Created
December 15, 2015 12:52
-
-
Save ccagrawal/f82d321bdb8f63a11bc7 to your computer and use it in GitHub Desktop.
Quantifying affirmative action in law school admissions
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
options(stringsAsFactors = FALSE) | |
ScrapeLSN <- function(school, cycle) { | |
base.url <- 'http://SCHOOL.lawschoolnumbers.com/stats/CYCLE' | |
url <- gsub('SCHOOL', school, base.url) | |
url <- gsub('CYCLE', cycle, url) | |
src <- readLines(url) | |
src <- src[grep('pointWidth:', src):grep('<div id="container" style="width: 630px; height: 525px;"></div>', src)] | |
accepted <- src[2] | |
rejected <- src[14] | |
accepted <- strsplit(accepted, '\\{')[[1]] | |
accepted <- accepted[grepl('name:', accepted)] | |
rejected <- strsplit(rejected, '\\{')[[1]] | |
rejected <- rejected[grepl('name:', rejected)] | |
a.df <- data.frame(matrix(nrow = length(accepted), ncol = 4, data = 0)) | |
colnames(a.df) <- c('LSAT', 'GPA', 'URM', 'Outcome') | |
a.df[grepl("\\(URM)', x: ", accepted), 'URM'] <- 1 | |
a.df$LSAT <- as.numeric(gsub('.*x: ([0-9]*).*', '\\1', accepted)) | |
a.df$GPA <- as.numeric(gsub('.*y: ([0-9\\.]*).*', '\\1', accepted)) | |
a.df$Outcome <- 1 | |
r.df <- data.frame(matrix(nrow = length(rejected), ncol = 4, data = 0)) | |
colnames(r.df) <- c('LSAT', 'GPA', 'URM', 'Outcome') | |
r.df[grepl("\\(URM)', x: ", rejected), 'URM'] <- 1 | |
r.df$LSAT <- as.numeric(gsub('.*x: ([0-9]*).*', '\\1', rejected)) | |
r.df$GPA <- as.numeric(gsub('.*y: ([0-9\\.]*).*', '\\1', rejected)) | |
r.df$Outcome <- 0 | |
data <- rbind(a.df, r.df) | |
return(data) | |
} | |
schools <- read.csv('./schools.csv', header = FALSE)[, 1] | |
train.cycles <- c('1415') | |
test.cycles <- c('1314') | |
df <- data.frame(matrix(nrow = length(schools), ncol = 7, data = 0)) | |
colnames(df) <- c('school', 'Intercept', 'LSAT', 'GPA', 'URM', 'Sample', 'Accuracy') | |
df$school <- schools | |
for (i in 1:nrow(df)) { | |
school <- df[i, 'school'] | |
train.data <- data.frame() | |
for (cycle in train.cycles) { | |
train.data <- rbind(train.data, ScrapeLSN(school, cycle)) | |
} | |
fit <- glm(Outcome ~ LSAT + GPA + URM, data = train.data, family = 'binomial') | |
df[i, c('Intercept', 'LSAT', 'GPA', 'URM')] <- fit$coef | |
test.data <- data.frame() | |
for (cycle in test.cycles) { | |
test.data <- rbind(test.data, ScrapeLSN(school, cycle)) | |
} | |
test.data$pred <- predict(fit, newdata = test.data[, c('LSAT', 'GPA', 'URM')], type = 'response') | |
test.data$pred.int <- round(test.data$pred) | |
correct <- sum(test.data$Outcome == '1' & test.data$pred.int == 1, na.rm = TRUE) + | |
sum(test.data$Outcome == '0' & test.data$pred.int == 0, na.rm = TRUE) | |
incorrect <- sum(test.data$Outcome == '1' & test.data$pred.int == 0, na.rm = TRUE) + | |
sum(test.data$Outcome == '0' & test.data$pred.int == 1, na.rm = TRUE) | |
df[i, 'Sample'] <- (correct + incorrect) | |
df[i, 'Accuracy'] <- correct / (correct + incorrect) | |
cat(i, '/', nrow(df), '\n') | |
} | |
accuracy <- sum(df$Sample * df$Accuracy) / sum(df$Sample) | |
write.csv(df, 'analysis.csv') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment