Created
February 3, 2024 10:36
-
-
Save cbassa/272f7baa3450c8e6c3f37cd3d8d6f1c9 to your computer and use it in GitHub Desktop.
Different implementations of sky imagers for speed testing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import time | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import numba | |
import cupy as cp | |
import warnings | |
warnings.filterwarnings('ignore') | |
SPEED_OF_LIGHT = 299792458.0 | |
def sky_imager_simple(visibilities, baselines, freq, npix_l, npix_m): | |
img = np.zeros((npix_m, npix_l), dtype=np.complex128) | |
for m_ix in range(npix_m): | |
m = -1 + m_ix * 2 / npix_m | |
for l_ix in range(npix_l): | |
l = 1 - l_ix * 2 / npix_l | |
n = np.sqrt(1 - l * l - m * m) - 1 | |
img[m_ix, l_ix] = np.mean(visibilities * np.exp(-2j * np.pi * freq * | |
(baselines[:, :, 0] * l + | |
baselines[:, :, 1] * m + | |
baselines[:, :, 2] * n) / | |
SPEED_OF_LIGHT)) | |
return np.real(img) | |
@numba.jit(parallel=True, fastmath=True) | |
def sky_imager_numba(visibilities, baselines, freq, npix_l, npix_m): | |
img = np.zeros((npix_m, npix_l), dtype=np.complex128) | |
for m_ix in range(npix_m): | |
m = -1 + m_ix * 2 / npix_m | |
for l_ix in range(npix_l): | |
l = 1 - l_ix * 2 / npix_l | |
n = np.sqrt(1 - l * l - m * m) - 1 | |
img[m_ix, l_ix] = np.mean(visibilities * np.exp(-2j * np.pi * freq * | |
(baselines[:, :, 0] * l + | |
baselines[:, :, 1] * m + | |
baselines[:, :, 2] * n) / | |
SPEED_OF_LIGHT)) | |
return np.real(img) | |
def sky_imager_cupy(visibilities, baselines, freq, npix_l, npix_m): | |
l, m = cp.meshgrid(cp.linspace(-1, 1, npix_l, dtype="float32"), cp.linspace(1, -1, npix_m, dtype="float32")) | |
n = cp.sqrt(1 - l**2 - m**2) - 1 | |
vis = cp.array(visibilities) | |
u, v, w = cp.array(baselines.astype("float32")).T | |
prod = (u[:, :, cp.newaxis, cp.newaxis] * l + | |
v[:, :, cp.newaxis, cp.newaxis] * m + | |
w[:, :, cp.newaxis, cp.newaxis] * n).astype("complex64") | |
phasor = cp.exp(-2j * cp.pi * freq * prod / SPEED_OF_LIGHT) | |
prod = None | |
img = cp.real(cp.mean(vis[:, :, cp.newaxis, cp.newaxis] * phasor, axis=(0, 1))) | |
return cp.asnumpy(img) | |
def sky_imager_numpy(visibilities, baselines, freq, npix_l, npix_m): | |
l, m = np.meshgrid(np.linspace(-1, 1, npix_l), np.linspace(1, -1, npix_m)) | |
n = np.sqrt(1 - l**2 - m**2) - 1 | |
u, v, w = baselines.T | |
prod = (u[:, :, np.newaxis, np.newaxis] * l + | |
v[:, :, np.newaxis, np.newaxis] * m + | |
w[:, :, np.newaxis, np.newaxis] * n) | |
phasor = np.exp(-2j * np.pi * freq * prod / SPEED_OF_LIGHT) | |
img = np.real(np.mean(visibilities[:, :, np.newaxis, np.newaxis] * phasor, axis=(0, 1))) | |
return img | |
def sky_imager_numpy_real(visibilities, baselines, freq, npix_l, npix_m): | |
l, m = np.meshgrid(np.linspace(-1, 1, npix_l), np.linspace(1, -1, npix_m)) | |
n = np.sqrt(1 - l**2 - m**2) - 1 | |
u, v, w = baselines.T | |
prod = (u[:, :, np.newaxis, np.newaxis] * l + | |
v[:, :, np.newaxis, np.newaxis] * m + | |
w[:, :, np.newaxis, np.newaxis] * n) | |
phase = -2 * np.pi * freq * prod / SPEED_OF_LIGHT | |
pr, pi = np.cos(phase), np.sin(phase) | |
vr, vi = np.real(visibilities), np.imag(visibilities) | |
img = np.mean(vr[:, :, np.newaxis, np.newaxis] * pr - vi[:, :, np.newaxis, np.newaxis] * pi, axis=(0, 1)) | |
return img | |
def sky_imager_numpy_float32(visibilities, baselines, freq, npix_l, npix_m): | |
l, m = np.meshgrid(np.linspace(-1, 1, npix_l).astype("float32"), np.linspace(1, -1, npix_m).astype("float32")) | |
n = np.sqrt(1 - l**2 - m**2) - 1 | |
u, v, w = baselines.astype("float32").T | |
prod = (u[:, :, np.newaxis, np.newaxis] * l + | |
v[:, :, np.newaxis, np.newaxis] * m + | |
w[:, :, np.newaxis, np.newaxis] * n) | |
phasor = np.exp(-2j * np.pi * freq * prod / SPEED_OF_LIGHT) | |
img = np.real(np.mean(visibilities[:, :, np.newaxis, np.newaxis] * phasor, axis=(0, 1))) | |
return img | |
def sky_imager_numpy_float32_ravel(visibilities, baselines, freq, npix_l, npix_m): | |
l, m = np.meshgrid(np.linspace(-1, 1, npix_l).astype("float32"), np.linspace(1, -1, npix_m).astype("float32")) | |
# Select and ravel | |
c = l**2 + m**2 < 1 | |
l, m = l[c].ravel(), m[c].ravel() | |
n = np.sqrt(1 - l**2 - m**2) - 1 | |
u, v, w = baselines.astype("float32").T | |
prod = (u[:, :, np.newaxis] * l + | |
v[:, :, np.newaxis] * m + | |
w[:, :, np.newaxis] * n) | |
phasor = np.exp(-2j * np.pi * freq * prod / SPEED_OF_LIGHT) | |
img = np.full(npix_l * npix_m, np.nan) | |
img[c.ravel()] = np.real(np.mean(visibilities[:, :, np.newaxis] * phasor, axis=(0, 1))) | |
return img.reshape(npix_l, npix_m) | |
if __name__ == "__main__": | |
vis = np.load("vis.npy") | |
baselines = np.load("baselines.npy") | |
freq = np.load("freq.npy") | |
npix_l, npix_m = 151, 151 | |
tstart = time.time() | |
img = sky_imager_numpy_real(vis[0], baselines, freq[0], npix_l, npix_m) | |
dt = time.time() - tstart | |
print(f"numpy_real: {dt:.3f}s") | |
tstart = time.time() | |
img = sky_imager_numpy(vis[0], baselines, freq[0], npix_l, npix_m) | |
dt = time.time() - tstart | |
print(f"numpy: {dt:.3f}s") | |
tstart = time.time() | |
img = sky_imager_numpy_float32_ravel(vis[0], baselines, freq[0], npix_l, npix_m) | |
dt = time.time() - tstart | |
print(f"numpy_float32_ravel: {dt:.3f}s") | |
tstart = time.time() | |
img = sky_imager_numpy_float32(vis[0], baselines, freq[0], npix_l, npix_m) | |
dt = time.time() - tstart | |
print(f"numpy_float32: {dt:.3f}s") | |
tstart = time.time() | |
img = sky_imager_cupy(vis[0], baselines, freq[0], npix_l, npix_m) | |
dt = time.time() - tstart | |
print(f"cupy: {dt:.3f}s") | |
tstart = time.time() | |
img = sky_imager_simple(vis[0], baselines, freq[0], npix_l, npix_m) | |
dt = time.time() - tstart | |
print(f"simple: {dt:.3f}s") | |
tstart = time.time() | |
img = sky_imager_numba(vis[0], baselines, freq[0], npix_l, npix_m) | |
dt = time.time() - tstart | |
print(f"numba: {dt:.3f}s") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment