Created
March 17, 2014 08:28
-
-
Save catethos/9595760 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "Untitled6" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "!wget http://deeplearning.net/data/mnist/mnist.pkl.gz", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "import cPickle,gzip\nfrom sklearn.ensemble import RandomTreesEmbedding\nfrom sklearn.svm import LinearSVC", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "f = gzip.open('mnist.pkl.gz', 'rb')\nmnist_train_set, mnist_valid_set, mnist_test_set = cPickle.load(f)\nf.close()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 4, | |
"metadata": {}, | |
"source": "Training with random data" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "encoder = RandomTreesEmbedding(max_depth=None,n_estimators=100,n_jobs=-1)\nencoder.fit(randn(1000,784))", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 3, | |
"text": "RandomTreesEmbedding(max_depth=None, min_density=None, min_samples_leaf=1,\n min_samples_split=2, n_estimators=100, n_jobs=-1,\n random_state=None, verbose=0)" | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "X = encoder.transform(mnist_train_set[0])\ny = mnist_train_set[1]", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "%timeit cls = LinearSVC() ; cls.fit(X,y)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "1 loops, best of 3: 34.2 s per loop\n" | |
} | |
], | |
"prompt_number": 14 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 4, | |
"metadata": {}, | |
"source": "Training with original data" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "encoder = RandomTreesEmbedding(max_depth=None,n_estimators=100,n_jobs=-1)\nencoder.fit(mnist_train_set[0][:1000,:])", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 22, | |
"text": "RandomTreesEmbedding(max_depth=None, min_density=None, min_samples_leaf=1,\n min_samples_split=2, n_estimators=100, n_jobs=-1,\n random_state=None, verbose=0)" | |
} | |
], | |
"prompt_number": 22 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "X = encoder.transform(mnist_train_set[0])\ny = mnist_train_set[1]", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 23 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "%timeit cls = LinearSVC() ; cls.fit(X,y)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "1 loops, best of 3: 3.33 s per loop\n" | |
} | |
], | |
"prompt_number": 24 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment