Created
October 18, 2024 03:15
-
-
Save cat-state/e663337d46e3a015e62209d7edf0ef01 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import torch | |
| E = 5e6 # Young's modulus | |
| nu = 0.4 # Poisson's ratio | |
| mu = E / (2 * (1 + nu)) # Shear modulus | |
| lambda_ = (E * nu) / ((1 + nu) * (1 - 2 * nu)) # Lame's first parameter | |
| rest_x = torch.randn(N, 3).cuda() | |
| rest_x = rest_x / rest_x.norm(dim=-1, keepdim=True) | |
| rest_x = (rest_x - rest_x.mean(dim=0)) | |
| x = torch.randn(N, 3).cuda() * 0.1 + rest_x | |
| x.requires_grad_() | |
| optim = torch.optim.Adam([x], lr=1e-2) | |
| w = torch.ones(N).cuda() | |
| bonds = torch.stack([torch.randperm(N) for _ in range(8)], dim=1).cuda() | |
| bonds[bonds == torch.arange(N).unsqueeze(1).cuda()] = (bonds[bonds == torch.arange(N).unsqueeze(1).cuda()] + 1) % N | |
| ref_bonds = rest_x[bonds] - rest_x.unsqueeze(1) | |
| inv_rest = torch.linalg.inv(torch.einsum("n,nbx,nby->nxy", w, ref_bonds, ref_bonds)) | |
| import time | |
| @torch.compile | |
| def get_energy(x, bonds, ref_bonds, inv_rest, w): | |
| def_bonds = x[bonds] - x.unsqueeze(1) | |
| def_grads = (torch.einsum("n,nbx,nby->nxy", w, def_bonds, ref_bonds) | |
| @ inv_rest) | |
| target_bonds = torch.einsum("nxy,nby->nbx", def_grads, ref_bonds) | |
| deviatoric_energy = ((target_bonds.norm(dim=-1)/ref_bonds.norm(dim=-1) - 1)**2) | |
| isotropic_energy = ((def_bonds.norm(dim=-1)/ref_bonds.norm(dim=-1) - 1)**2) | |
| bond_energy = mu * deviatoric_energy + (lambda_/2) * isotropic_energy | |
| total_energy = torch.einsum("n,nb->n", w, bond_energy) | |
| return total_energy | |
| import matplotlib.pyplot as plt | |
| for i in range(10000): | |
| t0 = time.time() | |
| total_energy = get_energy(x, bonds, ref_bonds, inv_rest, w) | |
| total_energy.sum().backward() | |
| optim.step() | |
| optim.zero_grad() | |
| t1 = time.time() | |
| # print(f"Time: {t1-t0}, Energy: {total_energy.sum()}") | |
| print(f"\rTime: {t1-t0}, Energy: {total_energy.sum()}", end="", flush=True) | |
| if i % 100 == 0: # Plot every 100 iterations | |
| fig = plt.figure(figsize=(10, 10)) | |
| ax = fig.add_subplot(111, projection='3d') | |
| # Convert x to CPU and detach from computation graph | |
| x_plot = x.detach().cpu().numpy() | |
| # Plot the points | |
| ax.scatter(x_plot[:, 0], x_plot[:, 1], x_plot[:, 2]) | |
| # Set labels and title | |
| ax.set_xlabel('X') | |
| ax.set_ylabel('Y') | |
| ax.set_zlabel('Z') | |
| ax.set_title(f'3D Plot of x at iteration {i}') | |
| # Show the plot | |
| plt.show() | |
| plt.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment