Last active
November 25, 2018 15:03
-
-
Save ceshine/23ce9fb9aa83a044e824d171c4f8dffd to your computer and use it in GitHub Desktop.
Temporal Block (for TCNs)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class TemporalBlock(tf.layers.Layer): | |
def __init__(self, n_outputs, kernel_size, strides, dilation_rate, dropout=0.2, | |
trainable=True, name=None, dtype=None, | |
activity_regularizer=None, **kwargs): | |
super(TemporalBlock, self).__init__( | |
trainable=trainable, dtype=dtype, | |
activity_regularizer=activity_regularizer, | |
name=name, **kwargs | |
) | |
self.dropout = dropout | |
self.n_outputs = n_outputs | |
self.conv1 = CausalConv1D( | |
n_outputs, kernel_size, strides=strides, | |
dilation_rate=dilation_rate, activation=tf.nn.relu, | |
name="conv1") | |
self.conv2 = CausalConv1D( | |
n_outputs, kernel_size, strides=strides, | |
dilation_rate=dilation_rate, activation=tf.nn.relu, | |
name="conv2") | |
self.down_sample = None | |
def build(self, input_shape): | |
channel_dim = 2 | |
self.dropout1 = tf.layers.Dropout(self.dropout, [tf.constant(1), tf.constant(1), tf.constant(self.n_outputs)]) | |
self.dropout2 = tf.layers.Dropout(self.dropout, [tf.constant(1), tf.constant(1), tf.constant(self.n_outputs)]) | |
if input_shape[channel_dim] != self.n_outputs: | |
# self.down_sample = tf.layers.Conv1D( | |
# self.n_outputs, kernel_size=1, | |
# activation=None, data_format="channels_last", padding="valid") | |
self.down_sample = tf.layers.Dense(self.n_outputs, activation=None) | |
def call(self, inputs, training=True): | |
x = self.conv1(inputs) | |
x = tf.contrib.layers.layer_norm(x) | |
x = self.dropout1(x, training=training) | |
x = self.conv2(x) | |
x = tf.contrib.layers.layer_norm(x) | |
x = self.dropout2(x, training=training) | |
if self.down_sample is not None: | |
inputs = self.down_sample(inputs) | |
return tf.nn.relu(x + inputs) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment