Created
March 18, 2017 00:19
-
-
Save cawfree/bd4c3cd2b6aa37cb2e7cafe25f206973 to your computer and use it in GitHub Desktop.
model null?
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
model = {MultiLayerNetwork@6104} | |
defaultConfiguration = {NeuralNetConfiguration@6111} "NeuralNetConfiguration(layer=DenseLayer(super=FeedForwardLayer(super=Layer(layerName=layer0, activationFn=tanh, weightInit=XAVIER, biasInit=0.0, dist=null, learningRate=0.1, biasLearningRate=0.1, learningRateSchedule=null, momentum=0.9, momentumSchedule={}, l1=0.0, l2=0.0, l1Bias=0.0, l2Bias=0.0, dropOut=0.0, updater=NESTEROVS, rho=NaN, epsilon=NaN, rmsDecay=NaN, adamMeanDecay=NaN, adamVarDecay=NaN, gradientNormalization=None, gradientNormalizationThreshold=1.0), nIn=4, nOut=3)), leakyreluAlpha=0.0, miniBatch=true, numIterations=1, maxNumLineSearchIterations=5, seed=1489796271540, optimizationAlgo=STOCHASTIC_GRADIENT_DESCENT, variables=[0_W, 0_b, 1_W, 1_b], stepFunction=null, useRegularization=false, useDropConnect=false, minimize=true, learningRateByParam={}, l1ByParam={}, l2ByParam={}, learningRatePolicy=None, lrPolicyDecayRate=NaN, lrPolicySteps=NaN, lrPolicyPower=NaN, pretrain=false, iterationCount=0)" | |
epsilon = null | |
flattenedGradients = null | |
flattenedParams = {NDArray@6112} "[0.65, -0.64, 0.11, 0.58, -0.09, 0.89, 0.17, 0.69, 0.30, 0.09, 0.15, 0.27, 0.00, 0.00, 0.00, -0.48, -1.51, 0.01, 0.82, -0.60, -0.35, 0.53, -0.32, -0.18, 0.00, 0.00, 0.00]" | |
gradient = null | |
initCalled = true | |
initDone = false | |
input = null | |
labels = null | |
layerIndex = 0 | |
layerMap = {LinkedHashMap@6113} size = 2 | |
layerWiseConfigurations = {MultiLayerConfiguration@6114} "{\n "backprop" : true,\n "backpropType" : "Standard",\n "confs" : [ {\n "iterationCount" : 0,\n "l1ByParam" : {\n "b" : 0.0,\n "W" : 0.0\n },\n "l2ByParam" : {\n "b" : 0.0,\n "W" : 0.0\n },\n "layer" : {\n "dense" : {\n "activationFn" : {\n "TanH" : { }\n },\n "adamMeanDecay" : "NaN",\n "adamVarDecay" : "NaN",\n "biasInit" : 0.0,\n "biasLearningRate" : 0.1,\n "dist" : null,\n "dropOut" : 0.0,\n "epsilon" : "NaN",\n "gradientNormalization" : "None",\n "gradientNormalizationThreshold" : 1.0,\n "l1" : 0.0,\n "l1Bias" : 0.0,\n "l2" : 0.0,\n "l2Bias" : 0.0,\n "layerName" : "layer0",\n "learningRate" : 0.1,\n "learningRateSchedule" : null,\n "momentum" : 0.9,\n "momentumSchedule" : { },\n "nin" : 4,\n "nout" : 3,\n "rho" : "NaN",\n "rmsDecay" : "NaN",\n "updater" : "NESTEROVS",\n "weightInit" : "XAV" | |
layers = {Layer[2]@6115} | |
listeners = {ArrayList@6117} size = 0 | |
mask = null | |
score = 0.0 | |
solver = null | |
trainingListeners = {ArrayList@6118} size = 0 | |
shadow$_klass_ = {Class@4623} "class org.deeplearning4j.nn.multilayer.MultiLayerNetwork" | |
shadow$_monitor_ = -2073807350 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment