Skip to content

Instantly share code, notes, and snippets.

View ccj5351's full-sized avatar
🎯
Focusing

Changjiang Cai ccj5351

🎯
Focusing
View GitHub Profile
@BIGBALLON
BIGBALLON / extract_ILSVRC.sh
Created May 13, 2018 20:09
script for ImageNet data extract.
#!/bin/bash
#
# script to extract ImageNet dataset
# ILSVRC2012_img_train.tar (about 138 GB)
# ILSVRC2012_img_val.tar (about 6.3 GB)
# make sure ILSVRC2012_img_train.tar & ILSVRC2012_img_val.tar in your current directory
#
# https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md
#
# train/
@zhreshold
zhreshold / resnet18.prototxt
Last active July 11, 2019 06:38
ResNet18 prototxt
name: "ResNet-18"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 224
input_dim: 224
layer {
bottom: "data"
top: "conv1"
@gauravkaila
gauravkaila / install_docker_ubuntu_16.04.sh
Last active May 20, 2023 05:47
Install Docker and nvidia-docker on Ubuntu-16.04
#!/bin/bash
# add the GPG key for the official Docker repository to the system
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
# add the Docker repository to APT sources
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
# update the package database with the Docker packages from the newly added repo
sudo apt-get update
@MInner
MInner / gpu_profile.py
Created September 12, 2017 16:11
A script to generate per-line GPU memory usage trace. For more meaningful results set `CUDA_LAUNCH_BLOCKING=1`.
import datetime
import linecache
import os
import pynvml3
import torch
print_tensor_sizes = True
last_tensor_sizes = set()
gpu_profile_fn = f'{datetime.datetime.now():%d-%b-%y-%H:%M:%S}-gpu_mem_prof.txt'
@jychstar
jychstar / tensorboard_beginner.py
Created June 5, 2017 00:06
simple example to show how to use `tf.summary` to record image, scalar, histogram and graph for display in tensorboard
import argparse
import sys
from tensorflow.examples.tutorials.mnist import input_data
from time import time
t0 = time()
import tensorflow as tf
tf.summary.FileWriterCache.clear()
@max-mapper
max-mapper / bibtex.png
Last active November 6, 2024 09:03
How to make a scientific looking PDF from markdown (with bibliography)
bibtex.png
@Brainiarc7
Brainiarc7 / build-tensorflow-from-source.md
Last active September 9, 2024 22:48
Build Tensorflow from source, for better performance on Ubuntu.

Building Tensorflow from source on Ubuntu 16.04LTS for maximum performance:

TensorFlow is now distributed under an Apache v2 open source license on GitHub.

On Ubuntu 16.04LTS+:

Step 1. Install NVIDIA CUDA:

To use TensorFlow with NVIDIA GPUs, the first step is to install the CUDA Toolkit as shown:

@batzner
batzner / tensorflow_rename_variables.py
Last active May 25, 2023 06:15
Small python script to rename variables in a TensorFlow checkpoint
import sys, getopt
import tensorflow as tf
usage_str = 'python tensorflow_rename_variables.py --checkpoint_dir=path/to/dir/ ' \
'--replace_from=substr --replace_to=substr --add_prefix=abc --dry_run'
def rename(checkpoint_dir, replace_from, replace_to, add_prefix, dry_run):
checkpoint = tf.train.get_checkpoint_state(checkpoint_dir)
@wllhf
wllhf / VOClabelcolormap.py
Last active March 28, 2024 09:11
Python implementation of the color map function for the PASCAL VOC data set.
"""
Python implementation of the color map function for the PASCAL VOC data set.
Official Matlab version can be found in the PASCAL VOC devkit
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#devkit
"""
import numpy as np
from skimage.io import imshow
import matplotlib.pyplot as plt
def color_map(N=256, normalized=False):
@bastman
bastman / docker-cleanup-resources.md
Created March 31, 2016 05:55
docker cleanup guide: containers, images, volumes, networks

Docker - How to cleanup (unused) resources

Once in a while, you may need to cleanup resources (containers, volumes, images, networks) ...

delete volumes

// see: https://github.com/chadoe/docker-cleanup-volumes

$ docker volume rm $(docker volume ls -qf dangling=true)

$ docker volume ls -qf dangling=true | xargs -r docker volume rm