Created
March 6, 2015 14:37
-
-
Save celiacintas/a62f1d7ba3cb989f5b2f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python2 | |
# -*- coding: utf-8 -*- | |
import numpy as np | |
from matplotlib import pyplot as plt | |
from sklearn.metrics import confusion_matrix | |
def plot_PCA(Xp, y): | |
""" | |
""" | |
# Plot individuals | |
populations = np.unique(y) | |
print populations | |
colors = plt.get_cmap("hsv") | |
plt.figure(figsize=(10, 4)) | |
hair = np.unique(y) | |
for i, p in enumerate(hair): | |
mask = (y == p) | |
plt.scatter(Xp[mask, 0], Xp[mask, 1], | |
c=colors(1. * i / 11), label=p) | |
#plt.xlim([-30, 50]) | |
plt.legend(loc="best") | |
plt.show() | |
def plot_confusion_matrix(y_pred, y, title, method=None): | |
""" | |
""" | |
plt.imshow(confusion_matrix(y, y_pred), cmap=plt.cm.binary, interpolation='nearest') | |
plt.title(title) | |
plt.colorbar() | |
plt.xlabel('true value') | |
plt.ylabel('predicted value') | |
plt.savefig(title +'_SVM.png') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment