-
-
Save cassiozen/de0dff87eb7ed599b5d0 to your computer and use it in GitHub Desktop.
ACTIVATION_RESPONSE = 1 | |
NeuralNetwork = { | |
transfer = function( x) return 1 / (1 + math.exp(-x / ACTIVATION_RESPONSE)) end --This is the Transfer function (in this case a sigmoid) | |
} | |
function NeuralNetwork.create( _numInputs, _numOutputs, _numHiddenLayers, _neuronsPerLayer, _learningRate) | |
_numInputs = _numInputs or 1 | |
_numOutputs = _numOutputs or 1 | |
_numHiddenLayers = _numHiddenLayers or math.ceil(_numInputs/2) | |
_neuronsPerLayer = _neuronsPerLayer or math.ceil(_numInputs*.66666+_numOutputs) | |
_learningRate = _learningRate or .5 | |
--order goes network[layer][neuron][wieght] | |
local network = setmetatable({ | |
learningRate = _learningRate | |
},{ __index = NeuralNetwork}); | |
network[1] = {} --Input Layer | |
for i = 1,_numInputs do | |
network[1][i] = {} | |
end | |
for i = 2,_numHiddenLayers+2 do --plus 2 represents the output layer (also need to skip input layer) | |
network[i] = {} | |
local neuronsInLayer = _neuronsPerLayer | |
if i == _numHiddenLayers+2 then | |
neuronsInLayer = _numOutputs | |
end | |
for j = 1,neuronsInLayer do | |
network[i][j] = {bias = math.random()*2-1} | |
local numNeuronInputs = table.getn(network[i-1]) | |
for k = 1,numNeuronInputs do | |
network[i][j][k] = math.random()*2-1 --return random number between -1 and 1 | |
end | |
end | |
end | |
return network | |
end | |
function NeuralNetwork:forewardPropagate(...) | |
if table.getn(arg) ~= table.getn(self[1]) and type(arg[1]) ~= "table" then | |
error("Neural Network received "..table.getn(arg).." input[s] (expected "..table.getn(self[1]).." input[s])",2) | |
elseif type(arg[1]) == "table" and table.getn(arg[1]) ~= table.getn(self[1]) then | |
error("Neural Network received "..table.getn(arg[1]).." input[s] (expected "..table.getn(self[1]).." input[s])",2) | |
end | |
local outputs = {} | |
for i = 1,table.getn(self) do | |
for j = 1,table.getn(self[i]) do | |
if i == 1 then | |
if type(arg[1]) == "table" then | |
self[i][j].result = arg[1][j] | |
else | |
self[i][j].result = arg[j] | |
end | |
else | |
self[i][j].result = self[i][j].bias | |
for k = 1,table.getn(self[i][j]) do | |
self[i][j].result = self[i][j].result + (self[i][j][k]*self[i-1][k].result) | |
end | |
self[i][j].result = NeuralNetwork.transfer(self[i][j].result) | |
if i == table.getn(self) then | |
table.insert(outputs,self[i][j].result) | |
end | |
end | |
end | |
end | |
return outputs | |
end | |
function NeuralNetwork:backwardPropagate(inputs,desiredOutputs) | |
if table.getn(inputs) ~= table.getn(self[1]) then | |
error("Neural Network received "..table.getn(inputs).." input[s] (expected "..table.getn(self[1]).." input[s])",2) | |
elseif table.getn(desiredOutputs) ~= table.getn(self[table.getn(self)]) then | |
error("Neural Network received "..table.getn(desiredOutputs).." desired output[s] (expected "..table.getn(self[table.getn(self)]).." desired output[s])",2) | |
end | |
self:forewardPropagate(inputs) --update the internal inputs and outputs | |
for i = table.getn(self),2,-1 do --iterate backwards (nothing to calculate for input layer) | |
local tempResults = {} | |
for j = 1,table.getn(self[i]) do | |
if i == table.getn(self) then --special calculations for output layer | |
self[i][j].delta = (desiredOutputs[j] - self[i][j].result) * self[i][j].result * (1 - self[i][j].result) | |
else | |
local weightDelta = 0 | |
for k = 1,table.getn(self[i+1]) do | |
weightDelta = weightDelta + self[i+1][k][j]*self[i+1][k].delta | |
end | |
self[i][j].delta = self[i][j].result * (1 - self[i][j].result) * weightDelta | |
end | |
end | |
end | |
for i = 2,table.getn(self) do | |
for j = 1,table.getn(self[i]) do | |
self[i][j].bias = self[i][j].delta * self.learningRate | |
for k = 1,table.getn(self[i][j]) do | |
self[i][j][k] = self[i][j][k] + self[i][j].delta * self.learningRate * self[i-1][k].result | |
end | |
end | |
end | |
end | |
function NeuralNetwork:save() | |
--[[ | |
File specs: | |
|INFO| - should be FF BP NN | |
|I| - number of inputs | |
|O| - number of outputs | |
|HL| - number of hidden layers | |
|NHL| - number of neurons per hidden layer | |
|LR| - learning rate | |
|BW| - bias and weight values | |
]]-- | |
local data = "|INFO|FF BP NN|I|"..tostring(table.getn(self[1])).."|O|"..tostring(table.getn(self[table.getn(self)])).."|HL|"..tostring(table.getn(self)-2).."|NHL|"..tostring(table.getn(self[2])).."|LR|"..tostring(self.learningRate).."|BW|" | |
for i = 2,table.getn(self) do -- nothing to save for input layer | |
for j = 1,table.getn(self[i]) do | |
local neuronData = tostring(self[i][j].bias).."{" | |
for k = 1,table.getn(self[i][j]) do | |
neuronData = neuronData..tostring(self[i][j][k]) | |
neuronData = neuronData.."," | |
end | |
data = data..neuronData.."}" | |
end | |
end | |
data = data.."|END|" | |
return data | |
end | |
function NeuralNetwork.load( data) | |
local dataPos = string.find(data,"|")+1 | |
local currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1) | |
local dataPos = string.find(data,"|",dataPos)+1 | |
local _inputs, _outputs, _hiddenLayers, _neuronsPerLayer, _learningRate | |
local biasWeights = {} | |
local errorExit = false | |
while currentChunk ~= "END" and not errorExit do | |
if currentChuck == "INFO" then | |
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1) | |
dataPos = string.find(data,"|",dataPos)+1 | |
if currentChunk ~= "FF BP NN" then | |
errorExit = true | |
end | |
elseif currentChunk == "I" then | |
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1) | |
dataPos = string.find(data,"|",dataPos)+1 | |
_inputs = tonumber(currentChunk) | |
elseif currentChunk == "O" then | |
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1) | |
dataPos = string.find(data,"|",dataPos)+1 | |
_outputs = tonumber(currentChunk) | |
elseif currentChunk == "HL" then | |
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1) | |
dataPos = string.find(data,"|",dataPos)+1 | |
_hiddenLayers = tonumber(currentChunk) | |
elseif currentChunk == "NHL" then | |
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1) | |
dataPos = string.find(data,"|",dataPos)+1 | |
_neuronsPerLayer = tonumber(currentChunk) | |
elseif currentChunk == "LR" then | |
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1) | |
dataPos = string.find(data,"|",dataPos)+1 | |
_learningRate = tonumber(currentChunk) | |
elseif currentChunk == "BW" then | |
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1) | |
dataPos = string.find(data,"|",dataPos)+1 | |
local subPos = 1 | |
local subChunk | |
for i = 1,_hiddenLayers+1 do | |
biasWeights[i] = {} | |
local neuronsInLayer = _neuronsPerLayer | |
if i == _hiddenLayers+1 then | |
neuronsInLayer = _outputs | |
end | |
for j = 1,neuronsInLayer do | |
biasWeights[i][j] = {} | |
biasWeights[i][j].bias = tonumber(string.sub(currentChunk,subPos,string.find(currentChunk,"{",subPos)-1)) | |
subPos = string.find(currentChunk,"{",subPos)+1 | |
subChunk = string.sub( currentChunk, subPos, string.find(currentChunk,",",subPos)-1) | |
local maxPos = string.find(currentChunk,"}",subPos) | |
while subPos < maxPos do | |
table.insert(biasWeights[i][j],tonumber(subChunk)) | |
subPos = string.find(currentChunk,",",subPos)+1 | |
if string.find(currentChunk,",",subPos) ~= nil then | |
subChunk = string.sub( currentChunk, subPos, string.find(currentChunk,",",subPos)-1) | |
end | |
end | |
subPos = maxPos+1 | |
end | |
end | |
end | |
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1) | |
dataPos = string.find(data,"|",dataPos)+1 | |
end | |
if errorExit then | |
error("Failed to load Neural Network:"..currentChunk,2) | |
end | |
local network = setmetatable({ | |
learningRate = _learningRate | |
},{ __index = NeuralNetwork}); | |
network[1] = {} --Input Layer | |
for i = 1,_inputs do | |
network[1][i] = {} | |
end | |
for i = 2,_hiddenLayers+2 do --plus 2 represents the output layer (also need to skip input layer) | |
network[i] = {} | |
local neuronsInLayer = _neuronsPerLayer | |
if i == _hiddenLayers+2 then | |
neuronsInLayer = _outputs | |
end | |
for j = 1,neuronsInLayer do | |
network[i][j] = {bias = biasWeights[i-1][j].bias} | |
local numNeuronInputs = table.getn(network[i-1]) | |
for k = 1,numNeuronInputs do | |
network[i][j][k] = biasWeights[i-1][j][k] | |
end | |
end | |
end | |
return network | |
end |
Example: XOR
math.randomseed(os.time())
dofile("luaneural.lua")
network = NeuralNetwork.create(2,1,1,4,0.3)
print("Training the neural network:")
attempts = 10000 -- number of times to do backpropagation
for i = 1,attempts do
network:backwardPropagate({0,0},{0})
network:backwardPropagate({1,0},{1})
network:backwardPropagate({0,1},{1})
network:backwardPropagate({1,1},{0})
end
print("Results:")
print("0 0 | "..network:forewardPropagate(0,0)[1])
print("1 0 | "..network:forewardPropagate(1,0)[1])
print("0 1 | "..network:forewardPropagate(0,1)[1])
print("1 1 | "..network:forewardPropagate(1,1)[1])
If needed, you can save the trained neural network to a file to use it later
print("Saving Neural Network...")
NN = io.open("neuralNet.txt","w")
NN:write(network:save())
NN:flush()
NN:close()
print("Loading Neural Network...")
NN = io.open("neuralNet.txt","r")
network = NeuralNetwork.load(NN:read())
print("Results:")
print("0 0 | "..network:forewardPropagate(0,0)[1])
print("1 0 | "..network:forewardPropagate(1,0)[1])
print("0 1 | "..network:forewardPropagate(0,1)[1])
print("1 1 | "..network:forewardPropagate(1,1)[1])
Out of curiosity, I noticed your training loop, specifically line 168, you switch which the variables using to index the nodes and the weights, was this intentional?
I think in your case, this works out since you take care of the output layer and restrict the creation of the hidden layers to all have the same node count, so you kind of loop orthogonal to what I had expected initially. Anyway, thanks for sharing! Learned a bit from it.
Hey I wrote this! 😄
For historical purposes here's the original archived forum link
And here's the repository I hosted it in a while back
https://github.com/AdamDorwart/LuaNeuralNetwork
Re: loop indexing on L168. It's been a long time since I've worked through this code but I believe the indexing is correct (but confusing). In this context i
refers to the current layer, j
refers to the current neuron within the current layer (i
), and k
is the referring to the current output neuron in the next layer i+1
. It looks like k
changes meaning throughout the code so that's probably why it's not clear. The loop ranges (i = table.getn(self),2,-1
, j = 1,table.getn(self[i])
, k = 1,table.getn(self[i+1])
) are key here.
With all of that we can interpret:
weightDelta = weightDelta + self[i+1][k][j]*self[i+1][k].delta
as adding the product of the output neuron's (self[i+1][k]
) input weight with its delta to current neuron's (self[i][j]
) weight delta. A slightly different way of saying that would be that we're propagating an output neuron's (self[i+1][k]
) weight (self[i+1][k][j]
) between a particular input neuron (self[i][j]
), and delta
backwards to that same input neurons delta
. The data structure can be thought of as self[layer][neuron][inputWeight]
which you can verify on L58-62
I don't know if this is still looked at, but there's a game that can run Lua and with some modification I would like to use this for an Ai? I can't find where to input though.....
To elaborate, how would you train this? Online Lua runners just return nothing- I have no experience whatsoever, could I have some help?
Well first things off, There's an error already in the code that you must fix.
The error is at line 257.
Author: "Soulkiller" (http://www.forums.evilmana.com/psp-lua-codebase/lua-neural-networks/)
NerualNetwork.create( numInputs, numOutputs, numHiddenLayers, neuronsPerLayer, learningRate)
Return value - a neural network object.
Parameters:
numInputs - the number of input neurons
numOutputs - the number of output neurons
numHiddenLayers - the number of hidden layers (Reccomended: 1)
neuronsPerLayer - the number of neurons in the hidden layers (not input/output layers) (Reccomended: 4)
learningRate - the rate at which the neural network learns (Percentage eg: 0-1, smaller the value the longer it takes to teach, higher the value the less it takes to teach but it might not learn the sequence corectly) (Reccomended: 3)
NerualNetwork:forewardPropagate(...)
Return value - a table containg the results
number of arguments == number of inputs for the NN object
inputs whatever impulse and returns the learned results
NeuralNetwork:backwardPropagate( inputs, desiredOutputs)
inputs - a table that has the inputs
desiredOutputs - a table that has the desired outputs for this training set
NeuralNetwork:save()
return value - returns a unique string that can be used to load the NN again in its current state (remembers training). This string could then be written to a file.
NeuralNetwork.load( data)
data - the unique string returned by NeuralNetwork:save()
return value - a Neural Network object