Last active
April 9, 2020 08:37
-
-
Save cbassa/ed117f9f37437e50a680acbd3c8071bf to your computer and use it in GitHub Desktop.
Example on redigitizing floating point values to scaled and offset integers
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
def digitize(x, smin, smax, nbits, signed=False, zeromean=False): | |
# Stats | |
xmean = x.mean() | |
xstd = x.std() | |
if zeromean: | |
xmean = 0.0 | |
xmin = 0 | |
xmax = (1 << nbits) - 1 | |
xoffset = xmean + smin * xstd | |
xscale = (smax - smin) * xstd / (1 << nbits) | |
# Convert to ints | |
x_int = np.clip(np.floor((x - xoffset) / xscale), xmin, xmax) | |
if signed: | |
x_int += -(1 << (nbits - 1)) | |
xoffset += (1 << (nbits - 1)) * xscale | |
# Offset by half a step | |
xoffset += xscale / 2 | |
return x_int, xscale, xoffset | |
if __name__ == "__main__": | |
# Time series length (~1 s block at 5.12 us sampling) | |
n = 48 * 4096 | |
data_sigma = 1.0 | |
# Generate zero mean data or not? | |
generate_zero_mean_data = True | |
# Digitization settings | |
smin, smax = -3, 3 | |
nbits = 8 | |
signed = False | |
zeromean = True | |
# Generate time axis | |
t = np.arange(n) * 5.12e-6 | |
# Generate data | |
np.random.seed(4) | |
if generate_zero_mean_data: | |
x = np.random.normal(0.0, data_sigma, n) | |
else: | |
xr = np.random.normal(0.0, data_sigma, n) | |
xi = np.random.normal(0.0, data_sigma, n) | |
yr = np.random.normal(0.0, data_sigma, n) | |
yi = np.random.normal(0.0, data_sigma, n) | |
x = xr**2 + xi**2 + yr**2 + yi**2 | |
# Digitize | |
x_int, xscale, xoffset = digitize(x, smin, smax, nbits, signed, zeromean) | |
# Reconstruct | |
x_float = x_int * xscale + xoffset | |
# Difference | |
xdiff = x - x_float | |
print(f"Scale value: {xscale:+.5f}\nOffset value: {xoffset:+.5f}") | |
print(f"Input data, mean: {x.mean():+.5f}, standard deviation: {x.std():+.5f}") | |
print(f"Reconstructed data, mean: {x_float.mean():+.5f}, standard deviation: {x_float.std():+.5f}") | |
print(f"Difference, mean: {xdiff.mean():+.5f}, standard deviation: {xdiff.std():+.5f}") | |
if signed: | |
bmin = -(1 << (nbits - 1)) | |
bmax = (1 << (nbits - 1)) - 1 | |
xmin = xoffset - (1 << nbits) * xscale / 2 - xscale / 2 | |
xmax = xoffset + (1 << nbits) * xscale / 2 - xscale / 2 | |
else: | |
bmin = 0 | |
bmax = (1 << nbits) - 1 | |
xmin = xoffset - xscale / 2 | |
xmax = xoffset + (1 << nbits) * xscale - xscale / 2 | |
# Count clipped values | |
c = (x < xmin) | (x >= xmax) | |
print(f"{np.sum(c):d} samples clipped ({100 * np.sum(c) / n:.3f} percent)") | |
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 8)) | |
ax1.hist(x, bins=200, range=[x.min(), x.max()], label="Input", histtype="step", density=True) | |
ax1.hist(x_float, bins=257, range=[xmin, xmax], label="Reconstructed", histtype="step", density=True) | |
ax1.legend() | |
ax1.set_xlabel("Floating point values") | |
ax1.set_ylabel("Fraction") | |
ax1.axvline(xmin, color="C2") | |
ax1.axvline(xmax, color="C2") | |
ax2.hist(x_int, bins=2**8, range=[bmin, bmax], histtype="step", density=True) | |
ax2.set_xlabel("Integer values") | |
ax2.set_ylabel("Fraction") | |
ax3.plot(t, xdiff) | |
ax3.plot(t[c], xdiff[c], marker=".", linestyle="None", label="Clipped values") | |
ax3.legend() | |
ax3.set_xlabel("Time (s)") | |
ax3.set_ylabel("Difference") | |
ax3.axhline(xscale / 2, color="C2") | |
ax3.axhline(-xscale / 2, color="C2") | |
plt.tight_layout() | |
plt.savefig("digitize.png", bbox_inches="tight") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment