Created
June 15, 2011 21:10
-
-
Save cboettig/1028122 to your computer and use it in GitHub Desktop.
abstract expectation maximization algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data(faithful) | |
attach(faithful) | |
#Assumes two gaussian populations of eruptions | |
W = waiting | |
# Guess of the parameters: | |
s = c(p=0.5, mu1=50, mu2=90, sigma1=30, sigma2=30) | |
# EXPECTATION STEP | |
expectation_step <- function(observed, parameters){ | |
W <- observed | |
s <- parameters | |
probability_type_1 = s[1]*dnorm(W, s[2], sqrt(s[4])) | |
sum_of_probs = s[1]*dnorm(W, s[2], sqrt(s[4]))+ | |
(1-s[1])*dnorm(W, s[3], sqrt(s[5])) | |
Ep = probability_type_1/sum_of_probs | |
} | |
# MAXIMIZATION STEP | |
maximization_step <- function(W, missing, s){ | |
## maximize likelihood over parameters | |
maximize_me <- function(observed, missing_data){ | |
W <- observed | |
Ep <- missing_data | |
function(s){ | |
loglik <- sum(dnorm(W, s[2], sqrt(s[4]), log=TRUE)+log(Ep) + | |
dnorm(W, s[3], sqrt(s[5]), log=TRUE)+log(1-Ep) ) + | |
sum(log(s[1]*dnorm(W, s[2], sqrt(s[4]))+ | |
(1-s[1])*dnorm(W, s[3], sqrt(s[5])))) | |
## The log likelihood of observing Ep given s[1] | |
-loglik | |
} | |
} | |
# get the function to maximize: | |
f <- maximize_me(W, missing) | |
# maximize it: | |
o <- optim(s, f) | |
# return the optimum: | |
o$par | |
} | |
# TESTING: | |
missing <- expectation_step(W,s) | |
s <- maximization_step(W,missing, s) | |
# Abstract version | |
iter = function(W, s) { | |
missing <- expectation_step(W,s) | |
s1 <- maximization_step(W,missing,s) | |
for (i in 1:length(s)) { | |
if (abs(s[i]-s1[i]) > 0.001) { | |
s=s1 | |
iter(W,s) | |
} else { | |
return(s1) | |
} | |
} | |
} | |
iter(W,s) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment