Created
July 3, 2018 16:54
-
-
Save ceptreee/2975f98f09c47ff1e293159efeb99fc3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import sympy as sb | |
from scipy import integrate | |
plt.rcParams["font.size"] = 10 | |
# 複素変数 | |
z = sb.Symbol('z') | |
# 複素関数 | |
F = 1/(z**4 + 1) | |
# sympy to lambda | |
f = sb.lambdify(z,F) | |
# 特異点 | |
SP = list(sb.singularities(F,z)) | |
# 留数 | |
Res = [] | |
for sp in SP: | |
res = sb.residue(F,z,sp) | |
Res.append(res) | |
# 押した時 | |
def Press(e): | |
global x,y,C,DragFlag | |
# 値がNoneなら終了 | |
if (e.xdata is None) or (e.ydata is None): | |
return | |
# フラグをたてる | |
DragFlag = True | |
# ドラッグした時 | |
def Drag(e): | |
global x,y,C,DragFlag | |
# 値がNoneなら終了 | |
if (e.xdata is None) or (e.ydata is None): | |
return | |
x0 = e.xdata | |
y0 = e.ydata | |
z0 = x0+1j*y0 | |
x = np.append(x, x0) | |
y = np.append(y, y0) | |
C = np.append(C, z0) | |
w0 = f(z0) | |
w = f(C) | |
I = integrate.cumtrapz(w,C) | |
ln_z0.set_data(x0,y0) | |
ln_C.set_data(C.real,C.imag) | |
ln_C0.set_data(C[0].real,C[0].imag) | |
if len(I) is not 0: | |
ln_I.set_data(I.real,I.imag) | |
ln_i.set_data(I[-1].real,I[-1].imag) | |
plt.draw() | |
# 離した時 | |
def Release(e): | |
global x,y,C,DragFlag | |
# フラグをたおす | |
DragFlag = False | |
x = np.array([]) | |
y = np.array([]) | |
C = np.array([]) | |
x = np.array([]) | |
y = np.array([]) | |
C = np.array([]) | |
DragFlag = False | |
plt.close('all') | |
fig = plt.figure(figsize=(8,4)) | |
plt.subplot(1,2,1) | |
ln_z0, = plt.plot([],[],'ko',zorder=2) | |
ln_C0, = plt.plot([],[],'ko',zorder=2) | |
ln_C, = plt.plot([],[],zorder=1) | |
xlm=[-3,3] | |
ylm=[-3,3] | |
plt.xlim(xlm) | |
plt.ylim(ylm) | |
plt.xlabel('$\\rm{Re}(z)$') | |
plt.ylabel('$\\rm{Im}(z)$') | |
plt.title('$f(z)='+sb.latex(F)+'$') | |
for sp in SP: | |
plt.plot(sb.re(sp), sb.im(sp),'kx') | |
plt.subplot(1,2,2) | |
ln_I, = plt.plot([],[]) | |
ln_i, = plt.plot([],[],'ko') | |
plt.title('$\int_C f(z)dz$') | |
for res in Res: | |
plt.plot(sb.re(2*np.pi*sb.I*res), sb.im(2*np.pi*sb.I*res),'kx') | |
plt.xlim(xlm) | |
plt.ylim(ylm) | |
plt.xlabel('$\\rm{Re}$') | |
plt.ylabel('$\\rm{Im}$') | |
axes = plt.gcf().get_axes() | |
for i,axis in enumerate(axes): | |
plt.axes(axis) | |
plt.grid() | |
plt.tight_layout() | |
plt.connect('button_press_event', Press) | |
plt.connect('motion_notify_event', Drag) | |
plt.connect('button_release_event', Release) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment