Last active
April 5, 2020 08:46
-
-
Save cattaneod/cbf5cae9199ccd72adddef452358df3b to your computer and use it in GitHub Desktop.
NetVLAD Pytorch implementation based on LOUPE (https://github.com/antoine77340/LOUPE)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class NetVLADLoupe(nn.Module): | |
def __init__(self, feature_size, max_samples, cluster_size, output_dim, | |
gating=True, add_batch_norm=True, is_training=True): | |
super(NetVLADLoupe, self).__init__() | |
self.feature_size = feature_size | |
self.max_samples = max_samples | |
self.output_dim = output_dim | |
self.is_training = is_training | |
self.gating = gating | |
self.add_batch_norm = add_batch_norm | |
self.cluster_size = cluster_size | |
self.softmax = nn.Softmax(dim=-1) | |
self.cluster_weights = nn.Parameter(torch.randn(feature_size, cluster_size) * 1 / math.sqrt(feature_size)) | |
self.cluster_weights2 = nn.Parameter(torch.randn(1, feature_size, cluster_size) * 1 / math.sqrt(feature_size)) | |
self.hidden1_weights = nn.Parameter( | |
torch.randn(cluster_size * feature_size, output_dim) * 1 / math.sqrt(feature_size)) | |
if add_batch_norm: | |
self.cluster_biases = None | |
self.bn1 = nn.BatchNorm1d(cluster_size) | |
else: | |
self.cluster_biases = nn.Parameter(torch.randn(cluster_size) * 1 / math.sqrt(feature_size)) | |
self.bn1 = None | |
self.bn2 = nn.BatchNorm1d(output_dim) | |
if gating: | |
self.context_gating = GatingContext(output_dim, add_batch_norm=add_batch_norm) | |
def forward(self, x): | |
x = x.transpose(1, 3).contiguous() | |
x = x.view((-1, self.max_samples, self.feature_size)) | |
activation = torch.matmul(x, self.cluster_weights) | |
if self.add_batch_norm: | |
# activation = activation.transpose(1,2).contiguous() | |
activation = activation.view(-1, self.cluster_size) | |
activation = self.bn1(activation) | |
activation = activation.view(-1, self.max_samples, self.cluster_size) | |
# activation = activation.transpose(1,2).contiguous() | |
else: | |
activation = activation + self.cluster_biases | |
activation = self.softmax(activation) | |
activation = activation.view((-1, self.max_samples, self.cluster_size)) | |
a_sum = activation.sum(-2, keepdim=True) | |
a = a_sum * self.cluster_weights2 | |
activation = torch.transpose(activation, 2, 1) | |
x = x.view((-1, self.max_samples, self.feature_size)) | |
vlad = torch.matmul(activation, x) | |
vlad = torch.transpose(vlad, 2, 1) | |
vlad = vlad - a | |
vlad = F.normalize(vlad, dim=1, p=2) | |
vlad = vlad.view((-1, self.cluster_size * self.feature_size)) | |
vlad = F.normalize(vlad, dim=1, p=2) | |
vlad = torch.matmul(vlad, self.hidden1_weights) | |
vlad = self.bn2(vlad) | |
if self.gating: | |
vlad = self.context_gating(vlad) | |
return vlad | |
class GatingContext(nn.Module): | |
def __init__(self, dim, add_batch_norm=True): | |
super(GatingContext, self).__init__() | |
self.dim = dim | |
self.add_batch_norm = add_batch_norm | |
self.gating_weights = nn.Parameter(torch.randn(dim, dim) * 1 / math.sqrt(dim)) | |
self.sigmoid = nn.Sigmoid() | |
if add_batch_norm: | |
self.gating_biases = None | |
self.bn1 = nn.BatchNorm1d(dim) | |
else: | |
self.gating_biases = nn.Parameter(torch.randn(dim) * 1 / math.sqrt(dim)) | |
self.bn1 = None | |
def forward(self, x): | |
gates = torch.matmul(x, self.gating_weights) | |
if self.add_batch_norm: | |
gates = self.bn1(gates) | |
else: | |
gates = gates + self.gating_biases | |
gates = self.sigmoid(gates) | |
activation = x * gates | |
return activation |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment