Created
February 25, 2017 21:31
-
-
Save cawfree/2393c90223ab085fe92860759f23b88e to your computer and use it in GitHub Desktop.
02-25 21:14:08.391 16707 16707 E AndroidRuntime: Caused by: org.deeplearning4j.exception.DL4JInvalidConfigException: ConvolutionLayer (index=2, name=(name not set)) nIn=0, nOut=50; nIn and nOut must be > 0
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Neural Dependencies. */ | |
private static final int IMAGE_WIDTH = 64; | |
private static final int IMAGE_HEIGHT = 80; | |
private static final int SEED = 123; | |
private static final int ITERATIONS = 1; | |
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder() | |
.seed(SEED) | |
.iterations(ITERATIONS) // Training iterations as above | |
.regularization(true).l2(0.0005) | |
/* | |
Uncomment the following for learning decay and bias | |
*/ | |
.learningRate(.01)//.biasLearningRate(0.02) | |
//.learningRateDecayPolicy(LearningRatePolicy.Inverse).lrPolicyDecayRate(0.001).lrPolicyPower(0.75) | |
.weightInit(WeightInit.XAVIER) | |
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) | |
.updater(Updater.NESTEROVS).momentum(0.9) | |
.list() | |
.layer(0, new ConvolutionLayer.Builder(5, 5) | |
//nIn and nOut specify depth. nIn here is the nChannels and nOut is the number of filters to be applied | |
.nIn(IMAGE_WIDTH * IMAGE_HEIGHT) | |
.stride(1, 1) | |
.nOut(20) | |
.activation(Activation.IDENTITY) | |
.build()) | |
.layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX) | |
.kernelSize(2,2) | |
.stride(2,2) | |
.build()) | |
.layer(2, new ConvolutionLayer.Builder(5, 5) | |
//Note that nIn need not be specified in later layers | |
.stride(1, 1) | |
.nOut(50) | |
.activation(Activation.IDENTITY) | |
.build()) | |
.layer(3, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX) | |
.kernelSize(2,2) | |
.stride(2,2) | |
.build()) | |
.layer(4, new DenseLayer.Builder().activation(Activation.RELU) | |
.nOut(500).build()) | |
.layer(5, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD) | |
.nOut(CharacterizationUtils.CARD_NUM_SIGNALS) | |
.activation(Activation.SOFTMAX) | |
.build()) | |
.backprop(true).pretrain(false).build(); | |
MultiLayerNetwork myNetwork = new MultiLayerNetwork(conf); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment