Last active
April 25, 2020 12:28
-
-
Save cbassa/189f806580ba8d73d1c6019562e148bd to your computer and use it in GitHub Desktop.
satnogs_waterfall_converter.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import numpy as np | |
import h5py | |
import argparse | |
import os | |
if __name__ == "__main__": | |
# Parse arguments | |
parser = argparse.ArgumentParser( | |
description="Convert a SatNOGS waterfall file to HDF5 format") | |
parser.add_argument("-i", "--id", help="Observation ID", type=int) | |
parser.add_argument("-t", "--starttime", help="Start time (YYYY-MM-DDTHH-MM-SS)") | |
parser.add_argument("-f", "--freq", help="Center frequency (Hz)", type=float) | |
parser.add_argument("-s", "--script_name", help="Script name") | |
args = parser.parse_args() | |
# Settings | |
offset_in_stds = -2.0 | |
scale_in_stds = 8.0 | |
cfreq = args.freq | |
obsid = args.id | |
obs_timestamp = args.starttime | |
script_name = args.script_name | |
baud = 0 | |
tle = {"tle0": "", "tle1": "", "tle2": ""} | |
fname = os.path.join(os.getenv("SATNOGS_OUTPUT_PATH"), "receiving_waterfall_%d_%s.dat" % (obsid, obs_timestamp)) | |
h5fname = os.path.join(os.getenv("SATNOGS_OUTPUT_PATH"), "observation_%d_%s.h5" % (obsid, obs_timestamp)) | |
# Read waterfall file | |
fp = open(fname, "r") | |
timestamp = np.fromfile(fp, dtype="|S32", count=1)[0] | |
nchan = np.fromfile(fp, dtype='>i4', count=1)[0] | |
samp_rate = np.fromfile(fp, dtype='>i4', count=1)[0] | |
nfft_per_row = np.fromfile(fp, dtype='>i4', count=1)[0] | |
center_freq = np.fromfile(fp, dtype='>f4', count=1)[0] | |
endianness = np.fromfile(fp, dtype='>f4', count=1)[0] | |
data_dtypes = np.dtype([('tabs', 'int64'), ('spec', 'float32', (nchan, ))]) | |
data = np.fromfile(fp, dtype=data_dtypes) | |
fp.close() | |
nint = data.shape[0] | |
tabs = data['tabs'] / 1000000.0 | |
trel = np.arange(nint) * nfft_per_row * nchan / float(samp_rate) | |
waterfall = data['spec'] | |
freq = np.linspace(-0.5*samp_rate, 0.5*samp_rate, nchan, endpoint=False) / 1000.0 | |
# Compute time limits | |
tmin, tmax = np.min(trel), np.max(trel) | |
fmin, fmax = np.min(freq), np.max(freq) | |
# Compute dynamic range limits | |
c_idx = waterfall > -200.0 | |
if np.sum(c_idx) > 100: | |
vmin = np.mean(waterfall[c_idx]) - 2.0 * np.std(waterfall[c_idx]) | |
vmax = np.mean(waterfall[c_idx]) + 6.0 * np.std(waterfall[c_idx]) | |
else: | |
vmin = -100 | |
vmax = -50 | |
# Compute offset and scale | |
waterfall_mean, waterfall_std = np.mean(waterfall, axis=0), np.std(waterfall, axis=0) | |
waterfall_offset = waterfall_mean+offset_in_stds*waterfall_std | |
waterfall_scale = scale_in_stds*waterfall_std/255.0 | |
# Convert waterfall to unsigned 8bit | |
waterfall_8bit = np.clip((waterfall-waterfall_offset)/waterfall_scale, 0.0, 255.0).astype("uint8") | |
# Create HDF5 file | |
h5file = h5py.File(h5fname, "w") | |
# Store observation attributes | |
h5file.attrs["observation_id"] = obsid | |
h5file.attrs["observation_timestamp"] = obs_timestamp | |
h5file.attrs["center_frequency"] = cfreq | |
h5file.attrs["center_frequency_unit"] = "Hz" | |
h5file.attrs["script_name"] = script_name | |
h5file.attrs["baud"] = baud | |
h5file.attrs["tle_line_0"] = tle["tle0"] | |
h5file.attrs["tle_line_1"] = tle["tle1"] | |
h5file.attrs["tle_line_2"] = tle["tle2"] | |
h5file.attrs["ground_station_id"] = int(os.getenv("SATNOGS_STATION_ID")) | |
h5file.attrs["ground_station_lat"] = float(os.getenv("SATNOGS_STATION_LAT")) | |
h5file.attrs["ground_station_lon"] = float(os.getenv("SATNOGS_STATION_LON")) | |
h5file.attrs["ground_station_elev"] = float(os.getenv("SATNOGS_STATION_ELEV")) | |
# Create waterfall group | |
wf_group = h5file.create_group("waterfall") | |
# Store waterfall attributes | |
wf_group.attrs["start_time"] = timestamp | |
wf_group.attrs["data_min"] = vmin | |
wf_group.attrs["data_max"] = vmax | |
wf_group.attrs["offset_in_stds"] = offset_in_stds | |
wf_group.attrs["scale_in_stds"] = scale_in_stds | |
# Store waterfall units | |
wf_group.attrs["data_min_unit"] = "dB" | |
wf_group.attrs["data_max_unit"] = "dB" | |
wf_group.attrs["offset_unit"] = "dB" | |
wf_group.attrs["scale_unit"] = "dB/div" | |
wf_group.attrs["data_unit"] = "div" | |
wf_group.attrs["relative_time_unit"] = "seconds" | |
wf_group.attrs["absolute_time_unit"] = "seconds" | |
wf_group.attrs["frequency_unit"] = "kHz" | |
# Store waterfall datasets | |
wf_group.create_dataset("offset", data=waterfall_offset, compression="gzip") | |
wf_group.create_dataset("scale", data=waterfall_scale, compression="gzip") | |
wf_group.create_dataset("data", data=waterfall_8bit, compression="gzip") | |
wf_group.create_dataset("relative_time", data=trel, compression="gzip") | |
wf_group.create_dataset("absolute_time", data=tabs, compression="gzip") | |
wf_group.create_dataset("frequency", data=freq, compression="gzip") | |
# Store waterfall labels | |
wf_group["offset"].dims[0].label = "Time (seconds)" | |
wf_group["scale"].dims[0].label = "Time (seconds)" | |
wf_group["relative_time"].dims[0].label = "Time (seconds)" | |
wf_group["absolute_time"].dims[0].label = "Time (seconds)" | |
wf_group["frequency"].dims[0].label = "Frequency (kHz)" | |
wf_group["data"].dims[0].label = "Frequency (kHz)" | |
wf_group["data"].dims[1].label = "Time (seconds)" | |
# Close file | |
h5file.close() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment