Skip to content

Instantly share code, notes, and snippets.

function lorenz(h,n,a,b,c,x0,y0,z0)
#--------------------
# Equation
#--------------------
f₁(x,y,z) = -a * x + a * y
f₂(x,y,z) = -x * z + b * x - y
f₃(x,y,z) = x * y - c * z
#--------------------
# Initialize
#--------------------
function lorenz(h,N,σ,ρ,β,x0,y0,z0,a,b,c)
# stage
s = length(b)
# Number of Equations
M = 3
#--------------------
# Equations
#--------------------
f₁(x,y,z) = -σ * x + σ * y
f₂(x,y,z) = -x * z + ρ * x - y
@ceptreee
ceptreee / main
Last active August 12, 2018 19:09
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from numba import jit
# Julia set
# https://en.wikipedia.org/wiki/Julia_set#Quadratic_polynomials
@jit
def JuliaSet(N,Nx,Ny,z,c):
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from numba import jit
# Julia set
# https://en.wikipedia.org/wiki/Julia_set#Quadratic_polynomials
def motion(event):
if (event.xdata is None) or (event.ydata is None):
using PyPlot
using PyCall
@pyimport matplotlib.animation as anim
dx = 0.05
xlm = [0, 2π]
x = collect(xlm[1]:dx:xlm[2])
n = length(x)
y = sin.(x)
using PyPlot
function motion(event)
x = event[:xdata]
y = event[:ydata]
ln[:set_data](x,y)
draw()
end
# x
X = 5.0
xlm = [-X,X]
dx = 0.1
x = xlm[1]:dx:xlm[2]
x_n = length(x)
# t
T = 50.0
tlm = [0,T]
# x
Δx = 0.1
X = 10.0
xlm = [0, X]
x = collect(xlm[1]:Δx:xlm[2])
I = length(x)
# y
Δy = 0.1
Y = 10.0
import numpy as np
import matplotlib.pyplot as plt
import sympy as sb
x = sb.Symbol('x')
def Chebyshev1st(N):
T = [0]*(N+1)
T[0] = 1
T[1] = x
import numpy as np
import matplotlib.pyplot as plt
import sympy as sb
# 森正武, "数値解析", 共立出版株式会社, 第2版, 2002.
# 4.12 ラグランジュ補間公式の標本点の分布
# 等間隔な標本点の分布(P170 - P173)
def LagrangePolynomial(X,Y):
def l(j,N):