Created
June 5, 2018 23:11
-
-
Save ccckmit/d5fc23d86a3092fa2a4964f7a1f595ae to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* This code is public-domain - it is based on libcrypt | |
* placed in the public domain by Wei Dai and other contributors. | |
*/ | |
// gcc -Wall -DSHA1TEST -o sha1test sha1.c && ./sha1test | |
#include <stdint.h> | |
#include <string.h> | |
#include <stdio.h> | |
/* header */ | |
#define HASH_LENGTH 20 | |
#define BLOCK_LENGTH 64 | |
union _buffer { | |
uint8_t b[BLOCK_LENGTH]; | |
uint32_t w[BLOCK_LENGTH/4]; | |
}; | |
union _state { | |
uint8_t b[HASH_LENGTH]; | |
uint32_t w[HASH_LENGTH/4]; | |
}; | |
typedef struct sha1nfo { | |
union _buffer buffer; | |
uint8_t bufferOffset; | |
union _state state; | |
uint32_t byteCount; | |
uint8_t keyBuffer[BLOCK_LENGTH]; | |
uint8_t innerHash[HASH_LENGTH]; | |
} sha1nfo; | |
/* public API - prototypes - TODO: doxygen*/ | |
void sha1_init(sha1nfo *s); | |
void sha1_writebyte(sha1nfo *s, uint8_t data); | |
void sha1_write(sha1nfo *s, const char *data, size_t len); | |
uint8_t* sha1_result(sha1nfo *s); | |
void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength); | |
uint8_t* sha1_resultHmac(sha1nfo *s); | |
/* code */ | |
#define SHA1_K0 0x5a827999 | |
#define SHA1_K20 0x6ed9eba1 | |
#define SHA1_K40 0x8f1bbcdc | |
#define SHA1_K60 0xca62c1d6 | |
const uint8_t sha1InitState[] = { | |
0x01,0x23,0x45,0x67, // H0 | |
0x89,0xab,0xcd,0xef, // H1 | |
0xfe,0xdc,0xba,0x98, // H2 | |
0x76,0x54,0x32,0x10, // H3 | |
0xf0,0xe1,0xd2,0xc3 // H4 | |
}; | |
void sha1_init(sha1nfo *s) { | |
memcpy(s->state.b,sha1InitState,HASH_LENGTH); | |
s->byteCount = 0; | |
s->bufferOffset = 0; | |
} | |
uint32_t sha1_rol32(uint32_t number, uint8_t bits) { | |
return ((number << bits) | (number >> (32-bits))); | |
} | |
void sha1_hashBlock(sha1nfo *s) { | |
uint8_t i; | |
uint32_t a,b,c,d,e,t; | |
a=s->state.w[0]; | |
b=s->state.w[1]; | |
c=s->state.w[2]; | |
d=s->state.w[3]; | |
e=s->state.w[4]; | |
for (i=0; i<80; i++) { | |
if (i>=16) { | |
t = s->buffer.w[(i+13)&15] ^ s->buffer.w[(i+8)&15] ^ s->buffer.w[(i+2)&15] ^ s->buffer.w[i&15]; | |
s->buffer.w[i&15] = sha1_rol32(t,1); | |
} | |
if (i<20) { | |
t = (d ^ (b & (c ^ d))) + SHA1_K0; | |
} else if (i<40) { | |
t = (b ^ c ^ d) + SHA1_K20; | |
} else if (i<60) { | |
t = ((b & c) | (d & (b | c))) + SHA1_K40; | |
} else { | |
t = (b ^ c ^ d) + SHA1_K60; | |
} | |
t+=sha1_rol32(a,5) + e + s->buffer.w[i&15]; | |
e=d; | |
d=c; | |
c=sha1_rol32(b,30); | |
b=a; | |
a=t; | |
} | |
s->state.w[0] += a; | |
s->state.w[1] += b; | |
s->state.w[2] += c; | |
s->state.w[3] += d; | |
s->state.w[4] += e; | |
} | |
void sha1_addUncounted(sha1nfo *s, uint8_t data) { | |
s->buffer.b[s->bufferOffset ^ 3] = data; | |
s->bufferOffset++; | |
if (s->bufferOffset == BLOCK_LENGTH) { | |
sha1_hashBlock(s); | |
s->bufferOffset = 0; | |
} | |
} | |
void sha1_writebyte(sha1nfo *s, uint8_t data) { | |
++s->byteCount; | |
sha1_addUncounted(s, data); | |
} | |
void sha1_write(sha1nfo *s, const char *data, size_t len) { | |
for (;len--;) sha1_writebyte(s, (uint8_t) *data++); | |
} | |
void sha1_pad(sha1nfo *s) { | |
// Implement SHA-1 padding (fips180-2, 5.1.1) | |
// Pad with 0x80 followed by 0x00 until the end of the block | |
sha1_addUncounted(s, 0x80); | |
while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00); | |
// Append length in the last 8 bytes | |
sha1_addUncounted(s, 0); // We're only using 32 bit lengths | |
sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths | |
sha1_addUncounted(s, 0); // So zero pad the top bits | |
sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8 | |
sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as | |
sha1_addUncounted(s, s->byteCount >> 13); // byte. | |
sha1_addUncounted(s, s->byteCount >> 5); | |
sha1_addUncounted(s, s->byteCount << 3); | |
} | |
uint8_t* sha1_result(sha1nfo *s) { | |
int i; | |
// Pad to complete the last block | |
sha1_pad(s); | |
// Swap byte order back | |
for (i=0; i<5; i++) { | |
uint32_t a,b; | |
a=s->state.w[i]; | |
b=a<<24; | |
b|=(a<<8) & 0x00ff0000; | |
b|=(a>>8) & 0x0000ff00; | |
b|=a>>24; | |
s->state.w[i]=b; | |
} | |
// Return pointer to hash (20 characters) | |
return s->state.b; | |
} | |
#define HMAC_IPAD 0x36 | |
#define HMAC_OPAD 0x5c | |
void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength) { | |
uint8_t i; | |
memset(s->keyBuffer, 0, BLOCK_LENGTH); | |
if (keyLength > BLOCK_LENGTH) { | |
// Hash long keys | |
sha1_init(s); | |
for (;keyLength--;) sha1_writebyte(s, *key++); | |
memcpy(s->keyBuffer, sha1_result(s), HASH_LENGTH); | |
} else { | |
// Block length keys are used as is | |
memcpy(s->keyBuffer, key, keyLength); | |
} | |
// Start inner hash | |
sha1_init(s); | |
for (i=0; i<BLOCK_LENGTH; i++) { | |
sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_IPAD); | |
} | |
} | |
uint8_t* sha1_resultHmac(sha1nfo *s) { | |
uint8_t i; | |
// Complete inner hash | |
memcpy(s->innerHash,sha1_result(s),HASH_LENGTH); | |
// Calculate outer hash | |
sha1_init(s); | |
for (i=0; i<BLOCK_LENGTH; i++) sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_OPAD); | |
for (i=0; i<HASH_LENGTH; i++) sha1_writebyte(s, s->innerHash[i]); | |
return sha1_result(s); | |
} | |
void printHash(uint8_t* hash) { | |
int i; | |
for (i=0; i<20; i++) { | |
printf("%02x", hash[i]); | |
} | |
printf("\n"); | |
} | |
/* self-test */ | |
#if SHA1TEST | |
uint8_t hmacKey1[]={ | |
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f, | |
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f, | |
0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f, | |
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f | |
}; | |
uint8_t hmacKey2[]={ | |
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f, | |
0x40,0x41,0x42,0x43 | |
}; | |
uint8_t hmacKey3[]={ | |
0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x5b,0x5c,0x5d,0x5e,0x5f, | |
0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x6b,0x6c,0x6d,0x6e,0x6f, | |
0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7f, | |
0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f, | |
0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0x9b,0x9c,0x9d,0x9e,0x9f, | |
0xa0,0xa1,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xab,0xac,0xad,0xae,0xaf, | |
0xb0,0xb1,0xb2,0xb3 | |
}; | |
uint8_t hmacKey4[]={ | |
0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7f, | |
0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f, | |
0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0x9b,0x9c,0x9d,0x9e,0x9f, | |
0xa0 | |
}; | |
int main (int argc, char **argv) { | |
uint32_t a; | |
sha1nfo s; | |
// SHA tests | |
printf("Test: FIPS 180-2 C.1 and RFC3174 7.3 TEST1\n"); | |
printf("Expect:a9993e364706816aba3e25717850c26c9cd0d89d\n"); | |
printf("Result:"); | |
sha1_init(&s); | |
sha1_write(&s, "abc", 3); | |
printHash(sha1_result(&s)); | |
printf("\n\n"); | |
printf("Test: FIPS 180-2 C.2 and RFC3174 7.3 TEST2\n"); | |
printf("Expect:84983e441c3bd26ebaae4aa1f95129e5e54670f1\n"); | |
printf("Result:"); | |
sha1_init(&s); | |
sha1_write(&s, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56); | |
printHash(sha1_result(&s)); | |
printf("\n\n"); | |
printf("Test: RFC3174 7.3 TEST4\n"); | |
printf("Expect:dea356a2cddd90c7a7ecedc5ebb563934f460452\n"); | |
printf("Result:"); | |
sha1_init(&s); | |
for (a=0; a<80; a++) sha1_write(&s, "01234567", 8); | |
printHash(sha1_result(&s)); | |
printf("\n\n"); | |
// HMAC tests | |
printf("Test: FIPS 198a A.1\n"); | |
printf("Expect:4f4ca3d5d68ba7cc0a1208c9c61e9c5da0403c0a\n"); | |
printf("Result:"); | |
sha1_initHmac(&s, hmacKey1, 64); | |
sha1_write(&s, "Sample #1",9); | |
printHash(sha1_resultHmac(&s)); | |
printf("\n\n"); | |
printf("Test: FIPS 198a A.2\n"); | |
printf("Expect:0922d3405faa3d194f82a45830737d5cc6c75d24\n"); | |
printf("Result:"); | |
sha1_initHmac(&s, hmacKey2, 20); | |
sha1_write(&s, "Sample #2", 9); | |
printHash(sha1_resultHmac(&s)); | |
printf("\n\n"); | |
printf("Test: FIPS 198a A.3\n"); | |
printf("Expect:bcf41eab8bb2d802f3d05caf7cb092ecf8d1a3aa\n"); | |
printf("Result:"); | |
sha1_initHmac(&s, hmacKey3,100); | |
sha1_write(&s, "Sample #3", 9); | |
printHash(sha1_resultHmac(&s)); | |
printf("\n\n"); | |
printf("Test: FIPS 198a A.4\n"); | |
printf("Expect:9ea886efe268dbecce420c7524df32e0751a2a26\n"); | |
printf("Result:"); | |
sha1_initHmac(&s, hmacKey4,49); | |
sha1_write(&s, "Sample #4", 9); | |
printHash(sha1_resultHmac(&s)); | |
printf("\n\n"); | |
// Long tests | |
printf("Test: FIPS 180-2 C.3 and RFC3174 7.3 TEST3\n"); | |
printf("Expect:34aa973cd4c4daa4f61eeb2bdbad27316534016f\n"); | |
printf("Result:"); | |
sha1_init(&s); | |
for (a=0; a<1000000; a++) sha1_writebyte(&s, 'a'); | |
printHash(sha1_result(&s)); | |
return 0; | |
} | |
#endif /* self-test */ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment