Created
May 24, 2022 19:18
-
-
Save cdaven/896733a105df0486320b704741e172dc to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import random | |
import numpy as np | |
from scipy.optimize import curve_fit | |
INITIAL_BUGS = 50 | |
LINES_OF_CODE = 1000 | |
TESTERS = 5 | |
RUNS = 10 | |
def random_bugs_found(remaining_bugs): | |
probability = remaining_bugs / LINES_OF_CODE | |
if random.random() < probability: | |
return 1 | |
else: | |
return 0 | |
def run_simulation(): | |
remaining_bugs = INITIAL_BUGS | |
remaining_bugs_each_t = [remaining_bugs] | |
t = 0 | |
t_array = [0] | |
while remaining_bugs > 0: | |
t += 1 | |
for _ in range(0, TESTERS): | |
if remaining_bugs > 0: | |
remaining_bugs -= random_bugs_found(remaining_bugs) | |
remaining_bugs_each_t.append(remaining_bugs) | |
t_array.append(t) | |
return t_array, remaining_bugs_each_t | |
def b_of_t(t, a): | |
return INITIAL_BUGS * np.power(a, np.divide(np.multiply(-TESTERS, t), LINES_OF_CODE)) | |
a_values = [] | |
fig, ax = plt.subplots() | |
for _ in range(0, RUNS): | |
x, y = run_simulation() | |
ax.plot(x, y) | |
popt, pcov = curve_fit(b_of_t, x, y) | |
a_values.append(popt[0]) | |
#plt.plot(x, b_of_t(x, *popt), 'r-', label='fit: a=%5.3f' % tuple(popt)) | |
# Print average fitted value of parameter "a" in b_of_t() | |
print(sum(a_values) / len(a_values)) | |
plt.title('Remaining unknown bugs') | |
plt.xlabel('time') | |
plt.ylabel('bugs') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment