Last active
September 13, 2018 12:22
-
-
Save ceptreee/80c703f007c22feeb40979211111fb7b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import sympy as sb | |
x = sb.Symbol('x') | |
def Chebyshev1st(N): | |
T = [0]*(N+1) | |
T[0] = 1 | |
T[1] = x | |
for n in range(1,N): | |
T[n+1] = 2 * x*T[n] - T[n-1] | |
T[n+1] = sb.expand(T[n+1]) | |
return T | |
N = 5 | |
T = Chebyshev1st(N) | |
xx = np.linspace(-1,1,1000) | |
YY = [] | |
for n in range(N): | |
f = T[n] | |
f = sb.lambdify(x,f) | |
yy = f(xx) | |
YY.append(yy) | |
plt.close('all') | |
plt.figure(figsize=(8,4)) | |
for n in range(N): | |
if isinstance(YY[n],np.ndarray) is False: | |
YY[n] = YY[n]*np.ones_like(xx) | |
plt.plot(xx,YY[n],label='$T_%d(x) = %s$' %(n,sb.latex(T[n]))) | |
plt.title('Chebyshev Polynomials (1st)',fontsize=12) | |
plt.grid() | |
plt.xlabel('x') | |
plt.ylabel('y') | |
plt.legend(fontsize=12,bbox_to_anchor=(1.04,0.8), loc="upper left") | |
plt.tight_layout() | |
plt.savefig('ChebyshevPolynomials_1st.png') |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import sympy as sb | |
x = sb.Symbol('x') | |
def Chebyshev1st(N): | |
T = [0]*(N+1) | |
T[0] = 1 | |
T[1] = x | |
for n in range(1,N): | |
T[n+1] = 2 * x*T[n] - T[n-1] | |
T[n+1] = sb.expand(T[n+1]) | |
return T | |
def Chebyshev2nd(N): | |
T = [0]*(N+1) | |
T[0] = 1 | |
T[1] = 2*x | |
for n in range(1,N): | |
T[n+1] = 2 * x*T[n] - T[n-1] | |
T[n+1] = sb.expand(T[n+1]) | |
return T | |
N = 5 | |
T1 = Chebyshev1st(N) | |
T2 = Chebyshev2nd(N) | |
xx = np.linspace(-1,1,1000) | |
YY1 = [] | |
YY2 = [] | |
for n in range(N): | |
f1 = T1[n] | |
f1 = sb.lambdify(x,f1) | |
yy = f1(xx) | |
YY1.append(yy) | |
f2 = T2[n] | |
f2 = sb.lambdify(x,f2) | |
yy = f2(xx) | |
YY2.append(yy) | |
plt.close('all') | |
plt.figure(figsize=(8,8)) | |
plt.subplot(2,1,1) | |
for n in range(N): | |
if isinstance(YY1[n],np.ndarray) is False: | |
YY1[n] = YY1[n]*np.ones_like(xx) | |
plt.plot(xx,YY1[n],label='$T_%d(x) = %s$' %(n,sb.latex(T1[n]))) | |
plt.title('Chebyshev Polynomials (1st)',fontsize=12) | |
plt.subplot(2,1,2) | |
for n in range(N): | |
if isinstance(YY2[n],np.ndarray) is False: | |
YY2[n] = YY2[n]*np.ones_like(xx) | |
plt.plot(xx,YY2[n],label='$U_%d(x) = %s$' %(n,sb.latex(T2[n]))) | |
plt.title('Chebyshev Polynomials (2nd)',fontsize=12) | |
axes = plt.gcf().get_axes() | |
for axis in axes: | |
plt.sca(axis) | |
plt.grid() | |
plt.xlabel('$x$') | |
plt.ylabel('$y$') | |
plt.ylim([-1.2,1.2]) | |
plt.legend(fontsize=12,bbox_to_anchor=(1.04,0.8), loc="upper left") | |
plt.tight_layout() | |
plt.savefig('ChebyshevPolynomials2.png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment