd.Series(np.random.randn(1000), index=df.index) | |
df['f'] = pd.Series(np.linspace(0, 0.10, 1000), index=df.index) | |
df.at['2001-01-27', 'f'] = 100.00 | |
df = df.cumsum() | |
df['g'] = df['A'].rolling(30).mean() | |
plt.figure() | |
df.plot() | |
plt.legend(loc='best') | |
#%% | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# https://www.nasdaq.com/symbol/csv/historical | |
df = pd.read_csv('/home/carolosf/Downloads/HistoricalQuotes.csv') | |
# df.index = df['date'] | |
df.index = pd.to_datetime(df['date'],infer_datetime_format=True) | |
df = df.drop('date', axis=1) | |
df['ma'] = df['open'].rolling(30).mean() | |
df.plot(figsize=(20,10)) | |
#d = df['date'] | |
#%% | |
# need to do in ~/anaconda3/bin: ./pip install graphics.py | |
from graphics import * | |
def main(): | |
win = GraphWin("My Circle", 1024, 768) | |
c = Circle(Point(50,50), 10) | |
c.draw(win) | |
for i in range(0, 100): | |
c = Circle(Point(100,i), 10) | |
c.draw(win) | |
win.getMouse() # pause for click in window | |
win.close() | |
main() | |
#%% | |
from bokeh.io import push_notebook, show, output_notebook | |
from bokeh.layouts import row, gridplot | |
from bokeh.plotting import figure, show, output_file | |
from bokeh.models import ColumnDataSource | |
output_notebook() | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
# https://www.nasdaq.com/symbol/csv/historical | |
df = pd.read_csv('/home/carolosf/Downloads/HistoricalQuotes.csv') | |
# df.index = df['date'] | |
df.index = pd.to_datetime(df['date'],infer_datetime_format=True) | |
df = df.drop('date', axis=1) | |
df['ma'] = df['open'].rolling(30).mean() | |
df.plot(figsize=(20,10)) | |
x = np.linspace(0, 4*np.pi, 100) | |
y = np.sin(x) | |
TOOLS = "pan,wheel_zoom,box_zoom,reset,save,box_select" | |
p1 = figure(title="Legend Example", tools=TOOLS, x_axis_type="datetime") | |
source = ColumnDataSource(data=df) | |
# p1.circle(y='open', x='date', source=source) | |
p1.line(y='close', x='date', color='navy', alpha=0.5, source=source) | |
p1.line(y='ma', x='date', color='red', alpha=0.5, source=source) | |
show(p1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment