Last active
August 4, 2018 09:50
-
-
Save cedrickchee/9bf93cb2a17ad8e5f779518a549bf627 to your computer and use it in GitHub Desktop.
Keras implementation of DeepMind's Neural Arithmetic Logic Units (NALU). Paper: https://arxiv.org/abs/1808.00508
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import keras.backend as K | |
from keras.layers import * | |
from keras.models import * | |
import tensorflow as tf | |
class Nalu(Layer): | |
def __init__(self, units, krnl_init="glorot_uniform", **kwargs): | |
if "inp_shp" not in kwargs and "inp_dim" in kwargs: | |
kwargs["inp_shp"] = (kwargs.pop("inp_dim"),) | |
super(Nalu, self).__init__(**kwargs) | |
self.units = units | |
self.inp_spec = InputSpec(min_ndim=2) | |
self.krnl_init = initializers.get(krnl_init) | |
def get_config(self): | |
conf = { | |
"units": self.units, | |
"krnl_init": initializers.serialize(self.krnl_init), | |
} | |
base_conf = super(Dense, self).get_config() | |
base_conf_lst = list(base_conf.items()) | |
conf_lst = list(conf.items()) | |
return dict(base_conf_lst + conf_lst) | |
def build(self, inp_shp): | |
assert len(inp_shp) >= 2 | |
inp_dim = inp_shp[-1] | |
self.W_hat = self.add_weight( | |
shape=(inp_dim, self.units), initializer=self.krnl_init, name="W_hat" | |
) | |
self.M_hat = self.add_weight( | |
shape=(inp_dim, self.units), initializer=self.krnl_init, name="M_hat" | |
) | |
self.G = self.add_weight( | |
shape=(inp_dim, self.units), initializer=self.krnl_init, name="G" | |
) | |
self.inp_spec = InputSpec(min_ndim=2, axes={-1: inp_dim}) | |
self.built = True | |
def call(self, inputs): | |
W_act = K.tanh(self.W_hat) | |
M_act = K.sigmoid(self.M_hat) | |
W = W_act * M_act | |
m = K.exp(K.dot(K.log(K.abs(inputs) + 1e-7), W)) | |
g = K.sigmoid(K.dot(inputs, self.G)) | |
a = K.dot(x, W) | |
out = g * a + (1 - g) * m | |
return out | |
def compute_out_shp(self, inp_shp): | |
assert inp_shp and len(inp_shp) >= 2 | |
assert inp_shp[-1] | |
out_shp = list(inp_shp) | |
out_shp[-1] = self.units | |
return tuple(out_shp) | |
if __name__ == "__main__": | |
x = Input((10,)) | |
y = Nalu(1)(x) | |
model = Model(x, y) | |
model.compile("adam", "mse") | |
model.fit( | |
np.random.rand(128, 10), np.random.rand(128, 1), batch_size=128, epochs=100 | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment