Created
February 19, 2020 03:06
-
-
Save ccj5351/67e6392200dd9ddcf6f838d326392618 to your computer and use it in GitHub Desktop.
Modified code with the article "How to Build a Streaming DataLoader with PyTorch" at https://medium.com/speechmatics/how-to-build-a-streaming-dataloader-with-pytorch-a66dd891d9dd.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
from itertools import chain, cycle, islice | |
import torch.utils.data as data | |
import matplotlib.pyplot as plt | |
from matplotlib.patches import Rectangle | |
import time | |
import torch | |
import numpy as np | |
# added by CCJ; | |
def count(start=0, step=1): | |
# count(10) --> 10 11 12 13 14 ... | |
# count(2.5, 0.5) -> 2.5 3.0 3.5 ... | |
n = start | |
while True: | |
yield n | |
n += step | |
#> see:https://gist.github.com/david-macleod/2b933d28fd3ac09766785728ee191f09 | |
def plot_timings(loader, n_batches, model_time=0.2, max_time=2.5): | |
fig, ax = plt.subplots() | |
ax.set_axisbelow(True) | |
ax.yaxis.grid(which="major", color='black', linewidth=1) | |
zero_time = time.time() | |
worker_ids = {} | |
worker_count = count() # added by CCJ; | |
for result in islice(loader, n_batches): | |
start = time.time() | |
time.sleep(model_time) | |
end = time.time() | |
# check if already batched | |
if isinstance(result[0], torch.Tensor): | |
result = zip(*result) | |
batch = [] | |
#print ('result = ', result) | |
for item in result: | |
data, worker, t1, t2 = tuple(map(scalar, item)) | |
#print ("processing worker id = %d"% worker ) | |
# fix worker position in plot | |
if worker != -1: | |
if worker not in worker_ids: | |
worker_ids[worker] = next(worker_count) | |
worker = worker_ids[worker] | |
plot_time_box(data, worker, t1-zero_time, t2-zero_time, ax) | |
batch.append(data) | |
batch_str = ",".join(map(str, batch)) | |
plot_time_box(batch_str, -1, start-zero_time, end-zero_time, ax, color='firebrick') | |
max_worker = len(worker_ids) - 1 | |
ax.set_xlim(0, max_time) | |
ax.set_ylim(-1.5, max_worker + 0.5) | |
ax.set_xticks(np.arange(0, max_time, 0.2)) | |
ax.set_yticks(np.arange(-1, max_worker+1, 1)) | |
ax.set_yticklabels([]) | |
ax.tick_params(axis='y', colors=(0,0,0,0)) | |
fig.set_figwidth(16) | |
fig.set_figheight((max_worker + 2) * 0.5) | |
ax.xaxis.label.set_color('gray') | |
ax.tick_params(axis='x', colors='gray') | |
for spine in ax.spines.values(): | |
spine.set_edgecolor((0,0,0,0)) | |
# for showing image | |
#plt.show() | |
def scalar(x): | |
return x.item() if hasattr(x, 'item') else x | |
def plot_time_box(data, worker, t1, t2, ax, color='steelblue'): | |
x = t1 | |
y = worker - 0.25 | |
w = t2 - t1 | |
h = 0.6 | |
rect = Rectangle((x, y), w, h, linewidth=2, edgecolor='black',facecolor=color) | |
ax.add_patch(rect) | |
ax.text(x + (w * 0.5), y + (h * 0.5), str(data), va='center', ha='center', color='white', weight='bold') | |
class MyIterableDatasetV5(data.IterableDataset): | |
def __init__(self, data_list, batch_size): | |
self.data_list = data_list | |
self.batch_size = batch_size | |
@property | |
def shuffled_data_list(self): | |
return random.sample(self.data_list, len(self.data_list)) | |
def process_data(self, mydata): | |
for x in mydata: | |
worker = torch.utils.data.get_worker_info() | |
worker_id = worker.id if worker is not None else -1 | |
start = time.time() | |
time.sleep(0.1) | |
end = time.time() | |
yield x, worker_id, start, end | |
def get_stream(self, data_list): | |
return chain.from_iterable(map(self.process_data, cycle(data_list))) | |
def get_streams(self): | |
return zip(*[self.get_stream(self.shuffled_data_list) for _ in range(self.batch_size)]) | |
def __iter__(self): | |
return self.get_streams() | |
if 0: | |
my_data_list = [[10, 11, 12, 13], | |
[20, 21, 22, 23], | |
[30, 31, 32, 33], | |
[40, 41, 42, 43], | |
[50, 51, 52, 53], | |
[60, 61, 62, 63], | |
[70, 71, 72, 73], | |
[80, 81, 82, 83], | |
[90, 91, 92, 93], | |
] | |
my_batch_size = 4 | |
my_num_workers = 2 | |
iterable_dataset = MyIterableDatasetV5(my_data_list, batch_size = my_batch_size) | |
loader = data.DataLoader(iterable_dataset, batch_size=None, num_workers=my_num_workers) | |
plot_timings(loader, model_time=0.2, n_batches = my_batch_size) | |
class MyIterableDatasetV7(data.IterableDataset): | |
def __init__(self, data_list, batch_size): | |
self.data_list = data_list | |
self.batch_size = batch_size | |
@property | |
def shuffled_data_list(self): | |
return random.sample(self.data_list, len(self.data_list)) | |
def process_data(self, mydata): | |
for x in mydata: | |
worker = torch.utils.data.get_worker_info() | |
worker_id = id(self) if worker is not None else -1 | |
start = time.time() | |
time.sleep(0.1) | |
end = time.time() | |
yield x, worker_id, start, end | |
def get_stream(self, data_list): | |
return chain.from_iterable(map(self.process_data, cycle(data_list))) | |
def get_streams(self): | |
return zip(*[self.get_stream(self.shuffled_data_list) for _ in range(self.batch_size)]) | |
def __iter__(self): | |
return self.get_streams() | |
@classmethod | |
def split_datasets(cls, data_list, batch_size, max_workers): | |
for n in range(max_workers, 0, -1): | |
if batch_size % n ==0: | |
num_workers = n | |
break | |
split_size = batch_size // num_workers | |
return [cls(data_list, batch_size=split_size) for _ in range(0, num_workers)] | |
class multiStreamDataLoader: | |
def __init__(self, datasets): | |
self.datasets = datasets | |
def get_stream_loaders(self): | |
return zip(*[torch.utils.data.DataLoader(dataset, num_workers=1, batch_size=None) for dataset in self.datasets]) | |
def __iter__(self): | |
for batch_parts in self.get_stream_loaders(): | |
yield list(chain(* batch_parts)) | |
if 1: | |
my_data_list = [ | |
[10, 11, 12, 13], | |
[20, 21, 22, 23], | |
[30, 31, 32, 33], | |
[40, 41, 42, 43], | |
[50, 51, 52, 53], | |
[60, 61, 62, 63], | |
[70, 71, 72, 73], | |
[80, 81, 82, 83], | |
] | |
my_batch_size = 4 | |
my_num_workers = 4 | |
print ('[***] iterable dataset with %d workers' % my_num_workers) | |
dataset_tmp = MyIterableDatasetV7.split_datasets(my_data_list, batch_size = my_batch_size, max_workers= my_num_workers) | |
loader = multiStreamDataLoader(dataset_tmp) | |
plot_timings(loader, model_time=0.2, n_batches = 6) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I run it in python 3.7.