Skip to content

Instantly share code, notes, and snippets.

@ccj5351
Forked from wllhf/VOClabelcolormap.py
Last active June 11, 2021 13:06
Show Gist options
  • Save ccj5351/ae554ea70cef79ab1efdb3f9f92d2b37 to your computer and use it in GitHub Desktop.
Save ccj5351/ae554ea70cef79ab1efdb3f9f92d2b37 to your computer and use it in GitHub Desktop.
Python implementation of the color map function for the PASCAL VOC data set.
""" added by CCJ """
def color_map_info(palette):
labels = [
'background', #0
'aeroplane', #1
'bicycle', #2
'bird', #3
'boat', #4
'bottle', #5
'bus', #6
'car', #7
'cat', #8
'chair', #9
'cow', #10
'diningtable', #11
'dog', #12
'horse', #13
'motorbike', #14
'person', #15
'pottedplant', #16
'sheep', #17
'sofa', #18
'train', #19
'tv/monitor', #20
"void/unlabelled", #255
]
print 'class colormap and palette = {r,g,b}'
for i in range(0,21*3,3):
print '# {:>3d}: {:<20} (R,G,B) = {},{},{}'.format(i/3, labels[i/3], palette[i], palette[i+1],palette[i+2])
i = 255*3
print '# {:>3d}: {:<20} (R,G,B) = {},{},{}'.format(i/3, labels[21], palette[i], palette[i+1],palette[i+2])
# added by CCJ:
""" arrange these 21 classes to 2D matrix with 3 rows and 7 columns"""
def color_map_viz(fname = None):
labels = ['B-ground', 'Aero plane', 'Bicycle', 'Bird', 'Boat', 'Bottle',
'Bus', 'Car', 'Cat', 'Chair', 'Cow', 'Dining-Table', 'Dog', 'Horse',
'Motorbike', 'Person', 'Potted-Plant', 'Sheep', 'Sofa', 'Train',
'TV/Monitor', 'Void/Unlabelled']
nclasses = 21
row_size = 80
col_size = 250
cmap = color_map()
""" arrange these 21 classes to 2D matrix with 3 rows and 7 columns"""
r = 3
c = 7
delta = 10
array = np.empty((row_size*(r+1), col_size*c, cmap.shape[1]), dtype=cmap.dtype)
fig=plt.figure()
for r_idx in range(0,r):
for c_idx in range(0,c):
i = r_idx *c + c_idx
array[r_idx*row_size:(r_idx+1)*row_size, c_idx*col_size: (c_idx+1)*col_size, :] = cmap[i]
x = c_idx*col_size + delta
y = r_idx*row_size + row_size/2
s = labels[i]
plt.text(x, y,s, fontsize=9, color='white')
print "write {} at pixel (r={},c={})".format(labels[i], y,x)
array[r*row_size:(r+1)*row_size, :] = cmap[-1]
x = 3*col_size + delta
y = r*row_size + row_size/2
s = labels[-1]
plt.text(x, y,s, fontsize=9, color='black')
print "write {} at pixel (r={},c={})".format(labels[i], y,x)
plt.title("PASCAL VOC Label Color Map")
imshow(array)
axis = plt.subplot(1, 1, 1)
plt.axis('off')
if fname:
plt.savefig(fname, dpi=300,bbox_inches='tight', pad_inches=0.1)
else:
plt.show()
%Official Matlab version can be found in the PASCAL VOC devkit
%http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#devkit
% VOCLABELCOLORMAP Creates a label color map such that adjacent indices have different
% colors. Useful for reading and writing index images which contain large indices,
% by encoding them as RGB images.
%
% CMAP = VOCLABELCOLORMAP(N) creates a label color map with N entries.
function cmap = labelcolormap(N)
if nargin==0
N=256
end
cmap = zeros(N,3);
for i=1:N
id = i-1; r=0;g=0;b=0;
for j=0:7
r = bitor(r, bitshift(bitget(id,1),7 - j));
g = bitor(g, bitshift(bitget(id,2),7 - j));
b = bitor(b, bitshift(bitget(id,3),7 - j));
id = bitshift(id,-3);
end
cmap(i,1)=r; cmap(i,2)=g; cmap(i,3)=b;
end
cmap = cmap / 255;
"""
Python implementation of the color map function for the PASCAL VOC data set.
Official Matlab version can be found in the PASCAL VOC devkit
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#devkit
"""
import numpy as np
from skimage.io import imshow
import matplotlib.pyplot as plt
def color_map(N=256, normalized=False):
def bitget(byteval, idx):
return ((byteval & (1 << idx)) != 0)
dtype = 'float32' if normalized else 'uint8'
cmap = np.zeros((N, 3), dtype=dtype)
for i in range(N):
r = g = b = 0
c = i
for j in range(8):
r = r | (bitget(c, 0) << 7-j)
g = g | (bitget(c, 1) << 7-j)
b = b | (bitget(c, 2) << 7-j)
c = c >> 3
cmap[i] = np.array([r, g, b])
cmap = cmap/255 if normalized else cmap
return cmap
def color_map_viz_1_column():
labels = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor', 'void']
nclasses = 21
row_size = 50
col_size = 500
cmap = color_map()
array = np.empty((row_size*(nclasses+1), col_size, cmap.shape[1]), dtype=cmap.dtype)
for i in range(nclasses):
array[i*row_size:i*row_size+row_size, :] = cmap[i]
array[nclasses*row_size:nclasses*row_size+row_size, :] = cmap[-1]
imshow(array)
plt.yticks([row_size*i+row_size/2 for i in range(nclasses+1)], labels)
plt.xticks([])
plt.show()
@ccj5351
Copy link
Author

ccj5351 commented Mar 5, 2019

This is the colormap for PascalVOC (label, color).

@ccj5351
Copy link
Author

ccj5351 commented Mar 5, 2019

The label colormap which is generated by the function color_map_viz(), is shown at this link: https://drive.google.com/open?id=1uwH4H7jkVbllLQUeHmrNfNJYTp1kF0rd

@ccj5351
Copy link
Author

ccj5351 commented Mar 6, 2019

I write a jupyter note for more details. Please check this jupyter note at https://github.com/ccj5351/my_notes_jupyter/blob/master/PASCAL_VOC_2012_Label_Colormap.ipynb

@hjamalirad
Copy link

@ccj5351 how do save the colormap files? This seems to be an issue; the server returns "Results are not properly generated"; any clue?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment