Skip to content

Instantly share code, notes, and snippets.

@cfriedline
Last active August 29, 2015 14:15
Show Gist options
  • Save cfriedline/22fbfd482f95d12701f7 to your computer and use it in GitHub Desktop.
Save cfriedline/22fbfd482f95d12701f7 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "import os, sys\nfrom IPython.display import Image\nimport pandas as pd\nfrom __future__ import division\nimport numpy as np\nimport rpy2\nfrom rpy2 import robjects as ro\nimport pandas.rpy.common as com\nimport matplotlib.pyplot as plt\nimport seaborn as sns\nimport operator\nimport scipy as sp\nimport traceback\nfrom sklearn import preprocessing\nfrom IPython.parallel import Client\nfrom subprocess import Popen, PIPE\nimport shutil\nfrom IPython.display import FileLink, FileLinks, Image\nimport psutil\nimport multiprocessing\n%matplotlib inline\n\n%load_ext rpy2.ipython\npd.set_option('display.width', 80)\npd.set_option('max.columns', 30)\n\nsns.set_context(\"talk\")",
"execution_count": 1202,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "The rpy2.ipython extension is already loaded. To reload it, use:\n %reload_ext rpy2.ipython\n"
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "%%R\nR.home()",
"execution_count": 2,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": "[1] \"/gdc_home4/cfried/R3/lib64/R\"\n"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "data_ai = pd.read_excel(\"/gdc_home4/cfried/landscape_genetics_data/Genetics_2010/Eckert_Genetics_2010_data.xlsx\")",
"execution_count": 676,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "ai_cols = ['AI_Q1','AI_Q2','AI_Q3','AI_Q4']",
"execution_count": 675,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "data_gt = pd.read_excel(\"/gdc_home4/cfried/landscape_genetics_data/Genetics_2010/Eckert_Genetics_2010_data.xlsx\", \n sheetname=\"genotyping_data\")\n\ndata_loc = pd.read_excel(\"/gdc_home4/cfried/landscape_genetics_data/Genetics_2010/Eckert_Genetics_2010_data.xlsx\",\n sheetname=\"county_locality\")\n\nresults = pd.read_excel(\"/gdc_home4/cfried/landscape_genetics_data/Genetics_2010/Eckert_Genetics_2010_results.xlsx\")",
"execution_count": 3,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "trait_name = \"sucrose\"",
"execution_count": 4,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "pheno = pd.read_excel(\"/gdc_home4/cfried/landscape_genetics_data/Pinus_taeda_metabolite_data.xlsx\", \n sheetname=\"metabolite_phenotype_data\",\n header=2)\npheno = pheno[['Longitude', 'Latitude','Clone_id',trait_name]]\n\npheno.index = pheno.Clone_id\n#pheno = pheno.drop('Clone_id', axis=1)\npheno[0:5]",
"execution_count": 374,
"outputs": [
{
"execution_count": 374,
"output_type": "execute_result",
"data": {
"text/plain": " Longitude Latitude Clone_id sucrose\nClone_id \n105A -77.05205 35.55349 105A 5.554807\n109B -76.93578 36.39002 109B 5.770389\n112C -77.48749 35.06925 112C 5.611106\n118B -78.29901 36.10041 118B 5.593997\n121C -87.38771 34.14891 121C 5.073928",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Longitude</th>\n <th>Latitude</th>\n <th>Clone_id</th>\n <th>sucrose</th>\n </tr>\n <tr>\n <th>Clone_id</th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>105A</th>\n <td>-77.05205</td>\n <td> 35.55349</td>\n <td> 105A</td>\n <td> 5.554807</td>\n </tr>\n <tr>\n <th>109B</th>\n <td>-76.93578</td>\n <td> 36.39002</td>\n <td> 109B</td>\n <td> 5.770389</td>\n </tr>\n <tr>\n <th>112C</th>\n <td>-77.48749</td>\n <td> 35.06925</td>\n <td> 112C</td>\n <td> 5.611106</td>\n </tr>\n <tr>\n <th>118B</th>\n <td>-78.29901</td>\n <td> 36.10041</td>\n <td> 118B</td>\n <td> 5.593997</td>\n </tr>\n <tr>\n <th>121C</th>\n <td>-87.38771</td>\n <td> 34.14891</td>\n <td> 121C</td>\n <td> 5.073928</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "def get_phenotype(row):\n return np.max(pheno[(pheno.Longitude==row.long) & (pheno.Latitude==row.lat)])",
"execution_count": 375,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "data_gt[:5]",
"execution_count": 6,
"outputs": [
{
"execution_count": 6,
"output_type": "execute_result",
"data": {
"text/plain": " county state 0-10037-01-257 0-10040-02-394 0-10044-01-392 \\\n0 CHEROKEE GA G/G A/C G/G \n1 BARTOW GA A/A C/C G/G \n2 SUSSEX VA A/A C/C C/C \n3 KING & QUEEN VA A/A A/A C/C \n4 KING & QUEEN VA A/A A/C C/C \n\n 0-10048-01-60 0-10051-02-166 0-10054-01-402 0-10067-03-111 0-10079-02-168 \\\n0 A/A G/G A/G A/A G/G \n1 A/A G/G A/G A/A A/G \n2 G/G G/G A/G A/A G/G \n3 G/G A/G G/G A/A G/G \n4 ?/? G/G A/G A/A G/G \n\n 0-10112-01-169 0-10113-01-119 0-10116-01-165 0-10151-01-86 0-10162-01-255 \\\n0 A/C A/A A/A A/A A/A \n1 A/A G/G A/A A/A A/A \n2 A/A A/G A/A A/A A/G \n3 A/A A/G A/A A/A A/A \n4 A/A A/A A/A A/A ?/? \n\n ... 4003_02 4033_01 4033_02 4056_01 4056_02 4058_01 4058_02 4093_01 \\\n0 ... 155 131 143 413 413 143 150 307 \n1 ... 155 ? ? 413 437 137 143 307 \n2 ... 155 133 133 413 413 150 152 322 \n3 ... 155 133 152 413 413 146 154 307 \n4 ... 155 ? ? 413 431 143 146 310 \n\n 4093_02 4112_01 4112_02 4137_01 4137_02 4181_01 4181_0 \n0 310 462 462 161 161 365 390 \n1 307 440 448 161 176 365 365 \n2 325 462 462 161 169 378 395 \n3 325 460 462 163 190 390 417 \n4 322 462 462 169 169 395 409 \n\n[5 rows x 3130 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>county</th>\n <th>state</th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>0-10067-03-111</th>\n <th>0-10079-02-168</th>\n <th>0-10112-01-169</th>\n <th>0-10113-01-119</th>\n <th>0-10116-01-165</th>\n <th>0-10151-01-86</th>\n <th>0-10162-01-255</th>\n <th>...</th>\n <th>4003_02</th>\n <th>4033_01</th>\n <th>4033_02</th>\n <th>4056_01</th>\n <th>4056_02</th>\n <th>4058_01</th>\n <th>4058_02</th>\n <th>4093_01</th>\n <th>4093_02</th>\n <th>4112_01</th>\n <th>4112_02</th>\n <th>4137_01</th>\n <th>4137_02</th>\n <th>4181_01</th>\n <th>4181_0</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td> CHEROKEE</td>\n <td> GA</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> 155</td>\n <td> 131</td>\n <td> 143</td>\n <td> 413</td>\n <td> 413</td>\n <td> 143</td>\n <td> 150</td>\n <td> 307</td>\n <td> 310</td>\n <td> 462</td>\n <td> 462</td>\n <td> 161</td>\n <td> 161</td>\n <td> 365</td>\n <td> 390</td>\n </tr>\n <tr>\n <th>1</th>\n <td> BARTOW</td>\n <td> GA</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> 155</td>\n <td> ?</td>\n <td> ?</td>\n <td> 413</td>\n <td> 437</td>\n <td> 137</td>\n <td> 143</td>\n <td> 307</td>\n <td> 307</td>\n <td> 440</td>\n <td> 448</td>\n <td> 161</td>\n <td> 176</td>\n <td> 365</td>\n <td> 365</td>\n </tr>\n <tr>\n <th>2</th>\n <td> SUSSEX</td>\n <td> VA</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> 155</td>\n <td> 133</td>\n <td> 133</td>\n <td> 413</td>\n <td> 413</td>\n <td> 150</td>\n <td> 152</td>\n <td> 322</td>\n <td> 325</td>\n <td> 462</td>\n <td> 462</td>\n <td> 161</td>\n <td> 169</td>\n <td> 378</td>\n <td> 395</td>\n </tr>\n <tr>\n <th>3</th>\n <td> KING &amp; QUEEN</td>\n <td> VA</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> 155</td>\n <td> 133</td>\n <td> 152</td>\n <td> 413</td>\n <td> 413</td>\n <td> 146</td>\n <td> 154</td>\n <td> 307</td>\n <td> 325</td>\n <td> 460</td>\n <td> 462</td>\n <td> 163</td>\n <td> 190</td>\n <td> 390</td>\n <td> 417</td>\n </tr>\n <tr>\n <th>4</th>\n <td> KING &amp; QUEEN</td>\n <td> VA</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> C/C</td>\n <td> ?/?</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> ?/?</td>\n <td>...</td>\n <td> 155</td>\n <td> ?</td>\n <td> ?</td>\n <td> 413</td>\n <td> 431</td>\n <td> 143</td>\n <td> 146</td>\n <td> 310</td>\n <td> 322</td>\n <td> 462</td>\n <td> 462</td>\n <td> 169</td>\n <td> 169</td>\n <td> 395</td>\n <td> 409</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 3130 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "data_loc",
"execution_count": 376,
"outputs": [
{
"execution_count": 376,
"output_type": "execute_result",
"data": {
"text/plain": " county state lat long\n0 CHEROKEE GA 34.24000 -84.47000\n1 BARTOW GA 34.24000 -84.84000\n2 SUSSEX VA 36.92093 -77.28034\n3 KING & QUEEN VA 37.66986 -76.87746\n4 KING & QUEEN VA 37.66986 -76.87746\n5 NEW KENT VA 37.51160 -76.97319\n6 WARREN NC 34.80551 -76.80890\n7 NORTHAMPTON NC 36.39032 -77.42219\n8 COLUMBUS NC 34.33010 -78.70453\n9 WILLIAMSBURG SC 33.66538 -79.81968\n10 ONSLOW NC 34.75963 -77.40977\n11 ONSLOW NC 34.75963 -77.40977\n12 GEORGETOWN SC 33.36318 -79.30539\n13 BEAUFORT NC 35.55349 -77.05205\n14 BERTIE NC 35.99815 -76.94897\n15 CRAVEN NC 35.10917 -77.06917\n16 ONSLOW NC 34.75963 -77.40977\n17 CHATHAM NC 35.72033 -79.17639\n18 BEAUFORT NC 35.55349 -77.05205\n19 DARE NC 35.99784 -76.98390\n20 CRAVEN NC 35.10917 -77.06917\n21 CRAVEN NC 35.10917 -77.06917\n22 CARTERET NC 34.72073 -76.65257\n23 TYRRELL NC 35.91778 -76.24972\n24 CRAVEN NC 35.10917 -77.06917\n25 BEAUFORT NC 35.55349 -77.05205\n26 BEAUFORT NC 35.55349 -77.05205\n27 BEAUFORT NC 35.55349 -77.05205\n28 BEAUFORT NC 35.55349 -77.05205\n29 BEAUFORT NC 35.55349 -77.05205\n.. ... ... ... ...\n592 EDGEFIELD SC 33.78684 -81.92784\n593 WARREN GA 33.40760 -82.66291\n594 BERKELEY SC 33.19661 -80.00666\n595 HALIFAX NC 36.32840 -77.59073\n596 CHATHAM NC 35.72033 -79.17639\n597 MARSHALL AL 34.33572 -86.30198\n598 GEORGETOWN SC 33.36318 -79.30539\n599 COLUMBUS NC 34.33010 -78.70453\n600 GEORGETOWN SC 33.36318 -79.30539\n601 HORRY SC 33.83809 -79.05610\n602 HORRY SC 33.83809 -79.05610\n603 WILLIAMSBURG SC 33.66538 -79.81968\n604 MARION SC 34.18009 -79.39710\n605 ONSLOW NC 34.64551 -77.41295\n606 JONES NC 35.06925 -77.48749\n607 ONSLOW NC 34.64551 -77.41295\n608 WINSTON AL 34.14891 -87.38771\n609 CARTERET NC 34.72073 -76.65257\n610 CRAVEN NC 35.10917 -77.06917\n611 JONES NC 35.06925 -77.48749\n612 CRAVEN NC 35.10917 -77.06917\n613 PIKE AR 34.06626 -93.68926\n614 BERKELEY SC 33.19661 -80.00666\n615 BERKELEY SC 33.19661 -80.00666\n616 BERKELEY SC 33.19661 -80.00666\n617 BERKELEY SC 33.19661 -80.00666\n618 BERKELEY SC 33.19661 -80.00666\n619 TYLER TX 30.77611 -94.42111\n620 UNION LA 32.77361 -92.40417\n621 UNION LA 32.77361 -92.40417\n\n[622 rows x 4 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>county</th>\n <th>state</th>\n <th>lat</th>\n <th>long</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0 </th>\n <td> CHEROKEE</td>\n <td> GA</td>\n <td> 34.24000</td>\n <td>-84.47000</td>\n </tr>\n <tr>\n <th>1 </th>\n <td> BARTOW</td>\n <td> GA</td>\n <td> 34.24000</td>\n <td>-84.84000</td>\n </tr>\n <tr>\n <th>2 </th>\n <td> SUSSEX</td>\n <td> VA</td>\n <td> 36.92093</td>\n <td>-77.28034</td>\n </tr>\n <tr>\n <th>3 </th>\n <td> KING &amp; QUEEN</td>\n <td> VA</td>\n <td> 37.66986</td>\n <td>-76.87746</td>\n </tr>\n <tr>\n <th>4 </th>\n <td> KING &amp; QUEEN</td>\n <td> VA</td>\n <td> 37.66986</td>\n <td>-76.87746</td>\n </tr>\n <tr>\n <th>5 </th>\n <td> NEW KENT</td>\n <td> VA</td>\n <td> 37.51160</td>\n <td>-76.97319</td>\n </tr>\n <tr>\n <th>6 </th>\n <td> WARREN</td>\n <td> NC</td>\n <td> 34.80551</td>\n <td>-76.80890</td>\n </tr>\n <tr>\n <th>7 </th>\n <td> NORTHAMPTON</td>\n <td> NC</td>\n <td> 36.39032</td>\n <td>-77.42219</td>\n </tr>\n <tr>\n <th>8 </th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n </tr>\n <tr>\n <th>9 </th>\n <td> WILLIAMSBURG</td>\n <td> SC</td>\n <td> 33.66538</td>\n <td>-79.81968</td>\n </tr>\n <tr>\n <th>10 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n </tr>\n <tr>\n <th>11 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n </tr>\n <tr>\n <th>12 </th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n </tr>\n <tr>\n <th>13 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n </tr>\n <tr>\n <th>14 </th>\n <td> BERTIE</td>\n <td> NC</td>\n <td> 35.99815</td>\n <td>-76.94897</td>\n </tr>\n <tr>\n <th>15 </th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n </tr>\n <tr>\n <th>16 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n </tr>\n <tr>\n <th>17 </th>\n <td> CHATHAM</td>\n <td> NC</td>\n <td> 35.72033</td>\n <td>-79.17639</td>\n </tr>\n <tr>\n <th>18 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n </tr>\n <tr>\n <th>19 </th>\n <td> DARE</td>\n <td> NC</td>\n <td> 35.99784</td>\n <td>-76.98390</td>\n </tr>\n <tr>\n <th>20 </th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n </tr>\n <tr>\n <th>21 </th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n </tr>\n <tr>\n <th>22 </th>\n <td> CARTERET</td>\n <td> NC</td>\n <td> 34.72073</td>\n <td>-76.65257</td>\n </tr>\n <tr>\n <th>23 </th>\n <td> TYRRELL</td>\n <td> NC</td>\n <td> 35.91778</td>\n <td>-76.24972</td>\n </tr>\n <tr>\n <th>24 </th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n </tr>\n <tr>\n <th>25 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n </tr>\n <tr>\n <th>26 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n </tr>\n <tr>\n <th>27 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n </tr>\n <tr>\n <th>28 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n </tr>\n <tr>\n <th>29 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>592</th>\n <td> EDGEFIELD</td>\n <td> SC</td>\n <td> 33.78684</td>\n <td>-81.92784</td>\n </tr>\n <tr>\n <th>593</th>\n <td> WARREN</td>\n <td> GA</td>\n <td> 33.40760</td>\n <td>-82.66291</td>\n </tr>\n <tr>\n <th>594</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n </tr>\n <tr>\n <th>595</th>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 36.32840</td>\n <td>-77.59073</td>\n </tr>\n <tr>\n <th>596</th>\n <td> CHATHAM</td>\n <td> NC</td>\n <td> 35.72033</td>\n <td>-79.17639</td>\n </tr>\n <tr>\n <th>597</th>\n <td> MARSHALL</td>\n <td> AL</td>\n <td> 34.33572</td>\n <td>-86.30198</td>\n </tr>\n <tr>\n <th>598</th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n </tr>\n <tr>\n <th>599</th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n </tr>\n <tr>\n <th>600</th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n </tr>\n <tr>\n <th>601</th>\n <td> HORRY</td>\n <td> SC</td>\n <td> 33.83809</td>\n <td>-79.05610</td>\n </tr>\n <tr>\n <th>602</th>\n <td> HORRY</td>\n <td> SC</td>\n <td> 33.83809</td>\n <td>-79.05610</td>\n </tr>\n <tr>\n <th>603</th>\n <td> WILLIAMSBURG</td>\n <td> SC</td>\n <td> 33.66538</td>\n <td>-79.81968</td>\n </tr>\n <tr>\n <th>604</th>\n <td> MARION</td>\n <td> SC</td>\n <td> 34.18009</td>\n <td>-79.39710</td>\n </tr>\n <tr>\n <th>605</th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.64551</td>\n <td>-77.41295</td>\n </tr>\n <tr>\n <th>606</th>\n <td> JONES</td>\n <td> NC</td>\n <td> 35.06925</td>\n <td>-77.48749</td>\n </tr>\n <tr>\n <th>607</th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.64551</td>\n <td>-77.41295</td>\n </tr>\n <tr>\n <th>608</th>\n <td> WINSTON</td>\n <td> AL</td>\n <td> 34.14891</td>\n <td>-87.38771</td>\n </tr>\n <tr>\n <th>609</th>\n <td> CARTERET</td>\n <td> NC</td>\n <td> 34.72073</td>\n <td>-76.65257</td>\n </tr>\n <tr>\n <th>610</th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n </tr>\n <tr>\n <th>611</th>\n <td> JONES</td>\n <td> NC</td>\n <td> 35.06925</td>\n <td>-77.48749</td>\n </tr>\n <tr>\n <th>612</th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n </tr>\n <tr>\n <th>613</th>\n <td> PIKE</td>\n <td> AR</td>\n <td> 34.06626</td>\n <td>-93.68926</td>\n </tr>\n <tr>\n <th>614</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n </tr>\n <tr>\n <th>615</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n </tr>\n <tr>\n <th>616</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n </tr>\n <tr>\n <th>617</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n </tr>\n <tr>\n <th>618</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n </tr>\n <tr>\n <th>619</th>\n <td> TYLER</td>\n <td> TX</td>\n <td> 30.77611</td>\n <td>-94.42111</td>\n </tr>\n <tr>\n <th>620</th>\n <td> UNION</td>\n <td> LA</td>\n <td> 32.77361</td>\n <td>-92.40417</td>\n </tr>\n <tr>\n <th>621</th>\n <td> UNION</td>\n <td> LA</td>\n <td> 32.77361</td>\n <td>-92.40417</td>\n </tr>\n </tbody>\n</table>\n<p>622 rows × 4 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "results.index = results.locus\nresults = results.drop(\"locus\", axis=1)",
"execution_count": 7,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "results[0:5]",
"execution_count": 8,
"outputs": [
{
"execution_count": 8,
"output_type": "execute_result",
"data": {
"text/plain": " AI_Q1 AI_Q2 AI_Q3 AI_Q4 AI_Q1_p AI_Q2_p \\\nlocus \n0-10037-01-257 3.090870 1.864283 0.149907 2.461218 0.078733 0.172131 \n0-10040-02-394 0.222454 0.278099 0.022114 0.017258 0.637176 0.597950 \n0-10044-01-392 0.089144 0.223369 0.555988 0.021623 0.765268 0.636485 \n0-10048-01-60 1.414864 0.015237 1.090495 0.137387 0.234251 0.901761 \n0-10051-02-166 0.058918 0.040176 0.027423 0.001222 0.808214 0.841136 \n\n AI_Q3_p AI_Q4_p AI_Q1_q AI_Q2_q AI_Q3_q AI_Q4_q \nlocus \n0-10037-01-257 0.698625 0.116688 0.747412 0.810414 0.921038 0.780214 \n0-10040-02-394 0.881783 0.895482 0.915915 0.913184 0.930757 0.931667 \n0-10044-01-392 0.455881 0.883096 0.924059 0.915847 0.892786 0.930859 \n0-10048-01-60 0.296362 0.710892 0.831868 0.932005 0.860061 0.922234 \n0-10051-02-166 0.868472 0.972119 0.925925 0.927279 0.928358 0.937372 ",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>AI_Q1</th>\n <th>AI_Q2</th>\n <th>AI_Q3</th>\n <th>AI_Q4</th>\n <th>AI_Q1_p</th>\n <th>AI_Q2_p</th>\n <th>AI_Q3_p</th>\n <th>AI_Q4_p</th>\n <th>AI_Q1_q</th>\n <th>AI_Q2_q</th>\n <th>AI_Q3_q</th>\n <th>AI_Q4_q</th>\n </tr>\n <tr>\n <th>locus</th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0-10037-01-257</th>\n <td> 3.090870</td>\n <td> 1.864283</td>\n <td> 0.149907</td>\n <td> 2.461218</td>\n <td> 0.078733</td>\n <td> 0.172131</td>\n <td> 0.698625</td>\n <td> 0.116688</td>\n <td> 0.747412</td>\n <td> 0.810414</td>\n <td> 0.921038</td>\n <td> 0.780214</td>\n </tr>\n <tr>\n <th>0-10040-02-394</th>\n <td> 0.222454</td>\n <td> 0.278099</td>\n <td> 0.022114</td>\n <td> 0.017258</td>\n <td> 0.637176</td>\n <td> 0.597950</td>\n <td> 0.881783</td>\n <td> 0.895482</td>\n <td> 0.915915</td>\n <td> 0.913184</td>\n <td> 0.930757</td>\n <td> 0.931667</td>\n </tr>\n <tr>\n <th>0-10044-01-392</th>\n <td> 0.089144</td>\n <td> 0.223369</td>\n <td> 0.555988</td>\n <td> 0.021623</td>\n <td> 0.765268</td>\n <td> 0.636485</td>\n <td> 0.455881</td>\n <td> 0.883096</td>\n <td> 0.924059</td>\n <td> 0.915847</td>\n <td> 0.892786</td>\n <td> 0.930859</td>\n </tr>\n <tr>\n <th>0-10048-01-60</th>\n <td> 1.414864</td>\n <td> 0.015237</td>\n <td> 1.090495</td>\n <td> 0.137387</td>\n <td> 0.234251</td>\n <td> 0.901761</td>\n <td> 0.296362</td>\n <td> 0.710892</td>\n <td> 0.831868</td>\n <td> 0.932005</td>\n <td> 0.860061</td>\n <td> 0.922234</td>\n </tr>\n <tr>\n <th>0-10051-02-166</th>\n <td> 0.058918</td>\n <td> 0.040176</td>\n <td> 0.027423</td>\n <td> 0.001222</td>\n <td> 0.808214</td>\n <td> 0.841136</td>\n <td> 0.868472</td>\n <td> 0.972119</td>\n <td> 0.925925</td>\n <td> 0.927279</td>\n <td> 0.928358</td>\n <td> 0.937372</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "genotypes = data_gt.ix[:,[x for x in data_gt.columns if '-' in x]]",
"execution_count": 370,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "genotypes[:5]",
"execution_count": 371,
"outputs": [
{
"execution_count": 371,
"output_type": "execute_result",
"data": {
"text/plain": " 0-10037-01-257 0-10040-02-394 0-10044-01-392 0-10048-01-60 0-10051-02-166 \\\n0 G/G A/C G/G A/A G/G \n1 A/A C/C G/G A/A G/G \n2 A/A C/C C/C G/G G/G \n3 A/A A/A C/C G/G A/G \n4 A/A A/C C/C ?/? G/G \n\n 0-10054-01-402 0-10067-03-111 0-10079-02-168 0-10112-01-169 0-10113-01-119 \\\n0 A/G A/A G/G A/C A/A \n1 A/G A/A A/G A/A G/G \n2 A/G A/A G/G A/A A/G \n3 G/G A/A G/G A/A A/G \n4 A/G A/A G/G A/A A/A \n\n 0-10116-01-165 0-10151-01-86 0-10162-01-255 0-10207-01-280 0-10210-01-41 \\\n0 A/A A/A A/A A/C ?/? \n1 A/A A/A A/A A/C A/A \n2 A/A A/A A/G A/A A/A \n3 A/A A/A A/A C/C A/A \n4 A/A A/A ?/? A/C ?/? \n\n ... UMN-CL299Contig1-01-46 UMN-CL306Contig1-04-261 \\\n0 ... A/A T/T \n1 ... A/A T/T \n2 ... A/A T/T \n3 ... A/A T/T \n4 ... A/A T/T \n\n UMN-CL307Contig1-04-143 UMN-CL319Contig1-03-131 UMN-CL326Contig1-05-421 \\\n0 C/C A/C A/G \n1 C/C C/C G/G \n2 C/G C/C G/G \n3 C/C C/C G/G \n4 C/G C/C G/G \n\n UMN-CL339Contig1-05-39 UMN-CL34Contig1-03-89 UMN-CL353Contig1-04-64 \\\n0 A/A C/G A/A \n1 A/A G/G A/A \n2 A/A G/G A/A \n3 A/A C/G A/A \n4 A/A C/G A/A \n\n UMN-CL362Contig1-07-133 UMN-CL363Contig1-01-233 UMN-CL379Contig1-12-117 \\\n0 ?/? G/G A/A \n1 A/A G/G A/A \n2 A/A G/G A/A \n3 ?/? A/G A/A \n4 C/C A/G A/A \n\n UMN-CL424Contig1-03-94 UMN-CL54Contig1-07-88 UMN-CL91Contig1-02-246 \\\n0 C/C G/G C/C \n1 A/C A/G C/C \n2 A/C G/G C/C \n3 A/C A/G C/C \n4 A/C G/G A/C \n\n UMN-CL97Contig \n0 A/G \n1 A/A \n2 G/G \n3 G/G \n4 G/G \n\n[5 rows x 3082 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>0-10067-03-111</th>\n <th>0-10079-02-168</th>\n <th>0-10112-01-169</th>\n <th>0-10113-01-119</th>\n <th>0-10116-01-165</th>\n <th>0-10151-01-86</th>\n <th>0-10162-01-255</th>\n <th>0-10207-01-280</th>\n <th>0-10210-01-41</th>\n <th>...</th>\n <th>UMN-CL299Contig1-01-46</th>\n <th>UMN-CL306Contig1-04-261</th>\n <th>UMN-CL307Contig1-04-143</th>\n <th>UMN-CL319Contig1-03-131</th>\n <th>UMN-CL326Contig1-05-421</th>\n <th>UMN-CL339Contig1-05-39</th>\n <th>UMN-CL34Contig1-03-89</th>\n <th>UMN-CL353Contig1-04-64</th>\n <th>UMN-CL362Contig1-07-133</th>\n <th>UMN-CL363Contig1-01-233</th>\n <th>UMN-CL379Contig1-12-117</th>\n <th>UMN-CL424Contig1-03-94</th>\n <th>UMN-CL54Contig1-07-88</th>\n <th>UMN-CL91Contig1-02-246</th>\n <th>UMN-CL97Contig</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td> G/G</td>\n <td> A/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> ?/?</td>\n <td>...</td>\n <td> A/A</td>\n <td> T/T</td>\n <td> C/C</td>\n <td> A/C</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> C/G</td>\n <td> A/A</td>\n <td> ?/?</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> A/G</td>\n </tr>\n <tr>\n <th>1</th>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> T/T</td>\n <td> C/C</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> A/A</td>\n </tr>\n <tr>\n <th>2</th>\n <td> A/A</td>\n <td> C/C</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> T/T</td>\n <td> C/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n </tr>\n <tr>\n <th>3</th>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> T/T</td>\n <td> C/C</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/G</td>\n <td> A/A</td>\n <td> ?/?</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> G/G</td>\n </tr>\n <tr>\n <th>4</th>\n <td> A/A</td>\n <td> A/C</td>\n <td> C/C</td>\n <td> ?/?</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> ?/?</td>\n <td> A/C</td>\n <td> ?/?</td>\n <td>...</td>\n <td> A/A</td>\n <td> T/T</td>\n <td> C/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> G/G</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 3082 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "genotypes.shape",
"execution_count": 372,
"outputs": [
{
"execution_count": 372,
"output_type": "execute_result",
"data": {
"text/plain": "(622, 3082)"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "def is_homozygous(gt):\n if len(set([x.strip() for x in gt.split(\"/\")])) == 1:\n return True\n return False\n\ndef get_allele_counts(counts):\n a = {}\n het = 0\n for gt in counts.index:\n for allele in [x.strip() for x in gt.split(\"/\")]:\n if not allele in a:\n a[allele] = 0\n a[allele] += counts[gt]\n if not is_homozygous(gt):\n het += counts[gt]\n return sorted(a.items(), key=lambda x: x[1], reverse=True), het\n\ndef get_correction(n):\n #for finite sample size\n return (2*n)/(2*n-1)\n\ndef get_allele_freqs(locus):\n locus = locus[locus != '?/?']\n locus = locus[locus != 'NA']\n c = locus.value_counts()\n c = c.sort(inplace=False, ascending=False)\n allele_counts = get_allele_counts(c)\n total_alleles = 2.0*sum(c)\n num_individuals = sum(c)\n A = \"\"\n a = \"\"\n P = 0\n Q = 0\n if len(allele_counts[0]) == 2:\n A = allele_counts[0][0][0]\n a = allele_counts[0][1][0]\n P = allele_counts[0][0][1]\n Q = allele_counts[0][1][1]\n else:\n A = allele_counts[0][0][0]\n P = P = allele_counts[0][0][1]\n PQ = allele_counts[-1]\n p = P/total_alleles\n q = Q/total_alleles\n assert p + q == 1.0\n He = 2 * p * q * get_correction(num_individuals)\n Ho = PQ*1.0/num_individuals\n Fis = 1 - (Ho/He)\n #print p, q, He, Ho, Fis\n ret = pd.Series({\"p\":p, \n \"q\":q,\n \"P\":P,\n \"Q\":Q,\n \"He\":He,\n \"Ho\":Ho, \n \"Fis\":Fis,\n \"PQ\": PQ,\n \"total_alleles\":total_alleles,\n \"num_indiv\":num_individuals,\n \"A\":A,\n \"a\":a})\n return ret\n#genotypes.ix[:,0:2].apply(get_allele_freqs)",
"execution_count": 11,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "af = genotypes.apply(get_allele_freqs)",
"execution_count": 12,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "genotypes",
"execution_count": 369,
"outputs": [
{
"execution_count": 369,
"output_type": "execute_result",
"data": {
"text/plain": "['G/G', 'G/A', 'A/A']"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "af.ix[:,0:5]",
"execution_count": 13,
"outputs": [
{
"execution_count": 13,
"output_type": "execute_result",
"data": {
"text/plain": " 0-10037-01-257 0-10040-02-394 0-10044-01-392 0-10048-01-60 \\\nA A C C G \nFis -0.03216907 0.02119724 0.09921339 0.1181548 \nHe 0.4090983 0.4999238 0.5004262 0.450996 \nHo 0.4222586 0.4893268 0.4507772 0.3977087 \nP 872 628 581 803 \nPQ 258 298 261 243 \nQ 350 590 577 419 \na G A G A \nnum_indiv 611 609 579 611 \np 0.7135843 0.5155993 0.5017271 0.6571195 \nq 0.2864157 0.4844007 0.4982729 0.3428805 \ntotal_alleles 1222 1218 1158 1222 \n\n 0-10051-02-166 \nA G \nFis 0.03167254 \nHe 0.1261452 \nHo 0.1221498 \nP 1145 \nPQ 75 \nQ 83 \na A \nnum_indiv 614 \np 0.9324104 \nq 0.06758958 \ntotal_alleles 1228 ",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>A</th>\n <td> A</td>\n <td> C</td>\n <td> C</td>\n <td> G</td>\n <td> G</td>\n </tr>\n <tr>\n <th>Fis</th>\n <td>-0.03216907</td>\n <td> 0.02119724</td>\n <td> 0.09921339</td>\n <td> 0.1181548</td>\n <td> 0.03167254</td>\n </tr>\n <tr>\n <th>He</th>\n <td> 0.4090983</td>\n <td> 0.4999238</td>\n <td> 0.5004262</td>\n <td> 0.450996</td>\n <td> 0.1261452</td>\n </tr>\n <tr>\n <th>Ho</th>\n <td> 0.4222586</td>\n <td> 0.4893268</td>\n <td> 0.4507772</td>\n <td> 0.3977087</td>\n <td> 0.1221498</td>\n </tr>\n <tr>\n <th>P</th>\n <td> 872</td>\n <td> 628</td>\n <td> 581</td>\n <td> 803</td>\n <td> 1145</td>\n </tr>\n <tr>\n <th>PQ</th>\n <td> 258</td>\n <td> 298</td>\n <td> 261</td>\n <td> 243</td>\n <td> 75</td>\n </tr>\n <tr>\n <th>Q</th>\n <td> 350</td>\n <td> 590</td>\n <td> 577</td>\n <td> 419</td>\n <td> 83</td>\n </tr>\n <tr>\n <th>a</th>\n <td> G</td>\n <td> A</td>\n <td> G</td>\n <td> A</td>\n <td> A</td>\n </tr>\n <tr>\n <th>num_indiv</th>\n <td> 611</td>\n <td> 609</td>\n <td> 579</td>\n <td> 611</td>\n <td> 614</td>\n </tr>\n <tr>\n <th>p</th>\n <td> 0.7135843</td>\n <td> 0.5155993</td>\n <td> 0.5017271</td>\n <td> 0.6571195</td>\n <td> 0.9324104</td>\n </tr>\n <tr>\n <th>q</th>\n <td> 0.2864157</td>\n <td> 0.4844007</td>\n <td> 0.4982729</td>\n <td> 0.3428805</td>\n <td> 0.06758958</td>\n </tr>\n <tr>\n <th>total_alleles</th>\n <td> 1222</td>\n <td> 1218</td>\n <td> 1158</td>\n <td> 1222</td>\n <td> 1228</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "def plot_hist(df, index):\n d = df.ix[index,:]\n plt.hist(d, bins=20)\n plt.title(\"%s %.2f $\\pm$ %.3f [%.2f, %.2f]\" % (index, \n np.mean(d), \n np.std(d),\n np.min(d),\n np.max(d)))\n plt.show()\nplot_hist(af, \"Fis\")",
"execution_count": 1215,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAncAAAHFCAYAAACQIN+BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYXXV97/H3cIcQAhEFNYXRAN8AglEq0uMBrEgBq3Cw\n1ktFnBRP5TYWSrHg8VRPq9IeIFTHUqxoxgsi1BZFAaF9FEsvRwUEbZBvYiBisEABgQTCJTDnj7UG\nhp2ZyZ69Z8+e+c379TzzrNlr/dZa37V/s7M/WdeeoaEhJEmSVIbNul2AJEmSJo/hTpIkqSCGO0mS\npIIY7iRJkgpiuJMkSSqI4U6SJKkghjtJkqSCGO4kSZIKskW3C5A0toi4HjhkjMmrM/PlEfEMcFpm\nfqqN9ZwFnATsAtwOnJWZ3251noiYD3wCeDOwM7AKuCAzL261xlZN9rbV0w8Gzgf2A+4DPpWZ5zcs\nY5NtGtqvBnarXx6ZmddN1jZFxDbAnwJvr+dZAXwsM6+op09af7X4fo/7XjW8NyOdDpxVrwvgNzPz\nexOtWSqNe+6k6W0IuAbYdZSf19RtdgU+2+oKIqIf+DDwQaov178DvhER+7cxzz8AvwG8E9gH+Hvg\nbyPiyBZrPCgi3tHCfJO+bRGxD3At8C1gUd32ExHxrhHL2GSbUQwB51H153cnc5uATwN9wAeAxcB1\nwN9FxIH19Enprxbf72beq5HvzcifvwVeARw4op0067nnTpreeoAnMvO+sRqMN21TIqIH+BOqPSWX\n1aM/Xn+p/zFw/ETniYgPA68E3pKZ/1JP/9M6nL0VGHcvzhi2BraZyAyd2LZ6nv8NXJ+Zf1ZP/1JE\nPAisHrGoZtqMZt14/dniNs0D3gu8PzOvrkefHRHvBN4REfcwCf3VSm21Zt+rsd6b9RExt5kapdnC\ncCfNcPVh2dMz85P168OBjwF7A08D36+n/3SU2RcBL6HaczLSd4D3jbHKcefJzOOBnUaZr6euZ6pM\n+rbVAea3qQ4HPiszrxr+PSI2A94E/NFYbdow4W3KzIcj4sXA2oZJ9wEvyMy7mJz+mnBtHX6vpFnL\nw7JSGYYAImIn4OvA94D9gYOBx4FvjDHfHvXwzobxdwIvjoht250nIraJiDOpzov6zKY3ZdJM+rZR\nBebtgYci4qsRcU9EZEQsGdG2F5i7iTatamWbyMz7M/OJ4dcR8RKqv48fNLZto79aqa2Xzr1X0qxl\nuJOmv54JtH0ZsC1weWauzsz/oDrX6l31XqdGw4ezGvfqrKuHO7QzT0QsBx4F3g8ckZm3NLMRo5jI\nezCsE9u2cz08lypAHwFcDnwuIt5bT3thE21a1co2PU9EbA4sA+6phyOntdNfrdTW7HvVA7wmIv6x\nDoC3R8SpY/xNS7Oeh2Wl6e/NEdH4hQlwZWa+u2HccuAu4PKIGAD+sQ54N3W6yDEcCbyI6nyrb0fE\nUZn57+PNUF/ZeS7P//fpJcDciDhoxLgh4KPtnHPYgmfq4RWZ+Tf177fWFyacCHwB2LKJNl0REVsA\nXwFeS3Vl6fqGJhPurzY1+17dR3XO5V8A/wUcBSylCpTndLA+aUYy3EnT33eobi3RaF3jiMx8IiL+\nO9XtIc4Ezo+IBE7JzO+MsoyH6+EOwK9GjJ/XML2leTLzF8AvgJsiYneqL+LXj7LMkdvwONA/clxE\nHAr0ZuZEglEntu2Renhzw3z/BpxW/762iTabVN8e5OoRo75EdUXpePWNtk3Dy9uKaq/YwcBvZeaP\nGtu00l8jtPJ+N/VeZeaBDdN/HBG7UV39a7iTGhjupOnv0cy8o9nGmbkGOBU4td4D8ufAlRHxa5n5\nq4bmK+vhQuDnI8bvCdxVB61G484DvCgi3gB8ITNH3priduC4ZrdjEnRi21ZR7b2bx8aerIfNtGnG\nD6muYh32CDB/vPrG2KZhn6O63cnrM/MnwyPrEPebtN9frbzf7bxXtwEn1aFV0giecycVJCL2iIg3\nD7/OzB9Q3Z5iO6qT158nM1dQnfB+VMOkI6nur7eRJuZZBHweOKhh+r5sfLJ9x3Ri2zLzUeDfgbc0\nTP8N4Mf1MtZtqk2T9T+emXeM+Lm/lW2CZ+8/dyzVzZF/0jB5Uvqrxfd7k+9VROwZEYMR0dvQ5lXA\nLzNzIoFZmhXccydNfxM5aXwh8A8R8QGqW1JsBfwh1XlKt40xz8eAv46IH1DtLXp/vZy3AkTEOUBk\n5lubnOfnwI+Az0fEKVR7vI6luoVIq3vuWj1xfrK3Dao9odfU9/P7KvA24HCeH2qaadOqCW1TRGwP\n/BlwIfCfEbHriGU9DfwTTfRXRJwKvCczX9tqbaPVx6bfqzXAocClEXEG1fl3v011XuBZzbxh0mzT\nVLiLiBOpHg3zp8OPhImInal28+9LtVv9SuDMzByq7110LnB0vYjlwAmZ+UA97/CHckvgAeDUzLxx\n0rZKKscQE7jrfmZeGxEnUd2HbSnwGNWX7JEjb4XRMM+y+ka351Ld9f/HwJtGHArelYa9fpuaJyJ+\nC/i/VOd4bUP1uKslmfmVTW1DfUHFBTz/36cXA9vX5xMOGwI+vIkbPE/6tmXmdfUNgD9K9TSFnwO/\nO/JxYc20aVUL23QA1WHPP65/Rhp+hF0z/fUCnrvdSau1bVTfpt6rzFwfEYcBf0n1JI2dgJ9Rfad8\nabx6pNmqZ2ho/O+NiLiQ6r5Oi4CvZubSevzXgHsz85SI2I7qMvbPZ+bf1P/Dey9wSP3B/Gtg58x8\nR1SPofke8OuZuSoi3k71WJmFmflUpzZUkqaziLgTWDbiSQ3TTkT8MDNfs+mWU6s+ZHsH1fmE/9zl\ncqSua+acu4vrO84/OjyiftTLMVR7BsjMx6hudjm8C/944KIRl9lfABxbh8DjgG9l5qp63supDrm8\nvu2tkaSZq4fqdi+7RsSWm2w9xSLiTYxy0+Nui4gX8tz98iTRRLjLzMZL1KG6+onhgFZbSXWIFiCo\ndusPu6Ne116jTGucV5JmoyHgDOBuqqtXp5XMvDozT+l2HaP4MdUj9po+fUEqXasXVMxh48vU19fj\nh6c/e3PMzHwmIp6oxz9v2oh5t2uxFkma8TLzZd2uYSbKzBd3uwZpumn1VijrgK0bxs3huZuqrqN6\nBBLw7ONutq7Hr2PjIDdyXkmSJLWo1T13K4CnI2LPzBy+ceXewK3178upLsC4oX4dwAaqm2Iur19X\nE6pnAy6i+fs/Pc7GwVKSJGk2GfMWURMJdz3DC8rMR+urZT8ELImIHakej3Re3XaQ6u74l1E9XuZs\n4NL60UhfBv4tIl5RP/PyfXWbZq9w6qWJh2PPcL1U9yg7Aljd1Uo0GXqxP0vSi/1Zkl7sz5L0Yn+O\nfyuU+nDqo1Qnqm5FdcPLp4EvUt31/mJgcT3u0sz86Ih5zwF+hyoQ/hB4f2aurae9k+p+RlsBvwRO\nzsyxbrA6G+0FJKNffKKZx/4si/1ZFvuzLPYnTdznTl3hH2dZ7M+y2J9lsT/LYn/is2UlSZKKYriT\nJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIkqSCGO0mSpIIY7iRJkgpiuJMkSSqI4U6S\nJKkghjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIkqSBbdLsA\nqTQ9PT3bAYuGX/f19e3W39/PwMDAPoODg9tP4qpuHxoaemwSlydJKkDP0NBQt2vQxvYCEghgRZdr\n0QT19PS8evFRp980d/6Cjq1j7YNruOWaCw4YGhq6uWMr0Vj8fJbF/iyL/Yl77qSOmDt/AfN2Wdjt\nMiRJs5Dn3EmSJBXEcCdJklQQw50kSVJBDHeSJEkFMdxJkiQVxHAnSZJUEMOdJElSQQx3kiRJBTHc\nSZIkFcRwJ0mSVBDDnSRJUkEMd5IkSQUx3EmSJBXEcCdJklQQw50kSVJBDHeSJEkFMdxJkiQVxHAn\nSZJUEMOdJElSQQx3kiRJBTHcSZIkFcRwJ0mSVBDDnSRJUkEMd5IkSQUx3EmSJBXEcCdJklQQw50k\nSVJBDHeSJEkFMdxJkiQVxHAnSZJUEMOdJElSQQx3kiRJBTHcSZIkFcRwJ0mSVBDDnSRJUkEMd5Ik\nSQUx3EmSJBXEcCdJklQQw50kSVJBDHeSJEkFMdxJkiQVxHAnSZJUEMOdJElSQQx3kiRJBTHcSZIk\nFcRwJ0mSVBDDnSRJUkEMd5IkSQXZop2ZI+IQ4FxgB2AD8NnM/FRE7Ax8DtgXeAa4EjgzM4ciYrN6\nnqPrxSwHTsjMB9qpRZIkSW3suYuI7YBvAH+emXsDbwQ+HBFHABcBazJzD2AxcChwYj3rycAhwP6Z\nuSdwN3Bh65sgSZKkYe0clt0NmAdcC5CZ9wK3Aq8BjgGW1uMfAz4DHFfPdzxwUWaur19fABwbEdu2\nUYskSZJoL9ytBFZQh7aIWAjsB1wNkJmrGtruW/8e9XzD7qjr2KuNWiRJkkQb4S4znwaWAOdGxH8B\nCQwAc4AnG5qvr8dTD9ePWM4zwBMjpkuSJKlFLV9QEREvBr4J/F5mXhcRL6Daa7cZsHVD8znAuvr3\ndcC2I5azed1+Hc3ZleoCjpL1Ngw1g/T19e226qmpWQ/Nf240eXobhprZehuGmtl6G4YlWzHWhHau\nln0d8FBmXgeQmQ9ExDepLpbYEBF7ZubKuu3eVOfjQXV17CLghvp1UF1pm02udzUbh8dSXdvtAjRx\n/f39nLb0+qlYzxUdX4nG4+ezLPZnWWZDf/aMNaGdcHcb8NKI+PXMvLG+evZw4HvAfwEfApZExI7A\nScB59XyDwKkRcRmwFjgbuDQzn2hyvb3Mjj131wJHUIVZzSADAwP7wH4dD14DAwPHLlu27LZOr0cb\n6cXPZ0l6sT9L0ov9Sc/Q0FDLM0fE7wF/QrUnrQf4J+AMYBvgYqrboDxNFd4+OmK+c4Dfqef5IfD+\nzFzbciHl2YtqT2bjxSeaAXp6el598LvPv2neLgs7to6H713FDZecccDQ0NDNHVuJxuLnsyz2Z1ns\nT9q8iXFmfgX4yiiTHgfeNs58Z1PtsZMkSdIk8vFjkiRJBTHcSZIkFcRwJ0mSVBDDnSRJUkEMd5Ik\nSQUx3EmSJBXEcCdJklQQw50kSVJBDHeSJEkFMdxJkiQVxHAnSZJUkLaeLSvNJD09PdsBi6ZgVVOx\nDkmSRmW402yyaPFRp980d/6Cjq7k3jtv6ujyJUkaj+FOs8rc+QuYt8vCjq5j3YNrOrp8SZLG4zl3\nkiRJBTHcSZIkFcRwJ0mSVBDDnSRJUkEMd5IkSQUx3EmSJBXEcCdJklQQw50kSVJBDHeSJEkFMdxJ\nkiQVxMePSTPQ0xueBFjU09MzFau7fWho6LGpWJEkqX2GO2kGWv/IfSw+6vRL5s5f0NH1rH1wDbdc\nc8EBwM0dXZEkadIY7qQZau78BczbZWG3y5AkTTOecydJklQQw50kSVJBDHeSJEkFMdxJkiQVxHAn\nSZJUEMOdJElSQQx3kiRJBTHcSZIkFcRwJ0mSVBDDnSRJUkEMd5IkSQUx3EmSJBXEcCdJklQQw50k\nSVJBDHeSJEkFMdxJkiQVxHAnSZJUEMOdJElSQQx3kiRJBTHcSZIkFcRwJ0mSVBDDnSRJUkEMd5Ik\nSQUx3EmSJBXEcCdJklQQw50kSVJBDHeSJEkFMdxJkiQVxHAnSZJUEMOdJElSQQx3kiRJBTHcSZIk\nFcRwJ0mSVBDDnSRJUkEMd5IkSQUx3EmSJBXEcCdJklQQw50kSVJBDHeSJEkFMdxJkiQVxHAnSZJU\nEMOdJElSQQx3kiRJBdminZkjYj7wGeC1wFPAYGb+eUTsDHwO2Bd4BrgSODMzhyJiM+Bc4Oh6McuB\nEzLzgXZqkSRJUvt77pYB92TmblQB740RsSdwEbAmM/cAFgOHAifW85wMHALsn5l7AncDF7ZZhyRJ\nkmgj3EXES4CjgI8CZOb9mXkocA9wDLC0Hv8Y1d694+pZjwcuysz19esLgGMjYttWa5EkSVKlncOy\ni4H7gN+PiPdQHX69CPgBQGauGtF2JdUhWoAAVoyYdgdVyNwLuLWNeiRJkma9dsLdTsCLgMczc/+I\n2A+4ATgPeLKh7XpgTv37nPo1AJn5TEQ8MWL6puwK7NBG3TNBb8NQk6Cvr2+3VU91u4qZp6+vbzdg\nXbfrmEZ6G4aa2XobhprZehuGJVsx1oR2wt1DwBDwaYDM/ElEXAW8Adi6oe0cnvtyWAc8ewg2Ijav\n2zf75bF6lOWX6tpuF1CS/v5+Tlt6fbfLmHH6+/uv6HYN05Sfz7LYn2WZDf3ZM9aEdsLdz4Atge2B\ntSPG3wi8LiL2zMyV9bi9ee6Q63JgEdVePqgO024Assn19jI79txdCxxBFWY1CQYGBvaB/QwqEzQw\nMHDssmXLbut2HdNIL34+S9KL/VmSXuzP1sNdZmZE/CvwIeDsiOilusDiGOCl9fglEbEjcBLV4VqA\nQeDUiLiMKhSeDVyamU80uep76p/ZYDXj7HbVxAwODm5/8LvP73YZM87g4OBdy5Yt8+9wY6vx81mS\n1difJVnNLO7Pdm+F8h7gwIhYDVwFnJWZNwCnAHMj4mfA94G/z8wvAGTmZ4GrqfbwrQA2Bz7QZh2S\nJEmizZsYZ+Zq4LBRxj8EvG2c+c6m2mMnSZKkSeTjxyRJkgpiuJMkSSqI4U6SJKkghjtJkqSCGO4k\nSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIkqSCGO0mSpIIY7iRJkgpiuJMk\nSSqI4U6SJKkghjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIk\nqSCGO0mSpIIY7iRJkgpiuJMkSSqI4U6SJKkghjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKk\nghjuJEmSCmK4kyRJKojhTpIkqSCGO0mSpIIY7iRJkgpiuJMkSSqI4U6SJKkghjtJkqSCGO4kSZIK\nYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIkqSCGO0mSpIIY7iRJkgpiuJMkSSqI\n4U6SJKkghjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIkqSCG\nO0mSpIIY7iRJkgpiuJMkSSqI4U6SJKkghjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghju\nJEmSCmK4kyRJKsgWk7GQiNgRWA5cl5lLImJn4HPAvsAzwJXAmZk5FBGbAecCR9ezLwdOyMwHJqMW\nSZKk2Wyy9tx9ElgPDNWvLwLWZOYewGLgUODEetrJwCHA/pm5J3A3cOEk1SFJkjSrtR3uIuLNwMuA\nS4CeiNgeOAZYCpCZjwGfAY6rZzkeuCgz19evLwCOjYht261FkiRptmsr3EXETlThbAnP7bXbCyAz\nV41oupLqEC1AACtGTLujrmOvdmqRJElS++fcfRL4dGauiojhcLcd8GRDu/XAnPr3OfVrADLzmYh4\nYsT0TdkV2KH1kmeE3oahJkFfX99uq57qdhUzT19f327Aum7XMY30Ngw1s/U2DDWz9TYMS7ZirAkt\nh7uIeAuwO/DeelRPPXwU2Lqh+Rye+3JYBzx7CDYiNq/bN/vlsXqU5Zfq2m4XUJL+/n5OW3p9t8uY\ncfr7+6/odg3TlJ/PstifZZkN/dkz1oR29ty9HdgDuCMiAHasl/dKYENE7JmZK+u2ewO31r8vBxYB\nN9SvA9gAZJPr7WV27Lm7FjiCKsxqEgwMDOwD+xlUJmhgYODYZcuW3dbtOqaRXvx8lqQX+7Mkvdif\nrYe7zHzPyNcR8RFg98z8/Yi4BPgQsKS+TcpJwHl100Hg1Ii4DFgLnA1cmplPNLnqe+qf2WA14+x2\n1cQMDg5uf/C7z+92GTPO4ODgXcuWLfPvcGOr8fNZktXYnyVZzSzuz07dxPgUYG5E/Az4PvD3mfkF\ngMz8LHA1cCPVG7858IEO1SFJkjSrTMpNjAEy8/+M+P0h4G3jtD2bao+dJEmSJpGPH5MkSSqI4U6S\nJKkghjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIkqSCGO0mS\npIIY7iRJkgpiuJMkSSqI4U6SJKkghjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmS\nCmK4kyRJKojhTpIkqSCGO0mSpIIY7iRJkgpiuJMkSSqI4U6SJKkghjtJkqSCGO4kSZIKYriTJEkq\niOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIkqSCGO0mSpIIY7iRJkgpiuJMkSSqI4U6SJKkg\nhjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCrJFtwuQNH09veFJgEU9PT2dXtXt\nQ0NDj3V6JZI0GxjuJI1p/SP3sfio0y+ZO39Bx9ax9sE13HLNBQcAN3dsJZI0ixjuJI1r7vwFzNtl\nYbfLkCQ1yXPuJEmSCmK4kyRJKojhTpIkqSCGO0mSpIIY7iRJkgpiuJMkSSqI4U6SJKkghjtJkqSC\nGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIkqSCGO0mSpIIY7iRJkgpi\nuJMkSSqI4U6SJKkghjtJkqSCGO4kSZIKYriTJEkqyBbtzBwRhwEfB+YBmwMXZuZfRcTOwOeAfYFn\ngCuBMzNzKCI2A84Fjq4Xsxw4ITMfaKcWSZIktbHnLiJ2Bb4OnJ2ZewNHAn8WEQcBFwFrMnMPYDFw\nKHBiPevJwCHA/pm5J3A3cGHrmyBJkqRh7RyW3QAcl5nfBcjMO4DbgAOBY4Cl9fjHgM8Ax9XzHQ9c\nlJnr69cXAMdGxLZt1CJJkiTaOCybmfcD3xh+HRELgVcAP6qnrxrRfCXVIVqAAFaMmHYHVcjcC7i1\n1XokSZI0SRdURMQC4JvAX9ajnmxosh6YU/8+p34NQGY+AzwxYrokSZJa1NYFFQAR8Wqqc+8GMvPc\niHgVsHVDsznAuvr3dcC2I+bfvG6/jubsCuzQVtHTX2/DUJOgr69vt1VPdbsKjaavr283mv83oNt6\nG4aa2XobhprZehuGJVsx1oR2r5Z9NXAVcHJmXjFiZU9HxJ6ZubIetzfPHXJdDiwCbhheDNX5e9nk\nalezcXgs1bXdLqAk/f39nLb0+m6XoVH09/dfselW046fz7LYn2WZDf3ZM9aElsNdRGwD/B3PD3Zk\n5qMR8TXgQ8CSiNgROAk4r24yCJwaEZcBa4GzgUsz84kmV93L7Nhzdy1wBFWY1SQYGBjYB/abiSGi\neAMDA8cuW7bstm7X0aRe/HyWpBf7syS92J9t7bk7Ftgd+EREfGLE+EuBU4CLI+JnwNNU4e0LAJn5\n2Yh4OXAjVer8IdXtUZp1T/0zG6xmnN2umpjBwcHtD373+d0uQ6MYHBy8a9myZTPtb301fj5Lshr7\nsySrmcX92c7VspdSBbmxvG2cec+m2mMnSZKkSeTjxyRJkgpiuJMkSSqI4U6SJKkghjtJkqSCGO4k\nSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKkg7z5aVJkVPT892wKIpWNVUrEOSpK4y\n3Gk6WLT4qNNvmjt/QUdXcu+dN3V0+ZIkTQeGO00Lc+cvYN4uCzu6jnUPruno8iVJmg48506SJKkg\nhjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIkqSCGO0mSpIIY\n7iRJkgpiuJMkSSqI4U6SJKkghjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4\nkyRJKojhTpIkqSCGO0mSpIJs0e0CJM1uT294EmBRT0/PVKzu9qGhocemYkWS1C2GO0ldtf6R+1h8\n1OmXzJ2/oKPrWfvgGm655oIDgJs7uiJJ6jLDnaSumzt/AfN2WdjtMiSpCJ5zJ0mSVBDDnSRJUkEM\nd5IkSQUx3EmSJBXEcCdJklQQw50kSVJBDHeSJEkFMdxJkiQVxHAnSZJUEMOdJElSQQx3kiRJBTHc\nSZIkFcRwJ0mSVBDDnSRJUkEMd5IkSQUx3EmSJBXEcCdJklQQw50kSVJBDHeSJEkFMdxJkiQVxHAn\nSZJUEMOdJElSQQx3kiRJBTHcSZIkFWSLbhcgSVPh6Q1PAizq6elpazl9fX279ff3MzAwsM/g4OD2\nYzS7fWho6LG2ViRJLTLcaVw9PT3bAYs6vJpOL19i/SP3sfio0y+ZO39BW8tZ9RSctvR6YL8rDn73\n+RtNX/vgGm655oIDgJvbWpEktchwp01ZtPio029q9wtxPPfeeVPHli2NNHf+AubtsrDbZUhSRxnu\ntEmd/kJc9+Caji1bkqTZxgsqJEmSCmK4kyRJKoiHZSVpEk3WVblN8IpcSaMy3M1QU3QVK1O0DqkY\nk3VV7ni8IlfSeLoS7iLiNcAA8ALgKeCczPxSN2qZwTp+FSt4JavUCq/KldRNUx7uImJr4ArgjzLz\n8ohYCNwYET/KzP+Y6npmsqn4AvFKVkmSZpZu7Lk7DBjKzMsBMnNVRFwFvAv4X12oR5JmlCk8r2+b\nevh4h9fj+YPSJOpGuFsErGwYtwJ4dRdq6Ygdd93jDdvO3fnoVuff5UU77/jmI9/At779nQ/de9/9\nD426jhfv9cLWK5Q0k03FeX1QnZax3bxd8PxBaWbpRribA6xvGPd4Pb4IW2495/BfP/rsP2xnGbc+\nBL920ML3/toY0x++d1U7i5c0w03VaRnbd3g93d4L2eSzgieimL2QU3Th3qTuHR6nP2fVXuhuhLu1\nwLYN4+YA65qcf1dgh0mtaJLt9tJdNr/rR1+/vdX5t9xyy61euuvOL7/7nvvveOqpp54crc2jD9+3\nzdxdorflIpv06MP3MlTAOkpbj9syu9dT0rbc/4ufsOdrf/eSbXd4UUfX86v/TLaZsxON67n5blhy\n1ueBOVd5LTgcAAAFXklEQVTsf/gpba1j/SP3sdPQz89YsmTJHW0taJo48MADX/6rnt3P72TfjNUv\nrRqrPyd7PaNZ/8h9vG7vOccCt3VsJc+3YqwJ3Qh3y4E/bhi3N3Brk/PfU/9MWzf923UfBD7Y7Tok\nSWrT0m4XoInrxhMqvgtsiIg+gIh4JXA48OUu1CJJklSUnqGhqdi5/3x1oLsQeCHV8e+PZOYVU16I\nJElSYboS7iRJktQZ3TgsK0mSpA4x3EmSJBXEcCdJklQQw50kSVJBDHeSJEkF6cZNjDWKiPggcAJV\n4L4L+J+ZudFdziPihcAngVcBW1I9j/GkzHxgCstVg4h4DTAAvAB4CjgnM780SrvjgbOo+u4B4NTM\nvHEqa1VzJtCnHwD+gOrf08eAD2bmP01lrRpfs305ov1BwL8Cv5+ZX5iaKjURE/h8LgYu4rlbr52d\nmVdOZa3d4J67aSAi3gycArwuM/cErgUuHaP5RVTP5t2H6pl/WwEfn4o6NbqI2Bq4Alha999bgE9F\nxCsa2u1PFczfUrdbCvxDRGw51TVrfBPo07cAfwL8VmYuAs4BvhYRW011zRpds305ov02wMXAL2BK\nnvKmCZrA53MOcDVwXmYuBN4P/GFEFJ99it/AGeJ44IuZeX/9+tPAqyJij1Hafh74X5k5lJkbqILg\n/lNUp0Z3GDCUmZcDZOYq4CrgXQ3tjgO+VU+nbt8DvH7qSlWTmu3TnwG/m5m/rF9/i+rZ17tPVaHa\npGb7ctjHgG8Ad1J9PjX9NNunRwP3ZubX6nb/kpmHZeYzU1ptF3hYdnoI4JvDLzLzsYhYA+xL9eXB\niGlXPTtTRA/wP4B/nqI6NbpFwMqGcSuAVzeMC6DxEOxKqn7+x86UphY11aeZ+dOGNm8F1gBFPDi+\nEM1+PomI/0YVHF5L9R9n99xNT8326auA1RFxMXAwcC/VzpEbOl9idxnupkhEvJPq/IBGD9fD9Q3j\n1wNzxlleD/BXwIuo/qep7pnDxv33OBv332jt1gPbdaguta7ZPn1WRLye6rD7OzLz6c6Vpglqqi8j\nYlvgb4HjM/PJiJii8tSCZj+fOwFvoDpt4n31Oc9XRsQepZ+nbribIpn5VeCro02LiFuAbRtGzwHW\njdF+O+BLVCeS/mZmjtpOU2YtzfXfOjYOcmP2s7qq2T4Fnr1Q5lzg7Zn5nQ7Xpolpti8/Bnw9M28e\nMc7DstNTs336EPCDzPw+QGZ+MSLOAX6D6hSKYnnO3fSwnGo3MwARMRd4KfCTxob1iaTfoPojfmNm\nPjRVRWpMy4G9GsbtDdw6SrtndwfUe18XAT/uaHVqRbN9SkScAHwEONRgNy0125dvBd4TEXdGxJ3A\nQcB5EXH+FNSoiWm2T1dS7b0baQjY0KG6pg3D3fQwCLw3Il5avz4L+JfMvHOUth8BHgX66gsq1H3f\nBTZERB9ARLwSOBz4ckO7LwNvGnFF1/uo/gfqOZPTT1N9GhH7AH8BHJaZt091kWpKU32ZmS/LzN3r\n4cuA/weckZlnTHXB2qRm/829DNgrIo6o2x0DbAP8+9SV2h09Q0OeLzodRMRpwIlUgXsF8AfDV+BF\nxE+Bt2bmTyPiceA+qoA37PHMfNVU16zn1P+4XMhz91L6SGZeERGfAB7NzI/X7d4JfJjqFja/BE7O\nzNu6VLbGsYk+XZeZn4iIzwDvpOrLkU7PzG9PbcUaS7Ofz4Z5vgssy8wvTm21asYE/s19I9X56dtQ\n3Vv0jzLzX7tU9pQx3EmSJBXEw7KSJEkFMdxJkiQVxHAnSZJUEMOdJElSQQx3kiRJBTHcSZIkFcRw\nJ0mSVBDDnSRJUkEMd5IkSQX5//ti8Cv/zJkIAAAAAElFTkSuQmCC\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde5342d050>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "def convert_to_z12(locus):\n freq = af[locus.name]\n trans = {\"%s/%s\" % (freq[\"A\"],freq[\"A\"]): 0,\n \"%s/%s\" % (freq[\"a\"],freq[\"a\"]): 2,\n \"%s/%s\" % (freq[\"A\"],freq[\"a\"]): 1,\n \"%s/%s\" % (freq[\"a\"],freq[\"A\"]): 1,\n \"?/?\":-1}\n return locus.apply(lambda x: trans[x])\nz12 = genotypes.apply(convert_to_z12)",
"execution_count": 15,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "def center_and_standardize_value(val, u, var):\n if val == -1:\n return 0.0\n return (val-u)/np.sqrt(var)\n\ndef center_and_standardize(snp):\n maf = af.ix[\"q\",snp.name]\n u = np.mean([x for x in snp if x != -1])\n var = np.sqrt(maf*(1-maf))\n return snp.apply(center_and_standardize_value, args=(u, var))",
"execution_count": 16,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "pca_std = z12.apply(center_and_standardize)\npca_std.apply(np.mean)",
"execution_count": 17,
"outputs": [
{
"execution_count": 17,
"output_type": "execute_result",
"data": {
"text/plain": "0-10037-01-257 3.855437e-17\n0-10040-02-394 -1.713527e-17\n0-10044-01-392 1.285146e-16\n0-10048-01-60 4.283819e-17\n0-10051-02-166 1.427940e-17\n0-10054-01-402 -1.427940e-17\n0-10067-03-111 -5.711758e-18\n0-10079-02-168 5.140582e-17\n0-10112-01-169 2.998673e-17\n0-10113-01-119 -8.567637e-17\n0-10116-01-165 -7.139698e-18\n0-10151-01-86 5.140582e-17\n0-10162-01-255 3.569849e-18\n0-10207-01-280 -6.282934e-17\n0-10210-01-41 0.000000e+00\n...\nUMN-CL299Contig1-01-46 1.142352e-17\nUMN-CL306Contig1-04-261 -8.567637e-18\nUMN-CL307Contig1-04-143 3.712643e-17\nUMN-CL319Contig1-03-131 1.999115e-17\nUMN-CL326Contig1-05-421 -4.569407e-17\nUMN-CL339Contig1-05-39 -1.713527e-17\nUMN-CL34Contig1-03-89 -9.709989e-17\nUMN-CL353Contig1-04-64 1.320844e-17\nUMN-CL362Contig1-07-133 3.141467e-17\nUMN-CL363Contig1-01-233 -3.284261e-17\nUMN-CL379Contig1-12-117 -1.142352e-17\nUMN-CL424Contig1-03-94 -5.140582e-17\nUMN-CL54Contig1-07-88 -5.426170e-17\nUMN-CL91Contig1-02-246 7.996462e-17\nUMN-CL97Contig 4.283819e-17\nLength: 3082, dtype: float64"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "r = ro.r",
"execution_count": 18,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "prcomp = r('prcomp')\nsummary = r('summary')",
"execution_count": 19,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "prcomp_res = prcomp(pca_std, scale=False, center=False)",
"execution_count": 20,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "print summary(prcomp_res)",
"execution_count": 21,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Importance of components:\n PC1 PC2 PC3 PC4 PC5 PC6 PC7\nStandard deviation 6.07193 4.20751 3.79014 3.20076 3.08532 3.04595 2.96424\nProportion of Variance 0.01789 0.00859 0.00697 0.00497 0.00462 0.00450 0.00426\nCumulative Proportion 0.01789 0.02649 0.03346 0.03843 0.04305 0.04755 0.05182\n PC8 PC9 PC10 PC11 PC12 PC13 PC14\nStandard deviation 2.93988 2.89841 2.88317 2.83414 2.82524 2.80280 2.79039\nProportion of Variance 0.00419 0.00408 0.00403 0.00390 0.00387 0.00381 0.00378\nCumulative Proportion 0.05601 0.06009 0.06412 0.06802 0.07190 0.07571 0.07949\n PC15 PC16 PC17 PC18 PC19 PC20 PC21\nStandard deviation 2.75606 2.74385 2.73991 2.72647 2.71721 2.70782 2.6857\nProportion of Variance 0.00369 0.00365 0.00364 0.00361 0.00358 0.00356 0.0035\nCumulative Proportion 0.08317 0.08683 0.09047 0.09408 0.09766 0.10122 0.1047\n PC22 PC23 PC24 PC25 PC26 PC27 PC28\nStandard deviation 2.67354 2.66834 2.66206 2.65313 2.64125 2.63434 2.62303\nProportion of Variance 0.00347 0.00346 0.00344 0.00342 0.00339 0.00337 0.00334\nCumulative Proportion 0.10819 0.11165 0.11509 0.11850 0.12189 0.12526 0.12860\n PC29 PC30 PC31 PC32 PC33 PC34 PC35\nStandard deviation 2.62150 2.6056 2.60081 2.59788 2.58517 2.58116 2.57338\nProportion of Variance 0.00334 0.0033 0.00328 0.00328 0.00324 0.00323 0.00321\nCumulative Proportion 0.13193 0.1352 0.13851 0.14179 0.14503 0.14826 0.15148\n PC36 PC37 PC38 PC39 PC40 PC41 PC42\nStandard deviation 2.56472 2.56032 2.55498 2.54940 2.54408 2.54019 2.5262\nProportion of Variance 0.00319 0.00318 0.00317 0.00315 0.00314 0.00313 0.0031\nCumulative Proportion 0.15467 0.15785 0.16102 0.16417 0.16731 0.17045 0.1735\n PC43 PC44 PC45 PC46 PC47 PC48 PC49\nStandard deviation 2.52336 2.51833 2.50697 2.50208 2.50140 2.49100 2.4870\nProportion of Variance 0.00309 0.00308 0.00305 0.00304 0.00304 0.00301 0.0030\nCumulative Proportion 0.17663 0.17971 0.18276 0.18580 0.18884 0.19185 0.1948\n PC50 PC51 PC52 PC53 PC54 PC55 PC56\nStandard deviation 2.48189 2.47526 2.47445 2.46884 2.46450 2.46135 2.44698\nProportion of Variance 0.00299 0.00297 0.00297 0.00296 0.00295 0.00294 0.00291\nCumulative Proportion 0.19784 0.20081 0.20379 0.20674 0.20969 0.21263 0.21554\n PC57 PC58 PC59 PC60 PC61 PC62 PC63\nStandard deviation 2.4446 2.43970 2.43748 2.43447 2.42718 2.42174 2.41902\nProportion of Variance 0.0029 0.00289 0.00288 0.00288 0.00286 0.00285 0.00284\nCumulative Proportion 0.2184 0.22133 0.22421 0.22709 0.22995 0.23279 0.23563\n PC64 PC65 PC66 PC67 PC68 PC69 PC70\nStandard deviation 2.41498 2.4037 2.39800 2.39696 2.39276 2.38981 2.38419\nProportion of Variance 0.00283 0.0028 0.00279 0.00279 0.00278 0.00277 0.00276\nCumulative Proportion 0.23846 0.2413 0.24406 0.24685 0.24963 0.25240 0.25516\n PC71 PC72 PC73 PC74 PC75 PC76 PC77\nStandard deviation 2.38277 2.37708 2.37680 2.36945 2.36841 2.36540 2.36127\nProportion of Variance 0.00276 0.00274 0.00274 0.00272 0.00272 0.00272 0.00271\nCumulative Proportion 0.25791 0.26066 0.26340 0.26612 0.26884 0.27156 0.27427\n PC78 PC79 PC80 PC81 PC82 PC83 PC84\nStandard deviation 2.3586 2.35567 2.34959 2.34706 2.34345 2.34086 2.33637\nProportion of Variance 0.0027 0.00269 0.00268 0.00267 0.00267 0.00266 0.00265\nCumulative Proportion 0.2770 0.27966 0.28234 0.28501 0.28768 0.29034 0.29299\n PC85 PC86 PC87 PC88 PC89 PC90 PC91\nStandard deviation 2.32823 2.32634 2.32191 2.3167 2.3134 2.31117 2.30806\nProportion of Variance 0.00263 0.00263 0.00262 0.0026 0.0026 0.00259 0.00259\nCumulative Proportion 0.29562 0.29824 0.30086 0.3035 0.3061 0.30866 0.31124\n PC92 PC93 PC94 PC95 PC96 PC97 PC98\nStandard deviation 2.30513 2.29617 2.29411 2.28684 2.28492 2.28241 2.27992\nProportion of Variance 0.00258 0.00256 0.00255 0.00254 0.00253 0.00253 0.00252\nCumulative Proportion 0.31382 0.31638 0.31893 0.32147 0.32401 0.32653 0.32906\n PC99 PC100 PC101 PC102 PC103 PC104 PC105\nStandard deviation 2.27338 2.27275 2.2698 2.26511 2.26131 2.25865 2.25193\nProportion of Variance 0.00251 0.00251 0.0025 0.00249 0.00248 0.00248 0.00246\nCumulative Proportion 0.33156 0.33407 0.3366 0.33906 0.34154 0.34402 0.34648\n PC106 PC107 PC108 PC109 PC110 PC111 PC112\nStandard deviation 2.24812 2.24520 2.24300 2.24108 2.23781 2.23475 2.23229\nProportion of Variance 0.00245 0.00245 0.00244 0.00244 0.00243 0.00242 0.00242\nCumulative Proportion 0.34893 0.35138 0.35382 0.35626 0.35869 0.36111 0.36353\n PC113 PC114 PC115 PC116 PC117 PC118 PC119\nStandard deviation 2.22785 2.2223 2.2215 2.21866 2.21437 2.21244 2.20828\nProportion of Variance 0.00241 0.0024 0.0024 0.00239 0.00238 0.00238 0.00237\nCumulative Proportion 0.36594 0.3683 0.3707 0.37312 0.37550 0.37788 0.38025\n PC120 PC121 PC122 PC123 PC124 PC125 PC126\nStandard deviation 2.20470 2.20139 2.19967 2.19576 2.19273 2.18979 2.18800\nProportion of Variance 0.00236 0.00235 0.00235 0.00234 0.00233 0.00233 0.00232\nCumulative Proportion 0.38260 0.38496 0.38730 0.38964 0.39198 0.39431 0.39663\n PC127 PC128 PC129 PC130 PC131 PC132 PC133\nStandard deviation 2.18583 2.18415 2.1767 2.1755 2.16959 2.16859 2.16344\nProportion of Variance 0.00232 0.00232 0.0023 0.0023 0.00228 0.00228 0.00227\nCumulative Proportion 0.39895 0.40126 0.4036 0.4059 0.40814 0.41043 0.41270\n PC134 PC135 PC136 PC137 PC138 PC139 PC140\nStandard deviation 2.16009 2.15877 2.15304 2.14991 2.14825 2.14372 2.14069\nProportion of Variance 0.00226 0.00226 0.00225 0.00224 0.00224 0.00223 0.00222\nCumulative Proportion 0.41496 0.41722 0.41947 0.42172 0.42396 0.42619 0.42841\n PC141 PC142 PC143 PC144 PC145 PC146 PC147\nStandard deviation 2.13764 2.13262 2.1310 2.1293 2.1272 2.11931 2.11776\nProportion of Variance 0.00222 0.00221 0.0022 0.0022 0.0022 0.00218 0.00218\nCumulative Proportion 0.43063 0.43284 0.4350 0.4372 0.4394 0.44162 0.44379\n PC148 PC149 PC150 PC151 PC152 PC153 PC154\nStandard deviation 2.11641 2.11504 2.11306 2.10972 2.10262 2.09904 2.09536\nProportion of Variance 0.00217 0.00217 0.00217 0.00216 0.00215 0.00214 0.00213\nCumulative Proportion 0.44597 0.44814 0.45031 0.45247 0.45461 0.45675 0.45888\n PC155 PC156 PC157 PC158 PC159 PC160 PC161\nStandard deviation 2.09299 2.09106 2.08920 2.08685 2.08452 2.0790 2.07592\nProportion of Variance 0.00213 0.00212 0.00212 0.00211 0.00211 0.0021 0.00209\nCumulative Proportion 0.46101 0.46313 0.46525 0.46736 0.46947 0.4716 0.47366\n PC162 PC163 PC164 PC165 PC166 PC167 PC168\nStandard deviation 2.07367 2.07173 2.06784 2.06548 2.06158 2.06041 2.05555\nProportion of Variance 0.00209 0.00208 0.00208 0.00207 0.00206 0.00206 0.00205\nCumulative Proportion 0.47575 0.47783 0.47991 0.48198 0.48404 0.48610 0.48815\n PC169 PC170 PC171 PC172 PC173 PC174 PC175\nStandard deviation 2.05354 2.05144 2.04852 2.04580 2.04421 2.04231 2.04047\nProportion of Variance 0.00205 0.00204 0.00204 0.00203 0.00203 0.00202 0.00202\nCumulative Proportion 0.49020 0.49224 0.49428 0.49631 0.49834 0.50036 0.50238\n PC176 PC177 PC178 PC179 PC180 PC181 PC182\nStandard deviation 2.03752 2.03654 2.0317 2.0304 2.02531 2.02400 2.02031\nProportion of Variance 0.00201 0.00201 0.0020 0.0020 0.00199 0.00199 0.00198\nCumulative Proportion 0.50440 0.50641 0.5084 0.5104 0.51240 0.51439 0.51637\n PC183 PC184 PC185 PC186 PC187 PC188 PC189\nStandard deviation 2.01939 2.01214 2.00975 2.00705 2.00602 2.00300 1.99826\nProportion of Variance 0.00198 0.00197 0.00196 0.00196 0.00195 0.00195 0.00194\nCumulative Proportion 0.51835 0.52032 0.52228 0.52423 0.52619 0.52813 0.53007\n PC190 PC191 PC192 PC193 PC194 PC195 PC196\nStandard deviation 1.99701 1.99326 1.99100 1.98977 1.98761 1.98118 1.9799\nProportion of Variance 0.00194 0.00193 0.00192 0.00192 0.00192 0.00191 0.0019\nCumulative Proportion 0.53201 0.53394 0.53586 0.53778 0.53970 0.54160 0.5435\n PC197 PC198 PC199 PC200 PC201 PC202 PC203\nStandard deviation 1.9782 1.97523 1.97181 1.96896 1.96787 1.96575 1.96473\nProportion of Variance 0.0019 0.00189 0.00189 0.00188 0.00188 0.00188 0.00187\nCumulative Proportion 0.5454 0.54730 0.54919 0.55107 0.55295 0.55482 0.55670\n PC204 PC205 PC206 PC207 PC208 PC209 PC210\nStandard deviation 1.96149 1.95933 1.95472 1.95165 1.95119 1.94478 1.94270\nProportion of Variance 0.00187 0.00186 0.00185 0.00185 0.00185 0.00184 0.00183\nCumulative Proportion 0.55856 0.56043 0.56228 0.56413 0.56598 0.56781 0.56964\n PC211 PC212 PC213 PC214 PC215 PC216 PC217\nStandard deviation 1.93959 1.93909 1.93483 1.93262 1.92923 1.9270 1.9255\nProportion of Variance 0.00183 0.00182 0.00182 0.00181 0.00181 0.0018 0.0018\nCumulative Proportion 0.57147 0.57329 0.57511 0.57692 0.57873 0.5805 0.5823\n PC218 PC219 PC220 PC221 PC222 PC223 PC224\nStandard deviation 1.92204 1.91830 1.91603 1.91451 1.91171 1.90946 1.90506\nProportion of Variance 0.00179 0.00179 0.00178 0.00178 0.00177 0.00177 0.00176\nCumulative Proportion 0.58413 0.58591 0.58769 0.58947 0.59125 0.59302 0.59478\n PC225 PC226 PC227 PC228 PC229 PC230 PC231\nStandard deviation 1.90342 1.90091 1.89775 1.89344 1.89219 1.88924 1.88755\nProportion of Variance 0.00176 0.00175 0.00175 0.00174 0.00174 0.00173 0.00173\nCumulative Proportion 0.59654 0.59829 0.60004 0.60178 0.60351 0.60525 0.60698\n PC232 PC233 PC234 PC235 PC236 PC237 PC238\nStandard deviation 1.88361 1.88316 1.88038 1.87986 1.87657 1.8715 1.8711\nProportion of Variance 0.00172 0.00172 0.00172 0.00172 0.00171 0.0017 0.0017\nCumulative Proportion 0.60870 0.61042 0.61214 0.61385 0.61556 0.6173 0.6190\n PC239 PC240 PC241 PC242 PC243 PC244 PC245\nStandard deviation 1.86705 1.86286 1.86179 1.85717 1.85505 1.85346 1.85246\nProportion of Variance 0.00169 0.00168 0.00168 0.00167 0.00167 0.00167 0.00167\nCumulative Proportion 0.62065 0.62233 0.62402 0.62569 0.62736 0.62903 0.63069\n PC246 PC247 PC248 PC249 PC250 PC251 PC252\nStandard deviation 1.84834 1.84734 1.84310 1.84122 1.83682 1.83593 1.83305\nProportion of Variance 0.00166 0.00166 0.00165 0.00165 0.00164 0.00164 0.00163\nCumulative Proportion 0.63235 0.63401 0.63566 0.63730 0.63894 0.64058 0.64221\n PC253 PC254 PC255 PC256 PC257 PC258 PC259\nStandard deviation 1.83005 1.82754 1.82416 1.82296 1.82092 1.8185 1.8146\nProportion of Variance 0.00163 0.00162 0.00162 0.00161 0.00161 0.0016 0.0016\nCumulative Proportion 0.64383 0.64545 0.64707 0.64868 0.65029 0.6519 0.6535\n PC260 PC261 PC262 PC263 PC264 PC265 PC266\nStandard deviation 1.8130 1.81103 1.80835 1.80698 1.80449 1.80089 1.79898\nProportion of Variance 0.0016 0.00159 0.00159 0.00158 0.00158 0.00157 0.00157\nCumulative Proportion 0.6551 0.65668 0.65827 0.65985 0.66143 0.66301 0.66458\n PC267 PC268 PC269 PC270 PC271 PC272 PC273\nStandard deviation 1.79647 1.79428 1.79295 1.78709 1.78582 1.78422 1.78366\nProportion of Variance 0.00157 0.00156 0.00156 0.00155 0.00155 0.00155 0.00154\nCumulative Proportion 0.66614 0.66771 0.66927 0.67082 0.67236 0.67391 0.67545\n PC274 PC275 PC276 PC277 PC278 PC279 PC280\nStandard deviation 1.77856 1.77821 1.77479 1.77156 1.76977 1.76688 1.76339\nProportion of Variance 0.00154 0.00153 0.00153 0.00152 0.00152 0.00152 0.00151\nCumulative Proportion 0.67699 0.67852 0.68005 0.68158 0.68310 0.68461 0.68612\n PC281 PC282 PC283 PC284 PC285 PC286 PC287\nStandard deviation 1.76163 1.7589 1.7581 1.7571 1.75062 1.74938 1.74840\nProportion of Variance 0.00151 0.0015 0.0015 0.0015 0.00149 0.00149 0.00148\nCumulative Proportion 0.68763 0.6891 0.6906 0.6921 0.69361 0.69510 0.69658\n PC288 PC289 PC290 PC291 PC292 PC293 PC294\nStandard deviation 1.74700 1.74474 1.74364 1.73735 1.73661 1.73448 1.72962\nProportion of Variance 0.00148 0.00148 0.00148 0.00146 0.00146 0.00146 0.00145\nCumulative Proportion 0.69806 0.69954 0.70102 0.70248 0.70395 0.70541 0.70686\n PC295 PC296 PC297 PC298 PC299 PC300 PC301\nStandard deviation 1.72735 1.72641 1.72240 1.72099 1.71936 1.71630 1.71387\nProportion of Variance 0.00145 0.00145 0.00144 0.00144 0.00143 0.00143 0.00143\nCumulative Proportion 0.70831 0.70975 0.71119 0.71263 0.71406 0.71549 0.71692\n PC302 PC303 PC304 PC305 PC306 PC307 PC308\nStandard deviation 1.71190 1.70859 1.70708 1.70306 1.70230 1.7006 1.6983\nProportion of Variance 0.00142 0.00142 0.00141 0.00141 0.00141 0.0014 0.0014\nCumulative Proportion 0.71834 0.71976 0.72117 0.72258 0.72399 0.7254 0.7268\n PC309 PC310 PC311 PC312 PC313 PC314 PC315\nStandard deviation 1.69395 1.69284 1.68963 1.68870 1.68390 1.68123 1.67894\nProportion of Variance 0.00139 0.00139 0.00139 0.00138 0.00138 0.00137 0.00137\nCumulative Proportion 0.72818 0.72957 0.73096 0.73234 0.73372 0.73509 0.73646\n PC316 PC317 PC318 PC319 PC320 PC321 PC322\nStandard deviation 1.67650 1.67284 1.67028 1.66885 1.66680 1.66354 1.66156\nProportion of Variance 0.00136 0.00136 0.00135 0.00135 0.00135 0.00134 0.00134\nCumulative Proportion 0.73782 0.73918 0.74054 0.74189 0.74324 0.74458 0.74592\n PC323 PC324 PC325 PC326 PC327 PC328 PC329\nStandard deviation 1.66040 1.65961 1.65717 1.65438 1.65296 1.64908 1.64713\nProportion of Variance 0.00134 0.00134 0.00133 0.00133 0.00133 0.00132 0.00132\nCumulative Proportion 0.74726 0.74859 0.74993 0.75126 0.75258 0.75390 0.75522\n PC330 PC331 PC332 PC333 PC334 PC335 PC336\nStandard deviation 1.64344 1.64103 1.64053 1.6388 1.6347 1.63295 1.62973\nProportion of Variance 0.00131 0.00131 0.00131 0.0013 0.0013 0.00129 0.00129\nCumulative Proportion 0.75653 0.75784 0.75914 0.7604 0.7617 0.76304 0.76433\n PC337 PC338 PC339 PC340 PC341 PC342 PC343\nStandard deviation 1.62656 1.62576 1.62381 1.62108 1.61565 1.61364 1.61072\nProportion of Variance 0.00128 0.00128 0.00128 0.00128 0.00127 0.00126 0.00126\nCumulative Proportion 0.76561 0.76689 0.76817 0.76945 0.77072 0.77198 0.77324\n PC344 PC345 PC346 PC347 PC348 PC349 PC350\nStandard deviation 1.60914 1.60810 1.60584 1.60275 1.60121 1.59932 1.59750\nProportion of Variance 0.00126 0.00126 0.00125 0.00125 0.00124 0.00124 0.00124\nCumulative Proportion 0.77449 0.77575 0.77700 0.77825 0.77949 0.78073 0.78197\n PC351 PC352 PC353 PC354 PC355 PC356 PC357\nStandard deviation 1.59305 1.59113 1.58959 1.58868 1.58643 1.58416 1.58156\nProportion of Variance 0.00123 0.00123 0.00123 0.00122 0.00122 0.00122 0.00121\nCumulative Proportion 0.78320 0.78443 0.78566 0.78688 0.78811 0.78932 0.79054\n PC358 PC359 PC360 PC361 PC362 PC363 PC364\nStandard deviation 1.57974 1.57693 1.57607 1.5737 1.5707 1.56897 1.56513\nProportion of Variance 0.00121 0.00121 0.00121 0.0012 0.0012 0.00119 0.00119\nCumulative Proportion 0.79175 0.79296 0.79416 0.7954 0.7966 0.79776 0.79894\n PC365 PC366 PC367 PC368 PC369 PC370 PC371\nStandard deviation 1.56265 1.56049 1.55918 1.55815 1.55296 1.55251 1.55033\nProportion of Variance 0.00119 0.00118 0.00118 0.00118 0.00117 0.00117 0.00117\nCumulative Proportion 0.80013 0.80131 0.80249 0.80367 0.80484 0.80601 0.80718\n PC372 PC373 PC374 PC375 PC376 PC377 PC378\nStandard deviation 1.54932 1.54672 1.54415 1.54243 1.53930 1.53740 1.53640\nProportion of Variance 0.00117 0.00116 0.00116 0.00115 0.00115 0.00115 0.00115\nCumulative Proportion 0.80834 0.80950 0.81066 0.81181 0.81296 0.81411 0.81526\n PC379 PC380 PC381 PC382 PC383 PC384 PC385\nStandard deviation 1.53490 1.53240 1.52809 1.52498 1.52316 1.52098 1.51708\nProportion of Variance 0.00114 0.00114 0.00113 0.00113 0.00113 0.00112 0.00112\nCumulative Proportion 0.81640 0.81754 0.81867 0.81980 0.82093 0.82205 0.82317\n PC386 PC387 PC388 PC389 PC390 PC391 PC392\nStandard deviation 1.51562 1.51452 1.51189 1.50970 1.5064 1.5035 1.50154\nProportion of Variance 0.00111 0.00111 0.00111 0.00111 0.0011 0.0011 0.00109\nCumulative Proportion 0.82428 0.82540 0.82651 0.82761 0.8287 0.8298 0.83090\n PC393 PC394 PC395 PC396 PC397 PC398 PC399\nStandard deviation 1.49855 1.49655 1.49413 1.49161 1.49063 1.48747 1.48468\nProportion of Variance 0.00109 0.00109 0.00108 0.00108 0.00108 0.00107 0.00107\nCumulative Proportion 0.83199 0.83308 0.83417 0.83525 0.83632 0.83740 0.83847\n PC400 PC401 PC402 PC403 PC404 PC405 PC406\nStandard deviation 1.48328 1.48237 1.48038 1.47582 1.47461 1.47215 1.47019\nProportion of Variance 0.00107 0.00107 0.00106 0.00106 0.00106 0.00105 0.00105\nCumulative Proportion 0.83953 0.84060 0.84167 0.84272 0.84378 0.84483 0.84588\n PC407 PC408 PC409 PC410 PC411 PC412 PC413\nStandard deviation 1.46635 1.46279 1.46140 1.45998 1.45842 1.45645 1.45505\nProportion of Variance 0.00104 0.00104 0.00104 0.00103 0.00103 0.00103 0.00103\nCumulative Proportion 0.84692 0.84796 0.84900 0.85003 0.85106 0.85209 0.85312\n PC414 PC415 PC416 PC417 PC418 PC419 PC420\nStandard deviation 1.45158 1.45039 1.44737 1.44510 1.44358 1.44116 1.4384\nProportion of Variance 0.00102 0.00102 0.00102 0.00101 0.00101 0.00101 0.0010\nCumulative Proportion 0.85414 0.85516 0.85618 0.85719 0.85821 0.85921 0.8602\n PC421 PC422 PC423 PC424 PC425 PC426 PC427\nStandard deviation 1.4356 1.4332 1.43039 1.42888 1.42843 1.42486 1.42333\nProportion of Variance 0.0010 0.0010 0.00099 0.00099 0.00099 0.00099 0.00098\nCumulative Proportion 0.8612 0.8622 0.86321 0.86420 0.86519 0.86618 0.86716\n PC428 PC429 PC430 PC431 PC432 PC433 PC434\nStandard deviation 1.41960 1.41679 1.41491 1.41379 1.41242 1.40943 1.40694\nProportion of Variance 0.00098 0.00097 0.00097 0.00097 0.00097 0.00096 0.00096\nCumulative Proportion 0.86814 0.86911 0.87008 0.87105 0.87202 0.87299 0.87395\n PC435 PC436 PC437 PC438 PC439 PC440 PC441\nStandard deviation 1.40394 1.40279 1.40006 1.39811 1.39599 1.39309 1.39174\nProportion of Variance 0.00096 0.00096 0.00095 0.00095 0.00095 0.00094 0.00094\nCumulative Proportion 0.87490 0.87586 0.87681 0.87776 0.87870 0.87965 0.88059\n PC442 PC443 PC444 PC445 PC446 PC447 PC448\nStandard deviation 1.38968 1.38532 1.38342 1.38164 1.37657 1.37595 1.37217\nProportion of Variance 0.00094 0.00093 0.00093 0.00093 0.00092 0.00092 0.00091\nCumulative Proportion 0.88152 0.88245 0.88338 0.88431 0.88523 0.88615 0.88706\n PC449 PC450 PC451 PC452 PC453 PC454 PC455\nStandard deviation 1.36971 1.36850 1.3655 1.3628 1.3620 1.3599 1.35618\nProportion of Variance 0.00091 0.00091 0.0009 0.0009 0.0009 0.0009 0.00089\nCumulative Proportion 0.88797 0.88888 0.8898 0.8907 0.8916 0.8925 0.89338\n PC456 PC457 PC458 PC459 PC460 PC461 PC462\nStandard deviation 1.35263 1.35196 1.34972 1.34764 1.34580 1.34332 1.34147\nProportion of Variance 0.00089 0.00089 0.00088 0.00088 0.00088 0.00088 0.00087\nCumulative Proportion 0.89427 0.89515 0.89604 0.89692 0.89780 0.89867 0.89955\n PC463 PC464 PC465 PC466 PC467 PC468 PC469\nStandard deviation 1.33750 1.33721 1.33454 1.32991 1.32979 1.32854 1.32668\nProportion of Variance 0.00087 0.00087 0.00086 0.00086 0.00086 0.00086 0.00085\nCumulative Proportion 0.90042 0.90128 0.90215 0.90301 0.90386 0.90472 0.90558\n PC470 PC471 PC472 PC473 PC474 PC475 PC476\nStandard deviation 1.32410 1.32119 1.31975 1.31701 1.31490 1.31164 1.30886\nProportion of Variance 0.00085 0.00085 0.00085 0.00084 0.00084 0.00083 0.00083\nCumulative Proportion 0.90643 0.90727 0.90812 0.90896 0.90980 0.91063 0.91147\n PC477 PC478 PC479 PC480 PC481 PC482 PC483\nStandard deviation 1.30854 1.30704 1.30369 1.29922 1.29889 1.29565 1.29523\nProportion of Variance 0.00083 0.00083 0.00082 0.00082 0.00082 0.00081 0.00081\nCumulative Proportion 0.91230 0.91313 0.91395 0.91477 0.91559 0.91640 0.91722\n PC484 PC485 PC486 PC487 PC488 PC489 PC490\nStandard deviation 1.29192 1.29008 1.2877 1.2833 1.27978 1.27882 1.27725\nProportion of Variance 0.00081 0.00081 0.0008 0.0008 0.00079 0.00079 0.00079\nCumulative Proportion 0.91803 0.91884 0.9196 0.9204 0.92123 0.92203 0.92282\n PC491 PC492 PC493 PC494 PC495 PC496 PC497\nStandard deviation 1.27330 1.27133 1.26837 1.26798 1.26374 1.26227 1.25829\nProportion of Variance 0.00079 0.00078 0.00078 0.00078 0.00078 0.00077 0.00077\nCumulative Proportion 0.92361 0.92439 0.92517 0.92595 0.92673 0.92750 0.92827\n PC498 PC499 PC500 PC501 PC502 PC503 PC504\nStandard deviation 1.25653 1.25535 1.25320 1.24898 1.24658 1.24500 1.24375\nProportion of Variance 0.00077 0.00076 0.00076 0.00076 0.00075 0.00075 0.00075\nCumulative Proportion 0.92904 0.92980 0.93056 0.93132 0.93207 0.93283 0.93358\n PC505 PC506 PC507 PC508 PC509 PC510 PC511\nStandard deviation 1.24177 1.23858 1.23782 1.23572 1.23244 1.23058 1.22851\nProportion of Variance 0.00075 0.00074 0.00074 0.00074 0.00074 0.00073 0.00073\nCumulative Proportion 0.93433 0.93507 0.93581 0.93656 0.93729 0.93803 0.93876\n PC512 PC513 PC514 PC515 PC516 PC517 PC518\nStandard deviation 1.22669 1.22394 1.22254 1.21792 1.21618 1.21275 1.21253\nProportion of Variance 0.00073 0.00073 0.00073 0.00072 0.00072 0.00071 0.00071\nCumulative Proportion 0.93949 0.94022 0.94094 0.94166 0.94238 0.94309 0.94381\n PC519 PC520 PC521 PC522 PC523 PC524 PC525\nStandard deviation 1.21019 1.20742 1.20729 1.2028 1.2001 1.1982 1.19533\nProportion of Variance 0.00071 0.00071 0.00071 0.0007 0.0007 0.0007 0.00069\nCumulative Proportion 0.94452 0.94523 0.94593 0.9466 0.9473 0.9480 0.94872\n PC526 PC527 PC528 PC529 PC530 PC531 PC532\nStandard deviation 1.19195 1.18793 1.18662 1.18435 1.18200 1.17824 1.17749\nProportion of Variance 0.00069 0.00068 0.00068 0.00068 0.00068 0.00067 0.00067\nCumulative Proportion 0.94941 0.95010 0.95078 0.95146 0.95214 0.95282 0.95349\n PC533 PC534 PC535 PC536 PC537 PC538 PC539\nStandard deviation 1.17355 1.17108 1.16862 1.16720 1.16460 1.16294 1.15917\nProportion of Variance 0.00067 0.00067 0.00066 0.00066 0.00066 0.00066 0.00065\nCumulative Proportion 0.95416 0.95482 0.95549 0.95615 0.95680 0.95746 0.95811\n PC540 PC541 PC542 PC543 PC544 PC545 PC546\nStandard deviation 1.15770 1.15405 1.15218 1.14854 1.14765 1.14146 1.13728\nProportion of Variance 0.00065 0.00065 0.00064 0.00064 0.00064 0.00063 0.00063\nCumulative Proportion 0.95876 0.95941 0.96005 0.96069 0.96133 0.96197 0.96259\n PC547 PC548 PC549 PC550 PC551 PC552 PC553\nStandard deviation 1.13477 1.13328 1.12947 1.12777 1.12517 1.12139 1.11832\nProportion of Variance 0.00062 0.00062 0.00062 0.00062 0.00061 0.00061 0.00061\nCumulative Proportion 0.96322 0.96384 0.96446 0.96508 0.96569 0.96630 0.96691\n PC554 PC555 PC556 PC557 PC558 PC559 PC560\nStandard deviation 1.11662 1.1139 1.1093 1.10640 1.09994 1.09976 1.09705\nProportion of Variance 0.00061 0.0006 0.0006 0.00059 0.00059 0.00059 0.00058\nCumulative Proportion 0.96752 0.9681 0.9687 0.96931 0.96990 0.97048 0.97107\n PC561 PC562 PC563 PC564 PC565 PC566 PC567\nStandard deviation 1.09580 1.09218 1.09037 1.08494 1.08201 1.08092 1.07642\nProportion of Variance 0.00058 0.00058 0.00058 0.00057 0.00057 0.00057 0.00056\nCumulative Proportion 0.97165 0.97223 0.97281 0.97338 0.97395 0.97451 0.97508\n PC568 PC569 PC570 PC571 PC572 PC573 PC574\nStandard deviation 1.07366 1.06988 1.06893 1.06718 1.06193 1.05932 1.05763\nProportion of Variance 0.00056 0.00056 0.00055 0.00055 0.00055 0.00054 0.00054\nCumulative Proportion 0.97563 0.97619 0.97674 0.97730 0.97784 0.97839 0.97893\n PC575 PC576 PC577 PC578 PC579 PC580 PC581\nStandard deviation 1.05431 1.05353 1.04958 1.04530 1.03981 1.03950 1.03877\nProportion of Variance 0.00054 0.00054 0.00053 0.00053 0.00052 0.00052 0.00052\nCumulative Proportion 0.97947 0.98001 0.98055 0.98108 0.98160 0.98212 0.98265\n PC582 PC583 PC584 PC585 PC586 PC587 PC588\nStandard deviation 1.03475 1.03404 1.02786 1.02553 1.02488 1.0160 1.00982\nProportion of Variance 0.00052 0.00052 0.00051 0.00051 0.00051 0.0005 0.00049\nCumulative Proportion 0.98317 0.98369 0.98420 0.98471 0.98522 0.9857 0.98622\n PC589 PC590 PC591 PC592 PC593 PC594 PC595\nStandard deviation 1.00707 1.00421 1.00113 0.99715 0.99454 0.98658 0.98538\nProportion of Variance 0.00049 0.00049 0.00049 0.00048 0.00048 0.00047 0.00047\nCumulative Proportion 0.98671 0.98720 0.98768 0.98817 0.98865 0.98912 0.98959\n PC596 PC597 PC598 PC599 PC600 PC601 PC602\nStandard deviation 0.97969 0.97736 0.97340 0.97157 0.96478 0.96393 0.95886\nProportion of Variance 0.00047 0.00046 0.00046 0.00046 0.00045 0.00045 0.00045\nCumulative Proportion 0.99006 0.99052 0.99098 0.99144 0.99189 0.99234 0.99279\n PC603 PC604 PC605 PC606 PC607 PC608 PC609\nStandard deviation 0.95223 0.95115 0.94917 0.93894 0.93367 0.92958 0.92447\nProportion of Variance 0.00044 0.00044 0.00044 0.00043 0.00042 0.00042 0.00041\nCumulative Proportion 0.99323 0.99367 0.99410 0.99453 0.99495 0.99537 0.99579\n PC610 PC611 PC612 PC613 PC614 PC615 PC616\nStandard deviation 0.92051 0.91714 0.9106 0.9091 0.89817 0.88785 0.88454\nProportion of Variance 0.00041 0.00041 0.0004 0.0004 0.00039 0.00038 0.00038\nCumulative Proportion 0.99620 0.99661 0.9970 0.9974 0.99780 0.99819 0.99857\n PC617 PC618 PC619 PC620 PC621 PC622\nStandard deviation 0.87264 0.85493 0.7873 0.67124 0.62720 3.017e-15\nProportion of Variance 0.00037 0.00035 0.0003 0.00022 0.00019 0.000e+00\nCumulative Proportion 0.99893 0.99929 0.9996 0.99981 1.00000 1.000e+00\n\n"
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "x = com.convert_robj(prcomp_res.rx2(\"x\"))\nx.index = pca_std.index\nx.ix[0:5,0:10]",
"execution_count": 1213,
"outputs": [
{
"execution_count": 1213,
"output_type": "execute_result",
"data": {
"text/plain": " PC1 PC2 PC3 PC4 PC5 PC6 PC7 \\\n0 -4.227659 -0.930500 1.853226 -2.682931 0.923642 -0.432286 2.962403 \n1 0.888892 -0.179881 -8.694134 -2.872412 -3.320970 1.533524 -1.861266 \n2 -3.319852 2.300243 1.670677 -9.666361 -9.595642 4.668615 -20.648915 \n3 -5.508931 -1.505746 5.299569 5.727700 -4.449550 -0.807838 2.172512 \n4 -6.334801 -0.261818 6.637892 5.268738 0.579049 -0.522321 0.370901 \n5 -3.629128 -0.334265 2.039921 -3.229526 -1.352967 5.201557 -0.460188 \n\n PC8 PC9 PC10 \n0 -1.233186 2.818495 -0.604278 \n1 -1.118133 -3.388559 1.083895 \n2 2.828419 13.892349 6.112814 \n3 5.269906 5.609469 2.110526 \n4 -3.753941 -0.828416 3.331711 \n5 2.400639 -3.360119 0.391390 ",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>PC1</th>\n <th>PC2</th>\n <th>PC3</th>\n <th>PC4</th>\n <th>PC5</th>\n <th>PC6</th>\n <th>PC7</th>\n <th>PC8</th>\n <th>PC9</th>\n <th>PC10</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>-4.227659</td>\n <td>-0.930500</td>\n <td> 1.853226</td>\n <td>-2.682931</td>\n <td> 0.923642</td>\n <td>-0.432286</td>\n <td> 2.962403</td>\n <td>-1.233186</td>\n <td> 2.818495</td>\n <td>-0.604278</td>\n </tr>\n <tr>\n <th>1</th>\n <td> 0.888892</td>\n <td>-0.179881</td>\n <td>-8.694134</td>\n <td>-2.872412</td>\n <td>-3.320970</td>\n <td> 1.533524</td>\n <td> -1.861266</td>\n <td>-1.118133</td>\n <td> -3.388559</td>\n <td> 1.083895</td>\n </tr>\n <tr>\n <th>2</th>\n <td>-3.319852</td>\n <td> 2.300243</td>\n <td> 1.670677</td>\n <td>-9.666361</td>\n <td>-9.595642</td>\n <td> 4.668615</td>\n <td>-20.648915</td>\n <td> 2.828419</td>\n <td> 13.892349</td>\n <td> 6.112814</td>\n </tr>\n <tr>\n <th>3</th>\n <td>-5.508931</td>\n <td>-1.505746</td>\n <td> 5.299569</td>\n <td> 5.727700</td>\n <td>-4.449550</td>\n <td>-0.807838</td>\n <td> 2.172512</td>\n <td> 5.269906</td>\n <td> 5.609469</td>\n <td> 2.110526</td>\n </tr>\n <tr>\n <th>4</th>\n <td>-6.334801</td>\n <td>-0.261818</td>\n <td> 6.637892</td>\n <td> 5.268738</td>\n <td> 0.579049</td>\n <td>-0.522321</td>\n <td> 0.370901</td>\n <td>-3.753941</td>\n <td> -0.828416</td>\n <td> 3.331711</td>\n </tr>\n <tr>\n <th>5</th>\n <td>-3.629128</td>\n <td>-0.334265</td>\n <td> 2.039921</td>\n <td>-3.229526</td>\n <td>-1.352967</td>\n <td> 5.201557</td>\n <td> -0.460188</td>\n <td> 2.400639</td>\n <td> -3.360119</td>\n <td> 0.391390</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "plt.scatter(x.PC1, x.PC2)\nplt.show()",
"execution_count": 1214,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAncAAAG4CAYAAAAnnMGeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcHGWB//FvQzBgCAuKP4lng6QfWRAhm2Sz+sMDJgJi\nODaIgjkICS4JRBh3IcopRNwQjsiVIA7rwe5y7HoAsq/g5Ke7qywxsrgguD4T0eFIwBPMBAKS8Pz+\neKrS1TXVPX3UTPc8+bxfr3r1THUdTz9dXfXt56mqLjjnBAAAgDDs1O4CAAAAID+EOwAAgIAQ7gAA\nAAJCuAMAAAgI4Q4AACAghDsAAICAjKl3QmPMGZKulnSxtfbqaNzekm6RdKCkVyXdLelca60zxuwk\n6UpJx0aLeEzSfGvt73MsPwAAABLqarkzxqyU9B75gJa8Md5Nkp621u4v6RBJ75d0RvTcIknvk3Sw\ntXaipA2SVuZUbgAAAGSot1u2x1o7R9IL8QhjzHhJx0m6RpKstS9K+pKkWdEkcyTdZK3dEv2/QtIJ\nxpjd8ig4AAAABqsr3FlrH8oYPTF67vHEuPXyXbSSZCT1JZ77ZbS+UuPFBAAAQD1auaBinKQ/pcZt\nicbHz8etdrLWvirp5cTzAAAAyFkr4W6zpLGpceOi8fHz27tgjTE7R9NvFgAAAIZF3VfLZuiTtM0Y\nM9Fauz4ad4Ckh6O/H5P0Tkk/iP43krZKsnUs2w09CQAAQPAKjc7QaLgrxCux1r5gjPlXSedLmmeM\n2VPSQklXRdN+VdJZxpg7JA1I+qyk26y1L9e5riMl9TdYPlQqSrpP1GUeiqIu81IUdZmXoqjLvBRF\nXealKOoyL8VmZhoy3EXdqS/It6a9RtJ7jDGfl/R1SWdK6jHG/ELSNvnw9jVJstZ+2Rizn6QH5QPh\nj+Vvj1KvflVekIHm9Yu6zEu/qMu89Iu6zEu/qMu89Iu6zEu/qMu2GDLcWWu3Sdq1xiQn1pj3s/It\ndgAAABgB/PwYAABAQAh3AAAAASHcAQAABIRwBwAAEBDCHQAAQEAIdwAAAAEh3AEAAASEcAcAABAQ\nwh0AAEBACHcAAAABIdwBAAAEhHAHAAAQEMIdAABAQAh3AAAAASHcAQAABIRwBwAAEBDCHQAAQEAI\ndwAAAAEh3AEAAASEcAcAABAQwh0AAEBACHcAAAABIdwBAAAEhHAHAAAQEMIdAABAQAh3AAAAASHc\nAQAABIRwBwAAEBDCHQAAQEAIdwAAAAEh3AEAAASEcAcAABAQwh0AAEBACHcAAAABIdwBAAAEhHAH\nAAAQEMIdAABAQMa0uwBAswqFwnhp2kL/39pVzrmB9pYIAID2I9xhVPLBbsEaacVUP6Z7ZqFQ6CLg\nAQB2dHTLYpSattAHu93lhxVTy614AADsuAh3AAAAASHcYZRau0rqXidtlh+61/lxAADs2DjnDqOS\nc26gUCh0SY9yQQUAAAmEO4xaUZhb3u5yAADQSeiWBQAACAjhDgAAICCEOwAAgIAQ7gAAAAJCuAMA\nAAgI4Q4AACAghDsAAICAEO4AAAACQrgDAAAICOEOAAAgIIQ7AACAgBDuAAAAAkK4AwAACMiYVhdg\njHmfpCsl7SFpq6QvW2uvM8bsLekWSQdKelXS3ZLOtda6VtcJAACAbC213BljXivpLklLrbUHSOqS\ndKEx5khJN0l62lq7v6RDJL1f0hktlhcAAAA1tNot+zZJfybpPkmy1v5a0sOSpkg6TtI10fgXJX1J\n0qwW1wcAAIAaWg136yX1KQptxph3SHqXpH+TJGvt46lpD2xxfQAAAKihpXPurLXbjDHzJN1jjFku\naS9Jl0gaJ+lPqcm3ROPrVWylbJBUrsNijWlQn2LqEc0rph7RvGLqEc0rph7RvGLqEc0ryjeiNaSl\ncGeMmSDpHkmnWGu/a4x5vXyr3U6SxqYmHydpcwOLv6+VsqECdZkf6jI/1GV+qMv8UJf5oS7zUWh0\nhlavln2vpOettd+VJGvt740x90h6n6StxpiJ1tr10bQHyJ+PV68jJfW3WL4dXVH+w0Vdtq4o6jIv\nRVGXeSmKusxLUdRlXoqiLvNSbGamVsPdzyS92Rgz2Vr7YHT17HRJ/yHpt5LOlzTPGLOnpIWSrmpg\n2f1qoikSmfpFXealX9RlXvpFXealX9RlXvpFXealX9RlW7R0QYW19meS5ku6xRjzc0k/kfSopC9I\nOlPSeGPMLyT9SNI3rLVfa7G8AAAAqKHlmxhba/9Z0j9nPPWSpBNbXT4AAADqx8+PAQAABIRwBwAA\nEBDCHQAAQEAIdwAAAAEh3AEAAASEcAcAABAQwh0AAEBACHcAAAABIdwBAAAEhHAHAAAQEMIdAABA\nQAh3AAAAASHcAQAABIRwBwAAEBDCHQAAQEAIdwAAAAEh3AEAAASEcAcAABAQwh0AAEBACHcAAAAB\nIdwBAAAEhHAHAAAQEMIdAABAQAh3AAAAASHcAQAABIRwBwAAEBDCHQAAQEAIdwAAAAEh3AEAAASE\ncAcAABAQwh0AAEBACHcAAAABIdwBAAAEhHAHAAAQEMIdAABAQAh3AAAAASHcAQAABIRwBwAAEBDC\nHQAAQEAIdwAAAAEh3AEAAASEcAcAABAQwh0AAEBACHcAAAABIdwBAAAEhHAHAAAQEMIdAABAQAh3\nAAAAASHcAQAABIRwBwAAEBDCHQAAQEAIdwAAAAEh3AEAAASEcAcAABAQwh0AAEBACHcAAAABGdPq\nAowxr5P0JUl/KekVSV+11i41xuwt6RZJB0p6VdLdks611rpW1wkAAIBsebTcfUXSs9bat8kHvC5j\nzERJN0l62lq7v6RDJL1f0hk5rA8AAABVtBTujDFvknS0pM9JkrX2d9ba90t6VtJxkq6Jxr8o37o3\nq5X1AQAAoLZWu2UPkfQbSacZY2bLd7/eJGmdJFlrH09Mu16+ixYAAADDpNVu2b0k/R9JL1lrD5Y0\nW9IySR+W9KfUtFskjWtxfQAAAKih1Za75yU5STdIkrX2p8aYeyUdLmlsatpxkjY3sOxii2VDuQ6L\nNaZBfYqpRzSvmHpE84qpRzSvmHpE84qpRzSvKKmv0ZlaDXe/kLSLpN0lDSTGPyjpvcaYidba9dG4\nAyQ93MCy72uxbCijLvNDXeaHuswPdZkf6jI/1GU+Co3O0FK4s9ZaY8z9ks6X9FljTFH+AovjJL05\nGj/PGLOnpIWSrmpg8UdK6m+lfFBR/sNFXbauKOoyL0VRl3kpirrMS1HUZV6Koi7zUmxmppbvcyd/\nnt0txph+SS9I+oy19gfGmJ9K6jHG/ELSNkm3WWu/1sBy+9VEUyQy9Yu6zEu/qMu89Iu6zEu/qMu8\n9Iu6zEu/qMu2aDncWWv7JR2RMf55SSe2unwAAADUj58fAwAACAjhDgAAICCEOwAAgIAQ7gAAAAJC\nuAMAAAgI4Q4AACAghDsAAICAEO4AAAACQrgDAAAICOEOAAAgIIQ7AACAgBDuAAAAAkK4AwAACAjh\nDgAAICCEOwAAgIAQ7gAAAAJCuAMAAAgI4Q4AACAghDsAAICAEO4AAAACQrgDAAAICOEOAAAgIIQ7\nAACAgBDuAAAAAkK4AwAACAjhDgAAICCEOwAAgIAQ7gAAAAJCuAMAAAgI4Q4AACAghDsAAICAEO4A\nAAACQrgDAAAICOEOAAAgIIQ7AACAgBDuAAAAAkK4AwAACAjhDgAAICCEOwAAgIAQ7gAAAAJCuAMA\nAAgI4Q4AACAghDsAAICAEO4AAAACQrgDAAAICOEOAAAgIIQ7AACAgBDuAAAAAkK4AwAACAjhDgAA\nICCEOwAAgIAQ7gAAAAJCuAMAAAgI4Q4AACAgY9pdAIxehUJhvDRtof9v7Srn3EB7SwQAAAh3aIoP\ndgvWSCum+jHdMwuFQhcBDwCA9qJbFk2attAHu93lhxVTy614AACgXXJruTPG7CnpMUnftdbOM8bs\nLekWSQdKelXS3ZLOtda6vNYJAACASnm23F0raYukOLzdJOlpa+3+kg6R9H5JZ+S4PrTV2lVS9zpp\ns/zQvc6PAwAA7ZRLy50x5iOS9pX0T5LeZozZXdJxkt4pSdbaF40xX5I0TxIBIADOuYFCodAlPcoF\nFQAAdJCWw50xZi9JKyQdJWl2NLokSdbaxxOTrpfvokUgojC3vN3lAAAAZXm03F0r6QZr7ePGmLhL\n9rWS/pSaboukcQ0st5hD2XZ0xdQjmldMPaJ5xdQjmldMPaJ5xdQjmldMPaJ5RUl9jc7UUrgzxsyQ\n9HZJc6NRhejxBUljU5OPkz85q173tVI2VKAu80Nd5oe6zA91mR/qMj/UZT4KQ09SqdWWu5Mk7S/p\nl8YYSdozWua7JW01xky01q6Ppj1A0sMNLPtISf0tlm9HV5T/cFGXrSuKusxLUdRlXoqiLvNSFHWZ\nl6Koy7wUm5mppXBnrZ2d/N8Yc4mkt1trTzPG/JOk8yXNi26TslDSVQ0svl9NNEUiU7+oy7z0i7rM\nS7+oy7z0i7rMS7+oy7z0i7psi+G8ifGZksYbY34h6UeSvmGt/dowrg8AAGCHl+vPj1lrL038/byk\nE/NcPgAAAGrj58cAAAACQrgDAAAICOEOAAAgIIQ7AACAgBDuAAAAAkK4AwAACAjhDgAAICCEOwAA\ngIAQ7gAAAAJCuAMAAAgI4Q4AACAghDsAAICAEO4AAAACQrgDAAAICOEOAAAgIIQ7AACAgBDuAAAA\nAkK4AwAACAjhDgAAICCEOwAAgIAQ7gAAAAJCuAMAAAgI4Q4AACAghDsAAICAEO4AAAACQrgDAAAI\nCOEOAAAgIIQ7AACAgBDuAAAAAkK4AwAACAjhDgAAICCEOwAAgIAQ7gAAAAJCuAMAAAgI4Q4AACAg\nhDsAAICAEO4AAAACQrgDAAAICOEOAAAgIIQ7AACAgBDuAAAAAkK4AwAACAjhDgAAICCEOwAAgICM\naXcBEIZCoTBemrbQ/7d2lXNuoL0lAgBgx0S4Q8t8sFuwRlox1Y/pnlkoFLoIeAAAjDy6ZZGDaQt9\nsNtdflgxtdyKBwAARhLhDgAAICCEO+Rg7Sqpe520WX7oXufHAQCAkcY5d2iZc26gUCh0SY9yQQUA\nAG1GuEMuojC3vN3lAABgR0e3LAAAQEAIdwAAAAEh3AEAAASEcAcAABAQwh0AAEBAWr5a1hhzhKTL\nJf2ZpJ0lrbTWftEYs7ekWyQdKOlVSXdLOtda61pdJwAAALK11HJnjNlH0rclfdZae4CkoyRdZoyZ\nJukmSU9ba/eXdIik90s6o8XyAgAAoIZWu2W3Spplrf2+JFlrfynpZ5KmSjpO0jXR+BclfUnSrBbX\nBwAAgBpa6pa11v5O0l3x/8aYd0g6SNJPoucfT0y+Xr6LFgAAAMMktwsqjDFvkXSPpCuiUX9KTbJF\n0ri81gcAAIDBcvn5MWPMJPlz76631l5pjDlU0tjUZOPkf1W+XsU8yraDK6Ye0bxi6hHNK6Ye0bxi\n6hHNK6Ye0bxi6hHNK0rqa3SmgnOtXbwaBbt7JS2y1n4rGjdO0h8kHWStXR+NWyTpJGvtB+pYLFfU\nAgAASIVGZ2ip5c4Ys6ukf1Ei2EmStfYFY8y/Sjpf0jxjzJ6SFkq6qoHFHympv5XyQUVJ94m6zENR\n1GVeiqIu81IUdZmXoqjLvBRFXeal2MxMrXbLniDp7ZK+YIz5QmL8bZLOlNRjjPmFpG2SbrPWfq2B\nZferiaZIZOoXdZmXflGXeekXdZmXflGXeekXdZmXflGXbdHq1bK3yQe5ak5sZfkAAABoDD8/BgAA\nEBDCHQAAQEAIdwAAAAEh3AEAAASEcAcAABAQwh0AAEBACHcAAAABIdwBAAAEhHAHAAAQEMIdAABA\nQAh3AAAAASHcAQAABIRwBwAAEBDCHQAAQEAIdwAAAAEh3AEAAASEcAcAABAQwh0AAEBACHcAAAAB\nIdwBAAAEhHAHAAAQEMIdAABAQAh3AAAAASHcAQAABIRwBwAAEBDCHQAAQEAIdwAAAAEh3AEAAASE\ncAcAABAQwh0AAEBACHcAAAABIdwBAAAEhHAHAAAQEMIdAABAQAh3AAAAASHcAQAABIRwBwAAEJAx\n7S4AEJJCoTBemrbQ/7d2lXNuoL0lAgDsaAh3QE58sFuwRlox1Y/pnlkoFLoIeACAkUS3LJCbaQt9\nsNtdflgxtdyKBwDAyKDlrkPRvQcAAJpBy10HKnfv9V7hhwVr/Lih5ysU/uo8Pww9PfK2dpXUvU7a\nLD90r/PjAAAYObTcdaRk957k/350oaTl1ebIOt9rzZo1Z3R1dQ1/cSFJcs4NFAqFrui9Ei2uAIB2\nINwFY3AgXLTotJP7+kY+3HVCl3K7yhCtp2oIBwBguBHuOtLaVVL3zEQr3Kjp3qv3itHhDF9ctQoA\n2JFxzl0H8iGkp0uavsQPPXUEk8Hne61c+cnbRqK8lYa+YrTZcwrzLAMAAKGi5a5DNdq9l3W+V1fX\nlycMU/Fa1Pg5hQAAoD603AXEOTfg3APL/dCuLshOuGK0E8ow+nH1NQCMTrTcBaITLmIoe+g70vTf\nSVsfkB68dnBZhvecwtFw1WqhUJggTevx/61d4Jx7pr0lqsR5iwAwehHuAlDjQNzucuwtPXhLofBX\nFSFrJMJXJ1+16oPd/D7pi1G/9Dl9hUKh1FkBj65zABitCHdBqHog/na9S8in5S9djsumSq/8SLrh\nrf7/cutPJ4ev4Tetxwe7uJ6+uLv0WI+kY9pZKgCjS2f12KCTEO7QUBfc0DuTAZUz5Sb5YEfrT55G\nZoc+em/HA+wIOHUCtRDuglD1QFzn1bL1dcHV2pn45941XrroT9IXX+Of/8TL0pyxLb+84KxdIJ2T\n7Jbd7McNrdEderNBcDSct4jRj5an2mrXT3inTrA95IdwF4AaB+Ihw53/ME0+XLpD0lhJx0kqVJk6\nq9v10dsLhSkPSLOPk94/WfqYys/fNFY666lEt2zV1p8d6UPtnHumUCiUoq5YNXZBRf079Fa/2Tfb\ndb4jvZcjIdT6pOWpUvp99o87Tv2wPeTMOdeJg3POlTqgHG0dJI2Xpp3nB41vYhmlTZs2uYkTP7o8\naxl++bN/LF3ipIFouMxJJ/xEmrraD+9aGs/rHwec5Jy0KZo2OV+PKz/vor8Pvkyaslqa9r/+78Gv\nwy97wY/Ky1rwoyZf73AOpU7YLivfg7iOp52XPe2ki/x7cmv0flWfNt9tdsj3siPqcjQMddTnqK3L\nRrblERpyrctG9t/Z7/OkizLq597y/rix/WYOx5NhrcsO3B46ZWhqe2x3oasNrtkXFMow+IM7+7ko\nHE2o9wPa29t76JQpl7tqH36/jBvc4ABw7EvleRY5qS+ed0K5TDe6yqDX46QznDQr+nujk+Y8JXU9\nLV0QTbvRSR95Spp84eByjNyHut6dXHK63t7eQ0d6u8wqZ707dD/d3CfL010e1f/Q9Vqtfuqptzrf\ny1EbSEZ6qKM+R21dduDBPLe6bCR4RZ+re7ODXHofuzj6HPvlRceDe/2gCdWXP+miyv3BsH+BJtzl\nW5eNb4MdUPCswTX7gkIZsjf0HifN3+w/3FlhrfLg61vs0suYfGF5mnctlc52gwNAT2KePicdFYW8\ng74nHfp96S9+K03dKp0ehbyLE8s4O5pnzsvSQ9Gy5jrpv500LxH85j7pdzjJFsHkDmzy6vK302nn\n+XJPuqjyW2vj30LLrZU9zgfboweFzfJ08x+MX9eYMfOe2bBhg+vt7T00sd6KoO2HyRf6Ha1/bdXe\nm9rlm3aen7+8/uR7PdSyygeLjc6H9lujOp/xRHMtCPW3EhDuRmI/UG69Gc112YEt9jmGu/qCSrkO\nsno9Jl/o9wEbXWUvSbyfnnRRrfor749mPOH3dYPL08oXubzrsva+Z6gvlSPaKtmO7bLxbXA4C1Uq\nlaaUSqW1pVJpfalU+lmpVJpd57wNbRTtHIZro/IfyvSHsTsKPzcP2mFkfTD23fe4L5ZD063RvEe8\n6APZYif93z/6nUS8jo1O6ooC2yYnbXDSgmi+OKTF4S0ZCi+Lpo/LNC9a1uzo8UYnHefKofSyKFid\n6KSP/bekd0sfek76VGqZJ/2PNPvpynF9zrf+Hf2UX14cWgYHtOx6nXSRX056h5neMQ6u/332OcXt\nuusZPy23Qs4fSLSs/lg67aHKss7+cXYwmvtk+lv24G/XWTv7ioN6je1xwY98/aa7zQ++bOj6yT4o\nNX6wqt0tW+t0gU78PLZ3/5Ksz/kDyS939bQo1/llILc6a2R5HfZ+DRlI6v+SVu/nJfnFdnAvi/8C\nfmLGvqDHVWntq3I86I72nckve5NXZ32B9F9aa7fyZdVDclzWdtlMSKtnf9KBXxKGY7ts/HM4XAUq\nlUpjS6XS06VS6aTo/3eUSqXnSqXSQXXMX7FRdOow1EbVeutS8uB8ZvTh7HHSSc4Hr+3fvib4c9p6\nXDJkvfnNH/jS+PHHO2mh8wf7hU46wVWGrAuiebLOoZuXMW6u86EtvVM5y5VDYNzVOy+aPm6tuzwq\nd7J74VQnzd6aHWYWZ4yblypPstVw/oPZH/xJF/kd4eQL/Q5tINrBVd/5Zu84k+VJz59V/h5XbslL\nP1duRcv+9p5VvhOjMsx8WtL+2d+444NFVnmmrK5jp3rv4MA/7X/9sDG1vKk/T7dQRsuq2VU01OkC\nw/V57IShmX1C9fdmwE2c+NHlzsvcX9a3j8qvzkbDe1BjqOMc5Ua6Wus6NiTe07jnYtq95WAz98ns\nz3J8ektWa1+83PRzMxOfuUVOuiZjuZOW+n1TrX1j5mubkBy3226LHt60adP27bLZ7aKekLwDdOd2\nXLj7cKlUeio17h9LpdLldcy/faPo5KHyW1fcMjbpIv9c8zu5wd2UH3E+2CUPiJ9y0lFPSgfdIB29\ndXCAWuakY7dJVzsf4NLN+vH5dTc6H/qyvh3+pRt8Pt4HnXRMxrRzXblLd5aTPhCNS65zo6sMZ5e7\n8rl7NyfWZZ0PMdOj151cT88Q/0/9eTn4TL7QtwwmX/usjT58drus96680528urIlsTuqp0bC3WIn\nHf6HyvMTk+WetLTy/U4uIx22T3flUD7fSbNfTofacsivFl57XLrVUBVdN9uXP1BuFZ2/NbENbytP\nc0H03s1x/gKc+KBSuZOv7FrxIXv33T/4g+HYGXf6Tr7V4JP1+oYOd7XrJO866/T3oNZQ3znK9b+2\nakF+8HZQ2Rpb/tJXrVXvdCcd2jv4szb/Qd8oUO3LXXpfmfXl+ZjnqnXh1q6HqavT45Ytu3X7dtns\ndkG4c3IdGO4+XSqVvpcad3GpVPp2HfNv3yg6efAbVRyo4g/Y3CfLH+qhN7js5u30vDdW+bAujsZf\n4HwImuf8t7FPRs9vdNIRVebtjp4/1pVb0pLTbHT+wJ0OZ3Pc4C7NuMm/YsfoBncDxOuJw+JG50Pl\nja580UVftPPavsNy/ty9Aee7gtOtR+kd1jXOh9qeaFkfjZa/wZVD3A3RchakXsdpD5V3jgNOmr1Z\n+rgrB9eNrlBY8GK5bmt1y8atpT1O+jtX2Y19cVSmw7ZK77qifFXczanyXOB8a9tf/qbydWe9n4dc\nUT5IZHU7X+B86+piJx3xVDkMznii8ovB9qtq7y0HxeR6TnDS36ReT/xe9zh/cEgH8oMv893ocT1m\ndjkHHe60/TzI5suXFQ6H6pYl3NU/ZJ+jnH9dVVnOoFMuKqfbFO0zPupSQTBx3m/y6tr0l8NPbBm8\n7zzBZZ9zfaPLOqbVLv/hfxiecEe3rGsyCw3nfe7GSdqSGvdSNL4exVxLMwx6e5f2Hn30onO2br11\nQvm+Yze8deLEFy+SpPXrK6efOPGte0sqxf+vWbNm3G67Lfrqli1XHCxJu+225BNr1qw5tbd3ae+M\nGefOfumlKw+SBiT1yt977mOpErwzGne5/O3IrovGXyVpo6Rl0epezij9gZIukfTn0TI+LGmJpCui\n5y+QdKPKr+tTkk6TdK387fPOkXS+pHdLOkDSf0bTbL//mqSTJR0fLbtH0o8kfVk+V1wpyUn6SmJ9\nmyStknRNYjlflHSipA9J+qHzFfH56LkLJW2VtDmxzl9L+qedfL19TtI/RM99JlrHeEkXR+t+jaQ3\nRX+Pl3Ttof5+f/G6V47bZZejfvXKK6v3jcc5d9lue+xx/L+/8Y2v+/HixYfddf31px0nSStXfvI2\nSfrkJ2fNfeqp3xy/devhb5fmJsr1oqRTJB3pX4LmSJqzs7TivLFjH//51q0ff3bbtv32kRar/Asf\nc7XHHmvHbt68ZedXX1VC1vs59hxpyWvK782dkjZI+nr03rxO5VvW/e1b3vzmbVf9+tf7zdi69dro\nXojXSZon6XZJO2mPPca91rlXfjswoHdWrqcQ1dvnE/V0mfz7eZmkj+3p35elUZ0OqFA45GznbtzD\nT3uxpH3lt9G/kyTtuuu5j06Y8IYJpdJJy1eu/ORtXV1dL8RrW7NmzbhFi24+Oa7j5HNpvb1Le489\ndskn4s/Trrue8+iECW98U3K5jSwvL+XP+aSD08+l9wm1OOe0Zs2aMxYtOi1Z/jdETxez1rvvvm+Y\n8NRTZz8Tv8+77bbkkSuuOOX+Uumk5ZJ03XWn3LVkyZJHEvugR+6+e2lvvWVKS78HrS5vJO2zz+v3\nqrXPzuu1TZz41r0z1vNYX9+d35b/AE8YvL6CpHXy+7PyPS4nTvxjd1/fnT2StN9+xy/61a/iJY6X\ntEC7737sDyWnF198Q+nVV3t2lbqj5y+U379/R+V7nC6WVNCYMb3PbN26coJ0h8aM+c4z11xz+MmL\nF3+1olxHH332OZX7jpv2GjOmvJ3ttdeFdtGipUbRdtls3WVv81/eXpZ6pxnlipL6Gp5ruNJmqVQ6\nJ6Pl7tJSqfStOuYfNS69dHArxLJlt7pNmza5ZBP/lCmXu+gchO2WLRvcdRbPO2nSxc63/MStWFe7\nwee/xRdWZJ07MdOVW8LmuMp72SVbaOKWr03R+g5z/pYmWa0rC1PjNjrfsrbRlbtgk9Mvir4Fzooe\nv5B4Pqt17MxBAAAV/0lEQVSrcqbzF15ktVDe6MotfHGLZXyuYE+0rpsT82Z1S96aKHfcLZusy7hV\nr/z6SqWTEusqv0fVbNq0yb3+9UdlrLsrWm9WV0h8ruKA22mnuD773C67zE+U8RPR+3yjk05ObQuX\nuHKX93+7cgvlddHfg7vcs8uY3N4G3IEHnu/K51cOROud5crnS8bzVmtV3uje8pZ5Gc/1OGmh23//\nme7882+MtvXBn5N6PkNZ9b9s2a3u0ktvdn/xF5dVzLthw4aGl5eH8ue8snttONdfWXf+fbj00p7M\nOtiwYYNbtuzW7fuePNad5/JGSj3bWx6vrZHturw997jp088a9FmK90XlY0Z5mz/kkEuicT2J7S95\nUV72NlnP9nDppfH+Ml5Wjzv//Otqzjdat4sO0XAGKzjnco+ZkmSMmS7pK9batyTG3SnpZ9bazw2V\nOeWbOPqHpXA5WrNmzbhjj/3WVyu/kZxwaj2tBKXSSQvWr7/2XOn/RWOO0MSJZ18pSevX/8O5vgXn\nCPnnH5K0UL71S4nxx8m3CN2m8je6zfKtatdJ+kf51rPbJP1UvqXtJPlvdpvlv7WdJOl6+ZY3ybdw\nnSXf8ndtNO7Tkp6Qb+m6PjHdb+RbhfokmWgeybcCniPfavSDaNob5Ft8xkfr+kJGmTdL2lm+tUvy\nLW5nSzpT0gxJu8q3yv1EvpVP0bTrnXRoQTo9Wmb8upPL/7akWZJuUeUvacT18DEVCudscW7pbpJU\nKFzyonPXvLa8jgXaa68r7J13fuTk+L1MvseLFx9215IlP1+5ZcuBB/uWueTyvy5pUZVy3SHpMUmT\n5N/XJZI2vCrdtZOfbkC+BTP+1r1C0nxJ35NvxXtV/nVvlvQJSTdFdbxE/hv63w+q60LhQ8859429\npH+L1v0O+W/x/5JR7j3kG+HXpd6XuCV0VvS6Kl/TmDH/9cyb3vTrbz355O2LKp+7TdJOkh7Wzjs/\n9+y2bcv3KX/J3qyJE0+7sq/vzh7/+fiHc5Pzxs9pCFnz7rHH8f++adO3P9DM8lpRWZYBSXdqjz1u\n+/dvfOMzn86h5bAo6T6l9pfV6k6K9y0jWwejRHFgYOC+Y445r+fZZ3//3HC27DbTglzrWFN+v52k\nuyS9rPHjv/6DgYF7D/P7vXifE+9/nMr7/AHtvPPCZ9/2Nt1x881nfa3essyYcfvXX3rp7QfF+6Vd\ndz330XvumTknmr+ojO0STSlK+m7DczWTCOsZSqXSmFKp1F8qlU6N/n93dLXs/nXM79woOOcuHtT8\nVbETKs/bmh/9ZFh8fkL6HKxFrny+Rfx33NqUbtWLW6DiVoP4vLf0RRnxTYezWl4ud761KHmex1mu\nfEHCVdH/28/NcL5lKescvHjcgmjZR1Ypc7eTPu/8RSSLo3kuc77l8sbEtNOi57td+crhQwZ8vQxE\n5f1kYvlnJl7D8Rmv99bE3/GVnpXTHHVUt4vOcUq8f8lz1uY+6R/T57vE5ym66LlLUq97QaJsFzh/\nBfFQV87eWuXvnoznNrhyvcTbzkXOt8TG29DcqM6zWtmqlWGx8xfYPOQqW0KTLcPpe3FVti5Ubqvb\n6z+6nUPz5zhVP6+p+vLq/RzXM11qmsyLTHLa/2TevqNa3Y3mc+JGYMjlPndZ20ezx4h6ll3j/b53\ncOtc8lzhjc6fIztpaTNlyr5ad/u2NGrvv9iBQ2ddUOHc9kB3f6lU6iuVSo+USqUT6pzXNfuCRtNQ\nfQccnyB6deJgHR8sF0UH4vgE9g9GH9K4+b3H+YsA/tqVLyo4zVWeaN/jfGC7yvlutyOqHNTj7r30\nc3MT08Q7j+TFCtXmm5U4sMcXNMRlviB6DRuivy9IPRd3O25KzJsMjjc4adLvyq/vpOj1xa8jvgVL\nl/Ph8ZLE/On79GUfBCtPEK72CxDJbu64HPdF70E87QXR+/PXzl+RnLwAIVmn8Q652pVv6cAfv79Z\nwa/PSe91vovWuvIFNemwf2bi/0uc76atdsHN+/4ovWdL+YKVuMsnXZfJK3KzuuPjk7Erg49aOFG6\nyrxVQ1a966pnuurrHpb7uVUJd63djHoHHVoOJI1ud3kNg79optdbcT/QXLbFIb4oEO7yGzov3LUw\nuGZf0Ggaan04/Adw9nODw0PcAhdfdXqDK59z1eP8eVHxgThuNTrblYPXhzMOwJe4yitUP+XKrTpZ\n58AlW3MGXS0cBYm5GfNlBYRFTprhfMCMr2K9wPlgO935lsN4HfHrrxZ25m4rt5Dd7CpveRKHwLie\nZm/1y17mpFO2laeJW08rd9KD79uU9d71uPI9opJha/6D0kH3VwbNdOtV/H6kb4fS4/zVqZckpr/E\nlc8RvMpJ73M+NMX1mW7dTf8d34Km2nmVx74kHbzCX1Ubt8zGy47/nrV18Hl/fa4yHKavstP4rFsm\n+JaD7INNKy0ejbSg1H91e8fdmqHqQbT6a+2oGwd30pBDuGu8xbjVYXCgLN/uaDjf6yG+KBDu8hsI\nd6NtqPXhyN5JzHWV3X8uCgCfceVWrmNeqh7GXJUD+t84H/qOdz4QJS9U6HKVrU7J25FsctkhrstJ\nf+V8S1083+ku+/5Jp7jKy/E/5Xxgibt9F7rKlsseV75FS3I5cbdhfAJ/8mKP+IbKG1LTTlntA3Ry\nmj6XCNhV77ie/f7MeMIHw8kX+mVPXu2DS/xzZ/H01e5BN+CkT7wsnZq4t9xpzl+Icrrz4XiR8zcx\njl/jnOi5w170YTW+5Uv8m8C3unKoTa7vBifNeHlwOc6K5jv5qewwHt+7L2s7OuyFcve5r4usbb78\nKx8Dzt8+pvyzcu37LIYX7hhGvi7bE+7a19VeIzyyXeY3EO5G49BYS8KU1YPP4dnopNkD5XB39Iba\n4W6jk+ZsKB9cF7rBP/u1KTHtXCd9zFVvdcr6tYr46tU4NMVB7YzUvKdskbqerh50LnTlK3Tjlrer\nnXRIrzTnqfL49NW/ceveB57zgSf+ObT0tFk7Xf+rElU+YNu3y2rflgePj1vyhupmPewF36r1rqU+\nXHW78nmK6RbIOU/5Okj/BFzllb7lOsrqPp/UK+nd0tzEzZAXRu9vfA5n5v3ool/6qNVVPPjn1ZJD\nb2/vocuW3er8z+Ml7yvYvi7CEeiWHa7XxUE08z1qqrVqVHbLduh5lGyX+dZl49tFBxQ8a3DNvqBQ\nhqEOEIkdWCqg9Dlp/vYD9i67nO522unk31a2lMTnXEy+0N9cttpB+qOp/+NwcKPz57zFLV1ZN8LM\nuuXH0dt8cFjsfAuj9s8+KXdxNGyKln/Mc6lzSaJzh6r9ssL2gLG/nz6+MeexL1XeADR508943XNd\n/CsjGR+wiu0yu9svvaPN6mZN/6Zjshsl/u3bZGj7wCsZO++MGwx/MNEKOeMJbf+ljkkXSbMeqlzu\n/Af9+LirO3mj6fgcuGq/d5n183iXuPS5djW275Jzzg1109j2fOaG5YKK4QysO8RBtLH3pukg1fEX\nVAzDax6uYYfYLkewLhvfLjqg4FmDa/YFhTTUdxDJChOVB+x9952xovo5TdXC1TxXPvl9kxt8leP8\nzeWLOg5/TvrwH8vrjluWkq1rc5/0LUWVvzmqmhcmJENaXedkDTpRuNbzg9cdt5RlBox6f1Q8Fbbj\nbvSsgJTVYpv1fkz5/uBxWeeudW2orPNkN3/mlW1Z3UX3+q7kdCCdurqynMnf7J2yenC37+gLd6N0\nCP4g2kh4abEVa9TW5Qh+mah3GLV12YED4W5HHKp3A7rtO7fo9yfrnH/2c5Xn3cWBLusqx/JP5mS3\npM3+ceI3R2t9205d6XXaQ/53cytb6waXO5dbC2RdZZa1vJJzzvX29h5a/ST1uJUwGYIbu1Iy++CU\nvp1IvMxkkIu7ZbMPbNnLnXxh9Ssqky2L/rdr69+Ghmw5SNRlx7U4jLYh+INoI4FtRw13HThQl/nW\nZcPztbvQ1QbX7AvaEYfBrVPlA+aUKZdX3Jut0fkTAW3Ik4Jb2bFWliGruzR9P7L8QkGdQbG0adMm\nt9tuix7ObhlLvva4tWvavY2Wq9pry+7qmXRR5a1yqv9mayPLbaBOGq3D7XXpvFIHtjiMtiH4g2hj\n4a793bIM1OUw1GXD87W70NUG1+wLYigfaCdO/Ojy5O07Gp1/cPfmUCeS53Ni71DLGRxqRqQ7r5T1\nc3G1W8aaK1O9gSej1fXHlS1uVc/TrKMFcVhDFzv+/Oo8+LpsNLC1sO0GX5cjOFCX+dZlw/O1u9DV\nBtfsC2KoGHL9gA2108yrRa3WclT1HL12h7v2nNScfk/yCGUj8FrY8edX5ztEXY5QC+8OUZcjNFCX\n+dZlw/O1u9DVBtfsC2KoGEb8A9bsTrjekJLdQjbjiREIUjW7ZVt57Z025NkKWa0uncdnvPU6py7z\nG6hL6rITh6bqcIyAHDnnBiQtb2SeQqEwXlqwRlox1Y/pnin1dDn3QJ3LeebL0XqH1fjx43X33Sec\nOn369Ol+zNpVyfU289oBAMjbTu0uACBNW+iD3e7yw4qpflyWtauk7nXSZvmhe5304LUjVdKurq4X\nnHtguR+GP1C2R1Ydr13V7lKFjToHkB9a7jCqOOcGCoVCl/RoFP4qW8/QOup45FHnAPJEuEMHWLvK\nd8Vu75at2WpB9+fwo45HHnUOIC+EO7QdrRYAAOSHcIeOQKsFAAD54IIKAACAgBDuAAAAAkK4AwAA\nCAjhDgAAICCEOwAAgIAQ7gAAAAJCuAMAAAgI4Q4AACAg3MQYQFsVCoXx0jR+nQQAckK4A9A2Ptgt\nWJP4XeGZhUKhi4AHAM2jWxZAG01b6IPd7vLDiqnlVjwAQDMIdwAAAAEh3AFoo7WrpO510mb5oXud\nHwcAaBbn3AFoG+fcQKFQ6JIe5YIKAMgJ4Q5AW0Vhbnm7ywEAoaBbFgAAICCEOwAAgIAQ7gAAAAJC\nuAMAAAgI4Q4AACAghDsAAICAEO4AAAACQrgDAAAICOEOAAAgIIQ7AACAgBDuAAAAAkK4AwAACAjh\nDgAAICCEOwAAgIAQ7gAAAAJCuAMAAAgI4Q4AACAghDsAAICAEO4AAAACQrgDAAAICOEOAAAgIIQ7\nAACAgBDuAAAAAkK4AwAACAjhDgAAICCEOwAAgICMaXZGY8xOki6VNFPSzpJ+K+lT1tqHouePkrRM\n0jhJL0haYq29r+USAwAAoKpWWu7OlDRD0jRrrZF0l6R/liRjzBsl3SFpobV2oqQzJN1hjHlDi+UF\nAABADa2EuwckzbXWbor+/46kkjFmF/nWvEestQ9IkrV2raRHJR3fSmEBAABQW9PdstbaB1Oj/lrS\nOmvtK8aYd0rqSz3fJ+nAZtcHAACAodUMd8aYj0u6PuOp56Pu1ni6j0k6R9IHo1GvlfRSap4t8uff\nAQAAYJjUDHfW2tsl3V5rGmPMZyUtlHSEtfbRaPRmSXukJt1d0u8bKFuxgWmRrZh6RPOKqUc0r5h6\nRPOKqUc0r5h6RPOKqUc0r6jBPaFDarpbVpKMMUslfVjSVGvts4mnHpN0amryAyStrHPRhVbKhe36\nRF3mhbrMD3WZH+oyP9RlfqjL/DQc7KQWLqgwxnxI0ixJ01PBTpK+KenPjTGHJ6bdT9K3m10fAAAA\nhlZwzjU1ozFmtaTJ8ve3SzrJWvvTKNhdJd8d+7ykT1trf9hKYQEAAFBb0+EOAAAAnYefHwMAAAgI\n4Q4AACAghDsAAICAEO4AAAACQrgDAAAISEs3Mc6bMeZ1kr4kaaakva21f0g8d5SkZfI/YfaCpCXW\n2vvaUtBRxBjzOUndkjYmRv+ntfZv2lOi0ccYM0X+Z/heL+kVSX9vrb21vaUafYwxRUm/lGRTT703\n+VlHdcaYMyRdLelia+3V0bi9Jd0i/9vdr0q6W9K51lpuhVBDlbrsl7/57ouJSbuttatHvICjhDHm\nCEmXS/ozSTtLWmmt/SLbZeNq1GW/GtwuOybcRcHufkn/KB/uks+9UdIdko6y1j5gjJkmabUxZqK1\nNn2fPVRykr5hrT2t3QUZjYwxYyV9S/4+jXcaY94h6UFjzE8SP7eHBlhrD2h3GUYjY8xK+fuGPib/\nuY7dJOlpa+1xxpjXSvoPSWdIWjXypRwdatSlkzTHWvufbSnYKGOM2Uf+xwmOtdZ+3xizn6T/Mcas\nlfR3Yrus2xB12fB22UndstskHSMf7tJmSnrEWvuAJFlr10p6VNLxI1e8UasgfgamFUdIctbaOyXJ\nWvu4pHslndzWUmFH1GOtnSPfcyFJMsaMl3ScpGskyVr7onzvx6y2lHD0GFSXCewv67dV0ixr7fcl\nyVr7S0k/kzRVbJeNqlaXB0fPN7RddkzLnbX2j5L+GHXdpL1Tg39frU++uRe1OUnvNsZ8T9KbJf2v\nfNP4+vYWa9R4p6R0XfVJmtSGsgTBGPN1SYdKeknStdbarC90SLHWPpQxemL03OOJcevFvrGmKnUZ\n6zbGXCV/CtC3JH3OWvvKyJRsdLHW/k7SXfH/Uc/GQZJ+Ej3PdlmnGnV5fzSqoe1yRMOdMebj8ucu\npT1vrZ1YY9bXyh8IkrbIv8gdXo16/aOkv5Vvob1Kvs6WSbrHGHOgtXbbyJVy1BonX29JL4ltrxkD\n8ufgXG+tfcQY815J3zXGPGGt/UGbyzZajZP0p9Q49o3N+1dJD1hrv2mMeYuk1fKf96XtLVbni+rr\nHklXRKPYLpuUrEtr7WPGmIa3yxENd9ba2yXd3sSsmyXtkRq3u6Tft1yoANRRr8lvAxdJOkeSkW/y\nRW0DknZLjRsnv02iAdba30s6PfH//caYuyUdK4lw15zNksamxrF9Nslae27i76eNMddLWiDCXU3G\nmEny54tdb6290hhzqNgum5KuS6m57bKTzrmr5TH5MJJ0gKRH2lCWUcUYM9EYs1di1E7yffd0M9Tn\nMUml1LgDJD3chrKMasaYvYwx6Rb6nTX4Gz7q1ydpW6pe2T6bYIwZa4x5d2o02+cQojByr6Sz4zAi\ntsumZNVls9tlJ4e75MmD35T058aYwyXJGPMhSfvJp1vUdrmkG4wxO0f/nyd/Mcov2lekUeX7krYa\nY06VpOhDNl3ZF/6gtvdI+qEx5m2SZIw5SNJR4nPcqO0XSVlrX5DvSjxfkowxe0paKOkrbSvd6JK8\n4Gy8pP8yxnxY8l9G5FtHvtmmsnU8Y8yukv5F0iJr7bfi8WyXjatWl2pyuyw41xm3nIkOnqvkP2i7\nqJxKp1trfxgFu6vku2Ofl781xQ/bUdbRxBjzekk3SposfzVOn/y3gl+1tWCjSBToVkp6g/x5Dpek\nPnyokzHmU5IWyV/o85L8PQPvbG+pOl/05ewF+Xp7jfzdBbZJ+rqkJZJ6JB0SjbvNWvu59pS08w1R\nl3dIWi5/nHlV/mB7qbX21faUtrMZY06WdKsGX3R2m6TrxHZZtyHq8n75cxnr3i47JtwBAACgdZ3c\nLQsAAIAGEe4AAAACQrgDAAAICOEOAAAgIIQ7AACAgBDuAAAAAkK4AwAACAjhDgAAICCEOwAAgID8\nf/fWZTbQyX8MAAAAAElFTkSuQmCC\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde50a44350>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "%%R\nsource(\"tw_calc.R\")\ntest=read.table(\"twtable\", header=F)",
"execution_count": 24,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "TWcalc = r('TWcalc')",
"execution_count": 25,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "tw = TWcalc(com.convert_to_r_matrix(pca_std), 25)",
"execution_count": 26,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "tw_p = com.convert_robj(tw.rx2(2))\ntw_e = com.convert_robj(tw.rx2(1))",
"execution_count": 27,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "tw_num = 0\nfor i, p in enumerate(tw_p):\n print i, p\n if p > 0.05:\n tw_num = i\n break\nprint \"Tracy-Widom test yields %d axes of pop structure\" % tw_num",
"execution_count": 28,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "0 8e-09\n1 8e-09\n2 8e-09\n3 8e-09\n4 8e-09\n5 8e-09\n6 8e-09\n7 8e-09\n8 8e-09\n9 8e-09\n10 8e-09\n11 8e-09\n12 8e-09\n13 8e-09\n14 2.2872e-05\n15 0.000220344\n16 0.000177359\n17 0.00206759\n18 0.006211384\n19 0.01992964\n20 0.328982392\nTracy-Widom test yields 20 axes of pop structure\n"
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "y = pd.DataFrame(x)\nfor col in y.columns[0:10]:\n s_cutoff = np.std(y[col])*6\n u = np.mean(y[col])\n cutoff = sorted([u+s_cutoff, u-s_cutoff], reverse=True)\n outliers = y[col][(y[col] > cutoff[0]) | (y[col] < cutoff[1])]\n print col\n print outliers\n y = y.drop(outliers.index)\ny.ix[0:5,0:10]",
"execution_count": 29,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "PC1\nSeries([], name: PC1, dtype: float64)\nPC2\n348 86.725320\n572 41.627337\nName: PC2, dtype: float64\nPC3\nSeries([], name: PC3, dtype: float64)\nPC4\n596 23.223851\nName: PC4, dtype: float64\nPC5\n303 -15.047861\nName: PC5, dtype: float64\nPC6\n9 -32.477463\n271 -25.089614\n296 -25.141168\n603 -22.043115\nName: PC6, dtype: float64\nPC7\n2 -20.648915\n333 -17.148680\n391 -17.088184\nName: PC7, dtype: float64\nPC8\n290 -30.003228\n561 -25.400725\nName: PC8, dtype: float64\nPC9\n578 15.177391\nName: PC9, dtype: float64\nPC10\n606 -17.195924\nName: PC10, dtype: float64\n"
},
{
"execution_count": 29,
"output_type": "execute_result",
"data": {
"text/plain": " PC1 PC2 PC3 PC4 PC5 PC6 PC7 \\\n0 -4.227659 -0.930500 1.853226 -2.682931 0.923642 -0.432286 2.962403 \n1 0.888892 -0.179881 -8.694134 -2.872412 -3.320970 1.533524 -1.861266 \n3 -5.508931 -1.505746 5.299569 5.727700 -4.449550 -0.807838 2.172512 \n4 -6.334801 -0.261818 6.637892 5.268738 0.579049 -0.522321 0.370901 \n5 -3.629128 -0.334265 2.039921 -3.229526 -1.352967 5.201557 -0.460188 \n\n PC8 PC9 PC10 \n0 -1.233186 2.818495 -0.604278 \n1 -1.118133 -3.388559 1.083895 \n3 5.269906 5.609469 2.110526 \n4 -3.753941 -0.828416 3.331711 \n5 2.400639 -3.360119 0.391390 ",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>PC1</th>\n <th>PC2</th>\n <th>PC3</th>\n <th>PC4</th>\n <th>PC5</th>\n <th>PC6</th>\n <th>PC7</th>\n <th>PC8</th>\n <th>PC9</th>\n <th>PC10</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>-4.227659</td>\n <td>-0.930500</td>\n <td> 1.853226</td>\n <td>-2.682931</td>\n <td> 0.923642</td>\n <td>-0.432286</td>\n <td> 2.962403</td>\n <td>-1.233186</td>\n <td> 2.818495</td>\n <td>-0.604278</td>\n </tr>\n <tr>\n <th>1</th>\n <td> 0.888892</td>\n <td>-0.179881</td>\n <td>-8.694134</td>\n <td>-2.872412</td>\n <td>-3.320970</td>\n <td> 1.533524</td>\n <td>-1.861266</td>\n <td>-1.118133</td>\n <td>-3.388559</td>\n <td> 1.083895</td>\n </tr>\n <tr>\n <th>3</th>\n <td>-5.508931</td>\n <td>-1.505746</td>\n <td> 5.299569</td>\n <td> 5.727700</td>\n <td>-4.449550</td>\n <td>-0.807838</td>\n <td> 2.172512</td>\n <td> 5.269906</td>\n <td> 5.609469</td>\n <td> 2.110526</td>\n </tr>\n <tr>\n <th>4</th>\n <td>-6.334801</td>\n <td>-0.261818</td>\n <td> 6.637892</td>\n <td> 5.268738</td>\n <td> 0.579049</td>\n <td>-0.522321</td>\n <td> 0.370901</td>\n <td>-3.753941</td>\n <td>-0.828416</td>\n <td> 3.331711</td>\n </tr>\n <tr>\n <th>5</th>\n <td>-3.629128</td>\n <td>-0.334265</td>\n <td> 2.039921</td>\n <td>-3.229526</td>\n <td>-1.352967</td>\n <td> 5.201557</td>\n <td>-0.460188</td>\n <td> 2.400639</td>\n <td>-3.360119</td>\n <td> 0.391390</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "gt_drop = genotypes.ix[y.index,:]",
"execution_count": 30,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "gt_drop[0:10]",
"execution_count": 31,
"outputs": [
{
"execution_count": 31,
"output_type": "execute_result",
"data": {
"text/plain": " 0-10037-01-257 0-10040-02-394 0-10044-01-392 0-10048-01-60 0-10051-02-166 \\\n0 G/G A/C G/G A/A G/G \n1 A/A C/C G/G A/A G/G \n3 A/A A/A C/C G/G A/G \n4 A/A A/C C/C ?/? G/G \n5 A/G C/C C/G A/A G/G \n6 A/A A/A G/G A/G G/G \n7 A/G A/C C/G G/G A/G \n8 ?/? A/A C/C G/G G/G \n10 A/A A/A C/G G/G G/G \n11 A/A A/C ?/? A/G G/G \n\n 0-10054-01-402 0-10067-03-111 0-10079-02-168 0-10112-01-169 0-10113-01-119 \\\n0 A/G A/A G/G A/C A/A \n1 A/G A/A A/G A/A G/G \n3 G/G A/A G/G A/A A/G \n4 A/G A/A G/G A/A A/A \n5 A/G A/A G/G A/A A/G \n6 A/G A/A G/G A/A A/A \n7 A/G A/A G/G A/A A/G \n8 G/G A/A G/G A/A A/G \n10 A/G A/A G/G A/A A/A \n11 A/G A/A G/G A/A A/G \n\n 0-10116-01-165 0-10151-01-86 0-10162-01-255 0-10207-01-280 0-10210-01-41 \\\n0 A/A A/A A/A A/C ?/? \n1 A/A A/A A/A A/C A/A \n3 A/A A/A A/A C/C A/A \n4 A/A A/A ?/? A/C ?/? \n5 A/A A/A A/A C/C A/A \n6 A/A A/A A/A A/A A/A \n7 A/A A/A A/A A/C A/A \n8 ?/? A/A A/G A/C A/A \n10 A/A A/A A/A A/A A/A \n11 A/A A/A A/A C/C A/A \n\n ... UMN-CL299Contig1-01-46 UMN-CL306Contig1-04-261 \\\n0 ... A/A T/T \n1 ... A/A T/T \n3 ... A/A T/T \n4 ... A/A T/T \n5 ... A/A T/T \n6 ... A/C T/T \n7 ... A/A T/T \n8 ... A/A ?/? \n10 ... A/A T/T \n11 ... A/A T/T \n\n UMN-CL307Contig1-04-143 UMN-CL319Contig1-03-131 UMN-CL326Contig1-05-421 \\\n0 C/C A/C A/G \n1 C/C C/C G/G \n3 C/C C/C G/G \n4 C/G C/C G/G \n5 C/G C/C A/G \n6 C/G A/C G/G \n7 C/C A/C A/G \n8 C/G C/C G/G \n10 C/C C/C A/G \n11 C/C A/C ?/? \n\n UMN-CL339Contig1-05-39 UMN-CL34Contig1-03-89 UMN-CL353Contig1-04-64 \\\n0 A/A C/G A/A \n1 A/A G/G A/A \n3 A/A C/G A/A \n4 A/A C/G A/A \n5 A/A C/G A/A \n6 A/A G/G A/A \n7 A/A C/G A/A \n8 A/A G/G A/A \n10 A/A C/G A/A \n11 A/A G/G A/A \n\n UMN-CL362Contig1-07-133 UMN-CL363Contig1-01-233 UMN-CL379Contig1-12-117 \\\n0 ?/? G/G A/A \n1 A/A G/G A/A \n3 ?/? A/G A/A \n4 C/C A/G A/A \n5 ?/? A/G A/A \n6 C/C G/G A/A \n7 A/C A/G A/A \n8 ?/? G/G A/A \n10 A/C G/G A/A \n11 C/C G/G A/A \n\n UMN-CL424Contig1-03-94 UMN-CL54Contig1-07-88 UMN-CL91Contig1-02-246 \\\n0 C/C G/G C/C \n1 A/C A/G C/C \n3 A/C A/G C/C \n4 A/C G/G A/C \n5 A/C G/G A/C \n6 A/C A/A C/C \n7 C/C A/G C/C \n8 A/C G/G A/C \n10 C/C A/G C/C \n11 C/C A/G C/C \n\n UMN-CL97Contig \n0 A/G \n1 A/A \n3 G/G \n4 G/G \n5 A/G \n6 A/G \n7 A/A \n8 A/A \n10 G/G \n11 A/G \n\n[10 rows x 3082 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>0-10067-03-111</th>\n <th>0-10079-02-168</th>\n <th>0-10112-01-169</th>\n <th>0-10113-01-119</th>\n <th>0-10116-01-165</th>\n <th>0-10151-01-86</th>\n <th>0-10162-01-255</th>\n <th>0-10207-01-280</th>\n <th>0-10210-01-41</th>\n <th>...</th>\n <th>UMN-CL299Contig1-01-46</th>\n <th>UMN-CL306Contig1-04-261</th>\n <th>UMN-CL307Contig1-04-143</th>\n <th>UMN-CL319Contig1-03-131</th>\n <th>UMN-CL326Contig1-05-421</th>\n <th>UMN-CL339Contig1-05-39</th>\n <th>UMN-CL34Contig1-03-89</th>\n <th>UMN-CL353Contig1-04-64</th>\n <th>UMN-CL362Contig1-07-133</th>\n <th>UMN-CL363Contig1-01-233</th>\n <th>UMN-CL379Contig1-12-117</th>\n <th>UMN-CL424Contig1-03-94</th>\n <th>UMN-CL54Contig1-07-88</th>\n <th>UMN-CL91Contig1-02-246</th>\n <th>UMN-CL97Contig</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0 </th>\n <td> G/G</td>\n <td> A/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> ?/?</td>\n <td>...</td>\n <td> A/A</td>\n <td> T/T</td>\n <td> C/C</td>\n <td> A/C</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> C/G</td>\n <td> A/A</td>\n <td> ?/?</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> A/G</td>\n </tr>\n <tr>\n <th>1 </th>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> T/T</td>\n <td> C/C</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> A/A</td>\n </tr>\n <tr>\n <th>3 </th>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> T/T</td>\n <td> C/C</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/G</td>\n <td> A/A</td>\n <td> ?/?</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> G/G</td>\n </tr>\n <tr>\n <th>4 </th>\n <td> A/A</td>\n <td> A/C</td>\n <td> C/C</td>\n <td> ?/?</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> ?/?</td>\n <td> A/C</td>\n <td> ?/?</td>\n <td>...</td>\n <td> A/A</td>\n <td> T/T</td>\n <td> C/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> G/G</td>\n </tr>\n <tr>\n <th>5 </th>\n <td> A/G</td>\n <td> C/C</td>\n <td> C/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> T/T</td>\n <td> C/G</td>\n <td> C/C</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> C/G</td>\n <td> A/A</td>\n <td> ?/?</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/G</td>\n </tr>\n <tr>\n <th>6 </th>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/C</td>\n <td> T/T</td>\n <td> C/G</td>\n <td> A/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> A/G</td>\n </tr>\n <tr>\n <th>7 </th>\n <td> A/G</td>\n <td> A/C</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> T/T</td>\n <td> C/C</td>\n <td> A/C</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> C/G</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> A/A</td>\n </tr>\n <tr>\n <th>8 </th>\n <td> ?/?</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> ?/?</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> ?/?</td>\n <td> C/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> ?/?</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/A</td>\n </tr>\n <tr>\n <th>10</th>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> T/T</td>\n <td> C/C</td>\n <td> C/C</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> C/G</td>\n <td> A/A</td>\n <td> A/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> G/G</td>\n </tr>\n <tr>\n <th>11</th>\n <td> A/A</td>\n <td> A/C</td>\n <td> ?/?</td>\n <td> A/G</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> T/T</td>\n <td> C/C</td>\n <td> A/C</td>\n <td> ?/?</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> A/G</td>\n </tr>\n </tbody>\n</table>\n<p>10 rows × 3082 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "gt_drop.shape",
"execution_count": 32,
"outputs": [
{
"execution_count": 32,
"output_type": "execute_result",
"data": {
"text/plain": "(607, 3082)"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "z12_drop = gt_drop.apply(convert_to_z12)\nz12_drop[0:10]",
"execution_count": 33,
"outputs": [
{
"execution_count": 33,
"output_type": "execute_result",
"data": {
"text/plain": " 0-10037-01-257 0-10040-02-394 0-10044-01-392 0-10048-01-60 \\\n0 2 1 2 2 \n1 0 0 2 2 \n3 0 2 0 0 \n4 0 1 0 -1 \n5 1 0 1 2 \n6 0 2 2 1 \n7 1 1 1 0 \n8 -1 2 0 0 \n10 0 2 1 0 \n11 0 1 -1 1 \n\n 0-10051-02-166 0-10054-01-402 0-10067-03-111 0-10079-02-168 \\\n0 0 1 0 0 \n1 0 1 0 1 \n3 1 0 0 0 \n4 0 1 0 0 \n5 0 1 0 0 \n6 0 1 0 0 \n7 1 1 0 0 \n8 0 0 0 0 \n10 0 1 0 0 \n11 0 1 0 0 \n\n 0-10112-01-169 0-10113-01-119 0-10116-01-165 0-10151-01-86 \\\n0 1 0 0 0 \n1 0 2 0 0 \n3 0 1 0 0 \n4 0 0 0 0 \n5 0 1 0 0 \n6 0 0 0 0 \n7 0 1 0 0 \n8 0 1 -1 0 \n10 0 0 0 0 \n11 0 1 0 0 \n\n 0-10162-01-255 0-10207-01-280 0-10210-01-41 ... \\\n0 0 1 -1 ... \n1 0 1 0 ... \n3 0 2 0 ... \n4 -1 1 -1 ... \n5 0 2 0 ... \n6 0 0 0 ... \n7 0 1 0 ... \n8 1 1 0 ... \n10 0 0 0 ... \n11 0 2 0 ... \n\n UMN-CL299Contig1-01-46 UMN-CL306Contig1-04-261 UMN-CL307Contig1-04-143 \\\n0 0 0 0 \n1 0 0 0 \n3 0 0 0 \n4 0 0 1 \n5 0 0 1 \n6 1 0 1 \n7 0 0 0 \n8 0 -1 1 \n10 0 0 0 \n11 0 0 0 \n\n UMN-CL319Contig1-03-131 UMN-CL326Contig1-05-421 UMN-CL339Contig1-05-39 \\\n0 1 1 0 \n1 0 0 0 \n3 0 0 0 \n4 0 0 0 \n5 0 1 0 \n6 1 0 0 \n7 1 1 0 \n8 0 0 0 \n10 0 1 0 \n11 1 -1 0 \n\n UMN-CL34Contig1-03-89 UMN-CL353Contig1-04-64 UMN-CL362Contig1-07-133 \\\n0 1 0 -1 \n1 0 0 2 \n3 1 0 -1 \n4 1 0 0 \n5 1 0 -1 \n6 0 0 0 \n7 1 0 1 \n8 0 0 -1 \n10 1 0 1 \n11 0 0 0 \n\n UMN-CL363Contig1-01-233 UMN-CL379Contig1-12-117 UMN-CL424Contig1-03-94 \\\n0 0 0 0 \n1 0 0 1 \n3 1 0 1 \n4 1 0 1 \n5 1 0 1 \n6 0 0 1 \n7 1 0 0 \n8 0 0 1 \n10 0 0 0 \n11 0 0 0 \n\n UMN-CL54Contig1-07-88 UMN-CL91Contig1-02-246 UMN-CL97Contig \n0 0 0 1 \n1 1 0 2 \n3 1 0 0 \n4 0 1 0 \n5 0 1 1 \n6 2 0 1 \n7 1 0 2 \n8 0 1 2 \n10 1 0 0 \n11 1 0 1 \n\n[10 rows x 3082 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>0-10067-03-111</th>\n <th>0-10079-02-168</th>\n <th>0-10112-01-169</th>\n <th>0-10113-01-119</th>\n <th>0-10116-01-165</th>\n <th>0-10151-01-86</th>\n <th>0-10162-01-255</th>\n <th>0-10207-01-280</th>\n <th>0-10210-01-41</th>\n <th>...</th>\n <th>UMN-CL299Contig1-01-46</th>\n <th>UMN-CL306Contig1-04-261</th>\n <th>UMN-CL307Contig1-04-143</th>\n <th>UMN-CL319Contig1-03-131</th>\n <th>UMN-CL326Contig1-05-421</th>\n <th>UMN-CL339Contig1-05-39</th>\n <th>UMN-CL34Contig1-03-89</th>\n <th>UMN-CL353Contig1-04-64</th>\n <th>UMN-CL362Contig1-07-133</th>\n <th>UMN-CL363Contig1-01-233</th>\n <th>UMN-CL379Contig1-12-117</th>\n <th>UMN-CL424Contig1-03-94</th>\n <th>UMN-CL54Contig1-07-88</th>\n <th>UMN-CL91Contig1-02-246</th>\n <th>UMN-CL97Contig</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0 </th>\n <td> 2</td>\n <td> 1</td>\n <td> 2</td>\n <td> 2</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td>-1</td>\n <td>...</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td>-1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n </tr>\n <tr>\n <th>1 </th>\n <td> 0</td>\n <td> 0</td>\n <td> 2</td>\n <td> 2</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 2</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td>...</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 2</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 1</td>\n <td> 0</td>\n <td> 2</td>\n </tr>\n <tr>\n <th>3 </th>\n <td> 0</td>\n <td> 2</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 2</td>\n <td> 0</td>\n <td>...</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td>-1</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n </tr>\n <tr>\n <th>4 </th>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td>-1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td>-1</td>\n <td> 1</td>\n <td>-1</td>\n <td>...</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n </tr>\n <tr>\n <th>5 </th>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 2</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 2</td>\n <td> 0</td>\n <td>...</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td>-1</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 1</td>\n </tr>\n <tr>\n <th>6 </th>\n <td> 0</td>\n <td> 2</td>\n <td> 2</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td>...</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 2</td>\n <td> 0</td>\n <td> 1</td>\n </tr>\n <tr>\n <th>7 </th>\n <td> 1</td>\n <td> 1</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td>...</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 2</td>\n </tr>\n <tr>\n <th>8 </th>\n <td>-1</td>\n <td> 2</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td>-1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 1</td>\n <td> 0</td>\n <td>...</td>\n <td> 0</td>\n <td>-1</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td>-1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 2</td>\n </tr>\n <tr>\n <th>10</th>\n <td> 0</td>\n <td> 2</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td>...</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n </tr>\n <tr>\n <th>11</th>\n <td> 0</td>\n <td> 1</td>\n <td>-1</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 2</td>\n <td> 0</td>\n <td>...</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td>-1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 1</td>\n </tr>\n </tbody>\n</table>\n<p>10 rows × 3082 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "pca_drop_std = z12_drop.apply(center_and_standardize)",
"execution_count": 34,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "pca_drop_std.shape",
"execution_count": 544,
"outputs": [
{
"execution_count": 544,
"output_type": "execute_result",
"data": {
"text/plain": "(607, 3082)"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "pca_drop_std[0:10]",
"execution_count": 35,
"outputs": [
{
"execution_count": 35,
"output_type": "execute_result",
"data": {
"text/plain": " 0-10037-01-257 0-10040-02-394 0-10044-01-392 0-10048-01-60 \\\n0 2.107587 0.047548 1.421714 1.890773 \n1 -0.866951 -1.367010 1.421714 1.890773 \n3 -0.866951 1.462106 -1.406722 -1.012134 \n4 -0.866951 0.047548 -1.406722 0.000000 \n5 0.620318 -1.367010 0.007496 1.890773 \n6 -0.866951 1.462106 1.421714 0.439320 \n7 0.620318 0.047548 0.007496 -1.012134 \n8 0.000000 1.462106 -1.406722 -1.012134 \n10 -0.866951 1.462106 0.007496 -1.012134 \n11 -0.866951 0.047548 0.000000 0.439320 \n\n 0-10051-02-166 0-10054-01-402 0-10067-03-111 0-10079-02-168 \\\n0 -0.266114 0.011785 -0.179495 -0.173554 \n1 -0.266114 0.011785 -0.179495 2.101516 \n3 1.729738 -1.402474 -0.179495 -0.173554 \n4 -0.266114 0.011785 -0.179495 -0.173554 \n5 -0.266114 0.011785 -0.179495 -0.173554 \n6 -0.266114 0.011785 -0.179495 -0.173554 \n7 1.729738 0.011785 -0.179495 -0.173554 \n8 -0.266114 -1.402474 -0.179495 -0.173554 \n10 -0.266114 0.011785 -0.179495 -0.173554 \n11 -0.266114 0.011785 -0.179495 -0.173554 \n\n 0-10112-01-169 0-10113-01-119 0-10116-01-165 0-10151-01-86 \\\n0 1.829378 -0.950368 -0.126562 -0.327354 \n1 -0.243688 1.968620 -0.126562 -0.327354 \n3 -0.243688 0.509126 -0.126562 -0.327354 \n4 -0.243688 -0.950368 -0.126562 -0.327354 \n5 -0.243688 0.509126 -0.126562 -0.327354 \n6 -0.243688 -0.950368 -0.126562 -0.327354 \n7 -0.243688 0.509126 -0.126562 -0.327354 \n8 -0.243688 0.509126 0.000000 -0.327354 \n10 -0.243688 -0.950368 -0.126562 -0.327354 \n11 -0.243688 0.509126 -0.126562 -0.327354 \n\n 0-10162-01-255 0-10207-01-280 0-10210-01-41 ... \\\n0 -0.210419 0.569546 0.00000 ... \n1 -0.210419 0.569546 -0.22353 ... \n3 -0.210419 2.042511 -0.22353 ... \n4 0.000000 0.569546 0.00000 ... \n5 -0.210419 2.042511 -0.22353 ... \n6 -0.210419 -0.903418 -0.22353 ... \n7 -0.210419 0.569546 -0.22353 ... \n8 1.925866 0.569546 -0.22353 ... \n10 -0.210419 -0.903418 -0.22353 ... \n11 -0.210419 2.042511 -0.22353 ... \n\n UMN-CL299Contig1-01-46 UMN-CL306Contig1-04-261 UMN-CL307Contig1-04-143 \\\n0 -0.141186 -0.388627 -0.560743 \n1 -0.141186 -0.388627 -0.560743 \n3 -0.141186 -0.388627 -0.560743 \n4 -0.141186 -0.388627 1.064324 \n5 -0.141186 -0.388627 1.064324 \n6 2.299313 -0.388627 1.064324 \n7 -0.141186 -0.388627 -0.560743 \n8 -0.141186 0.000000 1.064324 \n10 -0.141186 -0.388627 -0.560743 \n11 -0.141186 -0.388627 -0.560743 \n\n UMN-CL319Contig1-03-131 UMN-CL326Contig1-05-421 UMN-CL339Contig1-05-39 \\\n0 1.165155 1.034360 -0.2251 \n1 -0.506106 -0.580452 -0.2251 \n3 -0.506106 -0.580452 -0.2251 \n4 -0.506106 -0.580452 -0.2251 \n5 -0.506106 1.034360 -0.2251 \n6 1.165155 -0.580452 -0.2251 \n7 1.165155 1.034360 -0.2251 \n8 -0.506106 -0.580452 -0.2251 \n10 -0.506106 1.034360 -0.2251 \n11 1.165155 0.000000 -0.2251 \n\n UMN-CL34Contig1-03-89 UMN-CL353Contig1-04-64 UMN-CL362Contig1-07-133 \\\n0 0.740705 -0.044142 0.000000 \n1 -0.774024 -0.044142 2.041739 \n3 0.740705 -0.044142 0.000000 \n4 0.740705 -0.044142 -0.900924 \n5 0.740705 -0.044142 0.000000 \n6 -0.774024 -0.044142 -0.900924 \n7 0.740705 -0.044142 0.570407 \n8 -0.774024 -0.044142 0.000000 \n10 0.740705 -0.044142 0.570407 \n11 -0.774024 -0.044142 -0.900924 \n\n UMN-CL363Contig1-01-233 UMN-CL379Contig1-12-117 UMN-CL424Contig1-03-94 \\\n0 -0.277861 -0.064989 -0.779494 \n1 -0.277861 -0.064989 0.729526 \n3 1.686782 -0.064989 0.729526 \n4 1.686782 -0.064989 0.729526 \n5 1.686782 -0.064989 0.729526 \n6 -0.277861 -0.064989 0.729526 \n7 1.686782 -0.064989 -0.779494 \n8 -0.277861 -0.064989 0.729526 \n10 -0.277861 -0.064989 -0.779494 \n11 -0.277861 -0.064989 -0.779494 \n\n UMN-CL54Contig1-07-88 UMN-CL91Contig1-02-246 UMN-CL97Contig \n0 -0.904873 -0.472712 0.877175 \n1 0.567087 -0.472712 2.434228 \n3 0.567087 -0.472712 -0.679877 \n4 -0.904873 1.229051 -0.679877 \n5 -0.904873 1.229051 0.877175 \n6 2.039047 -0.472712 0.877175 \n7 0.567087 -0.472712 2.434228 \n8 -0.904873 1.229051 2.434228 \n10 0.567087 -0.472712 -0.679877 \n11 0.567087 -0.472712 0.877175 \n\n[10 rows x 3082 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>0-10067-03-111</th>\n <th>0-10079-02-168</th>\n <th>0-10112-01-169</th>\n <th>0-10113-01-119</th>\n <th>0-10116-01-165</th>\n <th>0-10151-01-86</th>\n <th>0-10162-01-255</th>\n <th>0-10207-01-280</th>\n <th>0-10210-01-41</th>\n <th>...</th>\n <th>UMN-CL299Contig1-01-46</th>\n <th>UMN-CL306Contig1-04-261</th>\n <th>UMN-CL307Contig1-04-143</th>\n <th>UMN-CL319Contig1-03-131</th>\n <th>UMN-CL326Contig1-05-421</th>\n <th>UMN-CL339Contig1-05-39</th>\n <th>UMN-CL34Contig1-03-89</th>\n <th>UMN-CL353Contig1-04-64</th>\n <th>UMN-CL362Contig1-07-133</th>\n <th>UMN-CL363Contig1-01-233</th>\n <th>UMN-CL379Contig1-12-117</th>\n <th>UMN-CL424Contig1-03-94</th>\n <th>UMN-CL54Contig1-07-88</th>\n <th>UMN-CL91Contig1-02-246</th>\n <th>UMN-CL97Contig</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0 </th>\n <td> 2.107587</td>\n <td> 0.047548</td>\n <td> 1.421714</td>\n <td> 1.890773</td>\n <td>-0.266114</td>\n <td> 0.011785</td>\n <td>-0.179495</td>\n <td>-0.173554</td>\n <td> 1.829378</td>\n <td>-0.950368</td>\n <td>-0.126562</td>\n <td>-0.327354</td>\n <td>-0.210419</td>\n <td> 0.569546</td>\n <td> 0.00000</td>\n <td>...</td>\n <td>-0.141186</td>\n <td>-0.388627</td>\n <td>-0.560743</td>\n <td> 1.165155</td>\n <td> 1.034360</td>\n <td>-0.2251</td>\n <td> 0.740705</td>\n <td>-0.044142</td>\n <td> 0.000000</td>\n <td>-0.277861</td>\n <td>-0.064989</td>\n <td>-0.779494</td>\n <td>-0.904873</td>\n <td>-0.472712</td>\n <td> 0.877175</td>\n </tr>\n <tr>\n <th>1 </th>\n <td>-0.866951</td>\n <td>-1.367010</td>\n <td> 1.421714</td>\n <td> 1.890773</td>\n <td>-0.266114</td>\n <td> 0.011785</td>\n <td>-0.179495</td>\n <td> 2.101516</td>\n <td>-0.243688</td>\n <td> 1.968620</td>\n <td>-0.126562</td>\n <td>-0.327354</td>\n <td>-0.210419</td>\n <td> 0.569546</td>\n <td>-0.22353</td>\n <td>...</td>\n <td>-0.141186</td>\n <td>-0.388627</td>\n <td>-0.560743</td>\n <td>-0.506106</td>\n <td>-0.580452</td>\n <td>-0.2251</td>\n <td>-0.774024</td>\n <td>-0.044142</td>\n <td> 2.041739</td>\n <td>-0.277861</td>\n <td>-0.064989</td>\n <td> 0.729526</td>\n <td> 0.567087</td>\n <td>-0.472712</td>\n <td> 2.434228</td>\n </tr>\n <tr>\n <th>3 </th>\n <td>-0.866951</td>\n <td> 1.462106</td>\n <td>-1.406722</td>\n <td>-1.012134</td>\n <td> 1.729738</td>\n <td>-1.402474</td>\n <td>-0.179495</td>\n <td>-0.173554</td>\n <td>-0.243688</td>\n <td> 0.509126</td>\n <td>-0.126562</td>\n <td>-0.327354</td>\n <td>-0.210419</td>\n <td> 2.042511</td>\n <td>-0.22353</td>\n <td>...</td>\n <td>-0.141186</td>\n <td>-0.388627</td>\n <td>-0.560743</td>\n <td>-0.506106</td>\n <td>-0.580452</td>\n <td>-0.2251</td>\n <td> 0.740705</td>\n <td>-0.044142</td>\n <td> 0.000000</td>\n <td> 1.686782</td>\n <td>-0.064989</td>\n <td> 0.729526</td>\n <td> 0.567087</td>\n <td>-0.472712</td>\n <td>-0.679877</td>\n </tr>\n <tr>\n <th>4 </th>\n <td>-0.866951</td>\n <td> 0.047548</td>\n <td>-1.406722</td>\n <td> 0.000000</td>\n <td>-0.266114</td>\n <td> 0.011785</td>\n <td>-0.179495</td>\n <td>-0.173554</td>\n <td>-0.243688</td>\n <td>-0.950368</td>\n <td>-0.126562</td>\n <td>-0.327354</td>\n <td> 0.000000</td>\n <td> 0.569546</td>\n <td> 0.00000</td>\n <td>...</td>\n <td>-0.141186</td>\n <td>-0.388627</td>\n <td> 1.064324</td>\n <td>-0.506106</td>\n <td>-0.580452</td>\n <td>-0.2251</td>\n <td> 0.740705</td>\n <td>-0.044142</td>\n <td>-0.900924</td>\n <td> 1.686782</td>\n <td>-0.064989</td>\n <td> 0.729526</td>\n <td>-0.904873</td>\n <td> 1.229051</td>\n <td>-0.679877</td>\n </tr>\n <tr>\n <th>5 </th>\n <td> 0.620318</td>\n <td>-1.367010</td>\n <td> 0.007496</td>\n <td> 1.890773</td>\n <td>-0.266114</td>\n <td> 0.011785</td>\n <td>-0.179495</td>\n <td>-0.173554</td>\n <td>-0.243688</td>\n <td> 0.509126</td>\n <td>-0.126562</td>\n <td>-0.327354</td>\n <td>-0.210419</td>\n <td> 2.042511</td>\n <td>-0.22353</td>\n <td>...</td>\n <td>-0.141186</td>\n <td>-0.388627</td>\n <td> 1.064324</td>\n <td>-0.506106</td>\n <td> 1.034360</td>\n <td>-0.2251</td>\n <td> 0.740705</td>\n <td>-0.044142</td>\n <td> 0.000000</td>\n <td> 1.686782</td>\n <td>-0.064989</td>\n <td> 0.729526</td>\n <td>-0.904873</td>\n <td> 1.229051</td>\n <td> 0.877175</td>\n </tr>\n <tr>\n <th>6 </th>\n <td>-0.866951</td>\n <td> 1.462106</td>\n <td> 1.421714</td>\n <td> 0.439320</td>\n <td>-0.266114</td>\n <td> 0.011785</td>\n <td>-0.179495</td>\n <td>-0.173554</td>\n <td>-0.243688</td>\n <td>-0.950368</td>\n <td>-0.126562</td>\n <td>-0.327354</td>\n <td>-0.210419</td>\n <td>-0.903418</td>\n <td>-0.22353</td>\n <td>...</td>\n <td> 2.299313</td>\n <td>-0.388627</td>\n <td> 1.064324</td>\n <td> 1.165155</td>\n <td>-0.580452</td>\n <td>-0.2251</td>\n <td>-0.774024</td>\n <td>-0.044142</td>\n <td>-0.900924</td>\n <td>-0.277861</td>\n <td>-0.064989</td>\n <td> 0.729526</td>\n <td> 2.039047</td>\n <td>-0.472712</td>\n <td> 0.877175</td>\n </tr>\n <tr>\n <th>7 </th>\n <td> 0.620318</td>\n <td> 0.047548</td>\n <td> 0.007496</td>\n <td>-1.012134</td>\n <td> 1.729738</td>\n <td> 0.011785</td>\n <td>-0.179495</td>\n <td>-0.173554</td>\n <td>-0.243688</td>\n <td> 0.509126</td>\n <td>-0.126562</td>\n <td>-0.327354</td>\n <td>-0.210419</td>\n <td> 0.569546</td>\n <td>-0.22353</td>\n <td>...</td>\n <td>-0.141186</td>\n <td>-0.388627</td>\n <td>-0.560743</td>\n <td> 1.165155</td>\n <td> 1.034360</td>\n <td>-0.2251</td>\n <td> 0.740705</td>\n <td>-0.044142</td>\n <td> 0.570407</td>\n <td> 1.686782</td>\n <td>-0.064989</td>\n <td>-0.779494</td>\n <td> 0.567087</td>\n <td>-0.472712</td>\n <td> 2.434228</td>\n </tr>\n <tr>\n <th>8 </th>\n <td> 0.000000</td>\n <td> 1.462106</td>\n <td>-1.406722</td>\n <td>-1.012134</td>\n <td>-0.266114</td>\n <td>-1.402474</td>\n <td>-0.179495</td>\n <td>-0.173554</td>\n <td>-0.243688</td>\n <td> 0.509126</td>\n <td> 0.000000</td>\n <td>-0.327354</td>\n <td> 1.925866</td>\n <td> 0.569546</td>\n <td>-0.22353</td>\n <td>...</td>\n <td>-0.141186</td>\n <td> 0.000000</td>\n <td> 1.064324</td>\n <td>-0.506106</td>\n <td>-0.580452</td>\n <td>-0.2251</td>\n <td>-0.774024</td>\n <td>-0.044142</td>\n <td> 0.000000</td>\n <td>-0.277861</td>\n <td>-0.064989</td>\n <td> 0.729526</td>\n <td>-0.904873</td>\n <td> 1.229051</td>\n <td> 2.434228</td>\n </tr>\n <tr>\n <th>10</th>\n <td>-0.866951</td>\n <td> 1.462106</td>\n <td> 0.007496</td>\n <td>-1.012134</td>\n <td>-0.266114</td>\n <td> 0.011785</td>\n <td>-0.179495</td>\n <td>-0.173554</td>\n <td>-0.243688</td>\n <td>-0.950368</td>\n <td>-0.126562</td>\n <td>-0.327354</td>\n <td>-0.210419</td>\n <td>-0.903418</td>\n <td>-0.22353</td>\n <td>...</td>\n <td>-0.141186</td>\n <td>-0.388627</td>\n <td>-0.560743</td>\n <td>-0.506106</td>\n <td> 1.034360</td>\n <td>-0.2251</td>\n <td> 0.740705</td>\n <td>-0.044142</td>\n <td> 0.570407</td>\n <td>-0.277861</td>\n <td>-0.064989</td>\n <td>-0.779494</td>\n <td> 0.567087</td>\n <td>-0.472712</td>\n <td>-0.679877</td>\n </tr>\n <tr>\n <th>11</th>\n <td>-0.866951</td>\n <td> 0.047548</td>\n <td> 0.000000</td>\n <td> 0.439320</td>\n <td>-0.266114</td>\n <td> 0.011785</td>\n <td>-0.179495</td>\n <td>-0.173554</td>\n <td>-0.243688</td>\n <td> 0.509126</td>\n <td>-0.126562</td>\n <td>-0.327354</td>\n <td>-0.210419</td>\n <td> 2.042511</td>\n <td>-0.22353</td>\n <td>...</td>\n <td>-0.141186</td>\n <td>-0.388627</td>\n <td>-0.560743</td>\n <td> 1.165155</td>\n <td> 0.000000</td>\n <td>-0.2251</td>\n <td>-0.774024</td>\n <td>-0.044142</td>\n <td>-0.900924</td>\n <td>-0.277861</td>\n <td>-0.064989</td>\n <td>-0.779494</td>\n <td> 0.567087</td>\n <td>-0.472712</td>\n <td> 0.877175</td>\n </tr>\n </tbody>\n</table>\n<p>10 rows × 3082 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "pca_drop_std.describe().ix[:,0:5]",
"execution_count": 36,
"outputs": [
{
"execution_count": 36,
"output_type": "execute_result",
"data": {
"text/plain": " 0-10037-01-257 0-10040-02-394 0-10044-01-392 0-10048-01-60 \\\ncount 6.070000e+02 6.070000e+02 6.070000e+02 6.070000e+02 \nmean 5.852906e-17 -1.755872e-17 4.682324e-17 -4.389679e-18 \nstd 9.303810e-01 9.941637e-01 1.009829e+00 1.021606e+00 \nmin -8.669507e-01 -1.367010e+00 -1.406722e+00 -1.012134e+00 \n25% -8.669507e-01 -1.367010e+00 -1.406722e+00 -1.012134e+00 \n50% 0.000000e+00 4.754816e-02 7.495854e-03 4.393196e-01 \n75% 6.203181e-01 4.754816e-02 1.421714e+00 4.393196e-01 \nmax 2.107587e+00 1.462106e+00 1.421714e+00 1.890773e+00 \n\n 0-10051-02-166 \ncount 6.070000e+02 \nmean 8.779358e-18 \nstd 7.036968e-01 \nmin -2.661136e-01 \n25% -2.661136e-01 \n50% -2.661136e-01 \n75% -2.661136e-01 \nmax 3.725590e+00 ",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>count</th>\n <td> 6.070000e+02</td>\n <td> 6.070000e+02</td>\n <td> 6.070000e+02</td>\n <td> 6.070000e+02</td>\n <td> 6.070000e+02</td>\n </tr>\n <tr>\n <th>mean</th>\n <td> 5.852906e-17</td>\n <td>-1.755872e-17</td>\n <td> 4.682324e-17</td>\n <td>-4.389679e-18</td>\n <td> 8.779358e-18</td>\n </tr>\n <tr>\n <th>std</th>\n <td> 9.303810e-01</td>\n <td> 9.941637e-01</td>\n <td> 1.009829e+00</td>\n <td> 1.021606e+00</td>\n <td> 7.036968e-01</td>\n </tr>\n <tr>\n <th>min</th>\n <td>-8.669507e-01</td>\n <td>-1.367010e+00</td>\n <td>-1.406722e+00</td>\n <td>-1.012134e+00</td>\n <td>-2.661136e-01</td>\n </tr>\n <tr>\n <th>25%</th>\n <td>-8.669507e-01</td>\n <td>-1.367010e+00</td>\n <td>-1.406722e+00</td>\n <td>-1.012134e+00</td>\n <td>-2.661136e-01</td>\n </tr>\n <tr>\n <th>50%</th>\n <td> 0.000000e+00</td>\n <td> 4.754816e-02</td>\n <td> 7.495854e-03</td>\n <td> 4.393196e-01</td>\n <td>-2.661136e-01</td>\n </tr>\n <tr>\n <th>75%</th>\n <td> 6.203181e-01</td>\n <td> 4.754816e-02</td>\n <td> 1.421714e+00</td>\n <td> 4.393196e-01</td>\n <td>-2.661136e-01</td>\n </tr>\n <tr>\n <th>max</th>\n <td> 2.107587e+00</td>\n <td> 1.462106e+00</td>\n <td> 1.421714e+00</td>\n <td> 1.890773e+00</td>\n <td> 3.725590e+00</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "prcomp_res_drop = prcomp(pca_drop_std, scale=False, center=False)",
"execution_count": 37,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "x_drop = com.convert_robj(prcomp_res_drop.rx2(\"x\"))\nx_drop.index = pca_drop_std.index\nx_drop.ix[0:5,0:5]",
"execution_count": 38,
"outputs": [
{
"execution_count": 38,
"output_type": "execute_result",
"data": {
"text/plain": " PC1 PC2 PC3 PC4 PC5\n0 -4.333631 1.477887 2.473628 -2.610228 3.732781\n1 0.972361 -8.577780 2.513130 8.103148 2.426614\n3 -5.587363 4.702591 -5.712560 1.822264 -5.001879\n4 -6.356667 6.632884 -6.070111 -0.607114 4.199792\n5 -3.653699 2.052517 5.030496 2.775605 6.097295",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>PC1</th>\n <th>PC2</th>\n <th>PC3</th>\n <th>PC4</th>\n <th>PC5</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>-4.333631</td>\n <td> 1.477887</td>\n <td> 2.473628</td>\n <td>-2.610228</td>\n <td> 3.732781</td>\n </tr>\n <tr>\n <th>1</th>\n <td> 0.972361</td>\n <td>-8.577780</td>\n <td> 2.513130</td>\n <td> 8.103148</td>\n <td> 2.426614</td>\n </tr>\n <tr>\n <th>3</th>\n <td>-5.587363</td>\n <td> 4.702591</td>\n <td>-5.712560</td>\n <td> 1.822264</td>\n <td>-5.001879</td>\n </tr>\n <tr>\n <th>4</th>\n <td>-6.356667</td>\n <td> 6.632884</td>\n <td>-6.070111</td>\n <td>-0.607114</td>\n <td> 4.199792</td>\n </tr>\n <tr>\n <th>5</th>\n <td>-3.653699</td>\n <td> 2.052517</td>\n <td> 5.030496</td>\n <td> 2.775605</td>\n <td> 6.097295</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "plt.scatter(x_drop.PC1, x_drop.PC2)\nplt.show()",
"execution_count": 1211,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAncAAAG4CAYAAAAnnMGeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXucVPV9//88SpZsYBrTmssmQEm+2VkTYxJgIUvTfqk6\nlHYTLiZVvCEqq4YVdbetYBsgDasJkKQsiNDokhg31aC/rwGM1HRXU9pvv6wIeInGDLTRgEKatNWy\nILJd/fz++JzhzOXMdWd2zsy+no/H57EzZ87lcz47O/ua99UxxiCEEEIIIaqDM8o9ASGEEEIIUTwk\n7oQQQgghqgiJOyGEEEKIKkLiTgghhBCiipC4E0IIIYSoIiTuhBBCCCGqiFHFOElDQ8OXgG8BK6PR\n6LfcbWcDW4BzgbeBHcCt0WhUtVeEEEIIIUrEkC13DQ0Nm4DfA14A4oXb3wKvRKPRjwKfBmYAXxrq\n9YQQQgghRHqK4ZbtikajVwEnYhsaGhpCwFzgbwCi0egbwLeBK4twPSGEEEIIkYYhi7toNLrfZ3O9\n+9q/xW07iHXRCiGEEEKIElGqhIoxwEDStpPudiGEEEIIUSJKJe6OA6OTto1xtwshhBBCiBJRlGxZ\nHw4AbzU0NNRHo9GD7raPAc/meLwyaoUQQgghwMn3gGKKOyc2gWg0eqKhoeH/A/4KuKahoeEsYDHw\nzTzONwt4uYjzG4lMBH6M1rIYTERrWSwmorUsFhPRWhaLiWgti8VEtJbFYmIhBw1J3DU0NJyJzZI1\nQA3wew0NDbcD9wE3Al0NDQ3/CrwFPBCNRr+Xx+lfxloAxdB5Ga1lsXgZrWWxeBmtZbF4Ga1lsXgZ\nrWWxeBmtZVkYkriLRqNvAe/MsMufDuX8QgghhBAiP9R+TAghhBCiipC4E0IIIYSoIiTuhBBCCCGq\nCIk7IYQQQogqQuJOCCGEEKKKkLgTQgghhKgiJO6EEEIIIaoIiTshhBBCiCpC4k4IIYQQooqQuBNC\nCCGEqCIk7oQQQgghqgiJOyGEEEKIKkLiTgghhBCiipC4E0IIIYSoIiTuhBBCCCGqCIk7IYQQQogq\nQuJOCCGEEKKKGFXuCYjCcRwnBE2L7bO+zcaY/vLOSAghhBDlRuKuQrHCrqUX1k2zW9q/6DhORAJP\nCCGEGNnILVuxNC22wm4sdqyb5lnxhBBCCDFSkbgTQgghhKgiJO4qlr7N0L4HjmNH+x67TQghhBAj\nGcXcVSjGmH7HcSLwvBIqhBBCCHEaibsKxhVza8s9DyGEEEIEB7llhRBCCCGqCFnuhBBCiICjuqYi\nHyTuhBBCiACjuqYiX+SWFUIIIQKN6pqK/JC4E0IIIYSoIiTuhBBCiECjuqYiPxRzJ4QQQpSZTAkT\nqmsq8kXiTgghhCgjuSRMqK6pyAe5ZYUQQoiyooQJUVwk7oQQQgghqgiJOyGEEKKsFJYw4ThOyHGm\nL7XDCRV7VqU+vygdirkTQgghykghCROlLmyswsmVjcSdEEIIUWbyT5iIj9MD+/j5xcBaK8wab4FR\n02GgD/Z35i/K0p8/v/OIciBxJ4QQQlQJVtgt+gl0TrFb1jXDuXMcx7lAVreRg2LuSoRiFYQQQpSO\ndHF6TYutsItl3rYDMxrzz75V4eRKRpa7EqBYBSGEEKUkXZye40wv6fmLcnJRciTuSoJiFYQQQpQW\n/zi9vs3QdkmcWxY4uBf6NmfqgpH7+UUlIHEnhBBCVAmuxe18eDYhocK+muJRmgdNC+xzWeaqCYm7\nktC3Gdq/GPdHpFgFIYQQw4Ir0m6P3+Y405emepT+vQ/un2CfK3yompC4KwGKVRBCCBFs+oGJE2Ab\nMBeFD1UXEnclQrEKQgghgkO8R6kfWDEAnTX2tQ3ANeWcnCgyEndCCCFElZPkUZoBPc2ei/Zm4PJD\nCh+qHiTuyky+2UtCCCFEIcQ8Sm65lObEV4/eU+7/P/p/WDwk7sqI6uEJIYQYfvyS/vauL+eMvP+H\nq6bBTuC9NzqO02SMOVrOeVUqEndlRfXwhBBC5Eahli2/44KX9Ne02Aq772LdxPMnwJInHcc5t/xz\nqzwk7oQQQoiAU6inJ8txATMk7MQKu5jBY+N4iMrgUQDqLVtWKqN3n/rkCiFEuYn39IzFPvb6xab/\nnM58XHDo2wzbD5V7FtWCLHdlJJim8UQUFyiEEMGmGj6n3f+HTbDkSWuxg6AaPCoBWe7KjDGm35jd\na+0I4h9ipXzrE0KIaiaTp2dyGzRNswWJDYmf08H0EPlZGm3yxPfOhZnL7OiqKIEaJGS5E0IIIQJO\nOk+PFUYLr4P57p6JBYmD6CHKZGkMZixg5SFxJ7KgPrlCCBFcmhZbN2b6gsTBE0yqFFFqJO5ERoL4\nrU8IIUYKXhmTgdGwaC50TrGvWGsXNPkcVf6CxKK8SNyJrATvW58QQlQ/ie7LrVjXa7K1K3NB4uHo\n+mCv0XgLjJoOA309PWt+FIlEMhwhj1CpkbgTQgghAkl8ooQ/mbwrw5FFa6+x6CeeRXFd8+zZP7jk\n17/+DKGQf+UseYRKj7JlhRBCiIBhRdN5bqLEPOAQ8E1sxutRbFzdYI3jOCG/qguuxe4H+VQ7KKym\nadNiK+xi12jnzTenf2LTpu0Zjwp+pYjKRpa7EYoaNAshRJBJTpS4Fbj4MHz2Xph0Ndw/AeiA9tnJ\n1jjPYtc0LderVUOtPOEhy90IxPsj7lljR0uvOk8IIUR6gtGp5z9/BjUDnuhLZ42LZaNegi2NkkuN\nu0JrmvZthrZ93jXW8c537n6+tXVuoTcpioAsdyMSpaELIUSulMeqlZx0sA7YPgtu+Fju5wgBN2GT\nMbp2Qt+lxZ6zGz93Pjx7OqHikUfW/CgUCu0v5nVEfkjcCSGEEBkZ/i/EcUkHP4CWZmjDirVvT4Al\nhzO36IoXhg7Qtye7sCs8g9U97+1xm8I53qYoERJ3IxKloQshRNCxAm/6Lpjf7AnLEPDTe2DmKfs8\nNWa6kGxUZbBWFxJ3IxD9EQshRD6U8wux37X3d+Yi1sjTsqiaptWDxN0IxRV4m627oWmx4zgSeEII\n4UM5vxDry7goBIm7EUq50t5VgkUIUYmU06oli5rIF4m7EUthAcJDEWeqoySEEEKUHtW5G4G4NZpm\n2PT43HXV0OvjFVpHSQghRK4EoyafKCcSdyOMOIHWbNvadGJb2eQSICxxJoQQQUZF6gWU0C3b0NAw\nEfgFEE166bPRaPS/SnXdaiDJ9dkNTQvcx0WIUUt2x7YDM0tS3DIVlWARQojSklvIjeKfq5uSx9xF\no9E8qmmL1Li0thXQMdbWNvJi1Ir8h7krt+OHJs6U9SWEEOVH8c/VjxIqAkfyt67OsbANuJLYNzBb\nwqTQP8yhVSEfqjhT1pcQQpSSXD7j1YKy2im5uGtoaLgPmAS8CayPRqPfL/U1q5/C/zCHKtAkzoQQ\nIrjIQyKgtAkV/cAW4JvRaPQ8bGO8bzc0NPxBCa9ZBfRttt+0jmNH23G40H1cnBg1Y0y/MbvX2lHY\nH72ysYQQIj3l/IzM/hnf123708b+zyj+udoomeUuGo3+J3Bd3PN/aWho2AHMAf45h1NMLNHUAo0x\nht7e3i+1tl57GcBNN/3B9jvvvGUuwKZN1z8QidxT19vb2zNnzrIrTp5c80mA2tplz+3Y0dFDarPm\niUk/i0Jvb++Y2trWe+Ouf0Vvb+/VkUjkRDGvEzAmJv0UhTMx6aconIlJP0XhTEz6WTDJn5GjRt3S\nduedd1580003/Wao5y7e3JaPh+/hONuOjR8/eu+WLT0fBYr1GT4x6aconInAgXwPcowxxZ8K0NDQ\n8B7g7Gg0ejBu24PAwWg0+uUsh5dmUhVMf38/mzZtB6C1dS5AwvNQaPi+GK5Z831uu20enlv4OKtX\nb2PZsiuHbQ5CCBFU/D4jx427mZ/9bP2wflb74c3NAHcCNwMwdeoGHn/8prLPT/ji5H1ACcXd54Dv\nAFOj0eihhoaGTwD/D7gwGo0+leVwA8wCXi7J5CqM3t7eMXPm/DD+W+DR8eN/s/Xuu2++L4u1bCLw\nY4q8luHwJS0HD37n1vgPrvr6a79x4MCDXcW6RgCZSAnWcoQyEa1lsZiI1rJYTKRIa+n3GQlbqa//\ncdk/J725bQMSBWgRP8cnovdlsZgI/EO+B5VM3AE0NDTcDLRixdqbwNej0eiDORxqgAYKMEVWI44z\nfaktRpn4QQF9e6ArU5ZsGFtnsKhr6ZNGn20e1UBJ1nKEorUsHlrL4lG0tbSfkQtfgI3j7ZYNwDXA\nF5YZs7usCWne53fTNFvIPv7/ysxizU/vy+IRpoA1LGm2bDQa3YB9V4uiM5pypa8rG0sIIdLjfkZ+\nBv6rD+ZOsMJu2V4YrLFf1sv3mel9fu9vg3++zhOgSqqoJlTnriJIrlu0Abip4LMVowByckmU5HPa\nn6p+LoQYmRhjjjqO8wn4zWLYNBomzYWfdNhXy1s02L1uh+M4nRDV53QVInFXAXjftJ65Bequg29P\nsPGV+X/TKkVlcp+uGpfAgIFNjcW6hhBCVBqxL8HWWtc5JWhFg1W3tHopZZ07UURs3aKnbodHPgFf\nWAYzl2WKc3McJxQOX9KyZs336e3tHeO9El8AeSz2cczCVijJ5+ycAjMai3sNIYSoPoJQM7TYc+jt\n7R2zZs33CYcvaVEd1PIgy12Fkcs3rZgl7eDBddNuuw3e+c62+9588y+3wqgBeGNs6hGDNf7nyO5W\ndfebkcPUZziOI7O/EGIE4t8SLAg9Xos9B8dxQm6NP2DerfDuGfLclAFjTBCHMcaEAzCPihzQtBT6\nDRgDxwysMvZ5v4GrDsOX456vMtD4mD2GkD2eELQ86e3T8mTstcTrxPY7knSNRXthwVOJ1ziS9jwV\nMsLGovel1jJIQ2tZIWtpPy+bliZ+1sZ/Vhv387Jp6XDed7HnEIR7qrJR0PtRlruAUoykB8t2oB0v\n1uOucXAftsYRQAvwwVkwf1bsG1vuvWvj92vDlmfp2gl9l9rXD/4AWprta6EM5xFCiOrGVFl8W/H+\nR4lSoJi7AOKZyXvWwMNrYPbzjjN1ee6xC/H9aU/5vP7YIVu8ch7QBVzC0GPjQtiaSewyxvS7f+i7\n7DaFXAghRCrJvcTLUY4k/zkk/o/qWQMtvd7/p77NtbXLnlPf2jITAJOj3zCFmiKrYXhm7WMG7jB+\n7lEgBJNXQNOj0LicJHcnEKqvv3jtV796t3nnO7/006Rz1LnugUetu9QkmM/J2y3rv1+u56mQIfeX\n1jKIQ2vpM/BxgQZ1LQuca1nnkM312tPTM2n16m5TX3/x2gr+zA/KKOj9WO5Jpxum0BuqhuH94XS7\nsWrdcY9j4mvBU16c2xEDnz/sI/LCxhizYcOGz1oh1/QoUOddJ734yvWPPdt+uZwnCB9uOQz9E9Va\nFnUU6X1fNWtZrM+BIXypLNtaVshnYNx8s8bVVc37MgBD4q5ahvfhtDEpUWGVca11S6HLZLPuGWPC\nx44dM7W1rc9mtq6V70Olgqx7+rDSWhZtFPF9XxVrWczPgSEE9JfRclcRn4H5zLkq3pcBGUqoqBbM\n6aLFUx+CJ2Z5iQ3twA6TuPd24GbSJT9s2rSdkyfXfNJ7fdU0eP4HjjN9V1wQbEFBvsUJqM01eUOI\nakLv+0T818NxnM3VH7Rfee8F73+UWlAGFYm7gGL/eKY/AcxKfGXUgA1Orb8YjjTCB/M4az82gaKn\nGfqb4YYbHWfqPbB3fb5/mGlqI82DpgX2eeIfe2Yh2I+XvXthDvsLIaqfwZrC6q/515Qr7VxHHkMx\nDIhhIAAmR79hCjVFVtMga0zceR0w7efwudds3F02t2w6V+7CQ9bdezrRIsVFS5L7NrWW3kYDC15L\nP9e091EHi/rjauT1Ax8NoJtCbgatZdFGpr+JkbiW/usxeUWh9dKSP6+CvJZFfC8EaVTF+zIgQzF3\n1TBSRZT/h1TqB8JpgZYS99DT0zPJvvaZn1uBFxN5Ju5D8y6TKLKyibPYB29MKPqd034QZ4qBSfPa\nowEsgqkPK61lUUeBAqRq1zLzF0gzHJ8DSqiogrWswqGYu0rHz9Vp+8fu9jF9J8dpbBwPM08ZH5fF\niy+++C447zq7D8AS3Jp0cfwr0DnWP+7DLybk/Eesu6Npmo3520aezHDjafI9ToiqwMitlUDyetjP\nh5HhXtV7QRQbFTEOFPEiaqhFhS39/f382Z898ZAVdrHzfh2bnBErMrkO+FieZx41AF0R25EC4AKs\nyNsCHCXxgzi5SOY64OFmK2T7un0KaLaUv7CnEIURhEbw1YAVPF0RmLnMji71JxUiR2S5q1hyCxre\ntGk7g4Ofr0s9fjS2XRjYLhZ/CLQdt9a75PP5X8vYjKkWuH4PfGwcbHDPd+MrcN+82AexOZ1Z9cxD\nMH0WfApPvD6/wH6AJ2ZdKRNLVCKlbgTvk2hUjNMGFlm0hCgMibtA4S+i/DJH8xNAzVjhdbP7vA1r\nYYu5WY8DM3dai9kLKdmu6a7l/iPbBpPGwVUk9q89sABY6829sQbqz4WvuftsAK4hdn6SPsD1oS4q\nk9KVtfATjr29vV+KRCJDPbUQosqQuAsQfiIKGAsLn/Ti5TxLgE+MSsq3+tbWufz1Xy99/s03V37C\nWup2nII/HJ169bfPBI77x/elE1uxf2T+8Xap/4zWAQabJ3IzcPkhuVuFyJVU4djaeu1lBw5I3I00\nVCpKZEPiLmDEiyj7Bzy7z4uXg3SWAL9v9Xfeeeefvfbau/if/zl8NvwQ64qtfQHufRSeucZa2ABW\nAwtnwft+5jjO+dD0Bbu9rzu+bp392RQnPGPJEHNJtAzGXLrJ/4zasULwSvf50Xv0oSSqC9VYE6Wl\n1K5/USUEIM3Xb5hC03+raSS2GTMZywGklg04YkaNuvaIV77kDrdsiT3eljK5yaS2OFt0yquZt6jf\nezx/n+1f22XstpYngTqvRMoBAxf8F0x7DLd/rX8pg9j9VFwtJ6X2ay1zGpSorAU+JYl6enomVfNa\nDvOoiPdlGUrEVO1aVshQKZRyUVoTeXK83JLD6S0B8Z0efs3g4O/V2edz8cqVzHNfrzllExvAWtRi\n1rXOGlgJTAY6xsLj7vEfmAy3u/tswG1j5iZD7G+zpVa2jwdmQfs2614myYrRtg+e3g5dp+RKENWK\nKVG8qPEJ24hE7vFJlhJCjHQk7oZIoSby3ARh32ZY+UUrpLYC2w/BI02xfZPO8TCsWGGzXfuBv3wb\nNrqlbmLJC6dIdBPVXwxnNKbWvDsXKwLXAR/A9q+9HSsA+4H3u88HL7Cu2UHj5zo2ZvdaZb0KUTx8\nhKPE3YhDrn+RHYm7IZN/dlyugtDvm3qisIs/x5Il1tI2Fmuh23iGN6ebgUtPwuFvwnPfMKczXV/c\nDm+9DounwuZ3u/PHZtOOxVr07sMrh9gP3Omebz6wbha0zIIbDqW719g/o5gQdZzpSOQJIURhZPq/\nIEQMibuykLsgTO/i8etQsRVYlOaazbXw9Cx47huO49TZRI25E6zbt30/XPgbOON34b5zbDZrjO6d\nMNAH/3gRvGeSdeXGMl7bgQeA8yfAnJPwxVr4ArAy4ZukAoCFEEGnt7d3zL59v2LLlh0tBw8+1BHk\nz6dSuf5F9SBxN2SCZCLffgjmT4ALSSxIvAG4CbhqmhcfFyutchvw/snQ5Z6j7bi1AIZw7+VSu33S\n3MQadTdh6+O9gHXRXldrrX5//go8MA/AcaYvtftPHp2PdTPXGEaVAxBCFAPHcUK1ta33njy5Bph3\nK7x7hr6AioomAJkgfsMUmiFSjkGe2XH4ZL3lclwO56iLm0fdb/3WhT+BuwzcbaDbzXJtejQx08o3\nG/fR+HtJn/W60OfYLgONyxPntvCQvXbCNXyzu+x9Ldobl727129tirGGeQ5lf2ktgzi0lkUYFZKB\nWklD78virmXex8lyVwRMniZyk0fMRDrrlHeO/W1Q0wSDu5MOPX777XOX33bbz/7vG2+sdje1HYeB\n/VhfbBZOd6Gog6ZrrMv3EjyX7X4S3bfxjJqe6jK+/BDcP8E+z2TdbLwFOqfEZe9OgWdvwUvVdSld\nJwAhhBCikpG4KxO5CMLcYtUmf959vRnalsW5VL+4bt3ju994YzNeeZSOsfD5ASuuYuc8hHWntrv7\nrAMeboaVvY7jXAGLnvbcu+uAFuAvD8PX3ezY5GMP7rUxeskC8ug9MHPAPs7kQh013W9bssj1CigL\nIcRQ6dtcW7vsipMn13zSPlcGqqhwAmBy9BumUFNkNY1srgL/17tPPw6F/vc/JRYoXmVs8WJC1nU6\n+5fWXXrEwOfegL9xCx2fvtaLqef/zL8DH7Wu1n732AUGWg00PmbPTZ33uq/LOK371M4vec7ndfi7\noOWWrdChtdRaBm709PRMWr2629TXX7y2xJ8lI2HofVnctcz7OFnuqpi3335rFHwQr5BxO7DDGGs1\nu91xnC2AmzV7T62XVJGJae+D8/4O9twLW1fYlmZ3AQ5w/v+1+yx6BDrc7N1tr8CProCWbblly+7v\nhHPnwNZG+/zgXhh9yscF6xZQVjkAIcTQiUQiJyIRWLbsyi5s3SchKhaJu0CTLRM3+fVYputxoHXv\nqVPhD3sFimOFjEcNeMc3LbBxcPG9X78HvBObedt3LbT9o+1aAbAUeAuonQYD/wj/+DT84SR4EHgJ\n+NhceHu0FzO3CJg/Di7cmCrOnrnFcaanuGmNjfO7AA7Gu2AX+62OGYZyADF3cH39+LP37dtCKJQu\nzlCMFJSlLYQIOhJ3AcZkSbzweb0bXlhgHw/WDA7+pCOpkPHrdp909ANPvg6bzoLmCfC+f4BlNfBX\nwL9iu1VscPd9ow1e/w9PPK4D1jTCPB/1c8bvpm6ruy4uwSLBkpcs2hzHKUu5mfiYx4MH4cILN/C1\nr00bE4lESn1pEVBUs1EIUREEwJ/sN0yhfmYNO/zj8e5KiE0jpZzI7F96x3QnlTnxK5lykbs9Vmbl\nLgPzX4Mvu9u7DNzmEzOXe2kU734yl5vJ9noh+/utYX39xWvL/butglGx8TgBLJlRsWsZwKG11FoG\ncSjmbiSQ5BLqtq5VSHUPJWd/xRcytiVDTEo5lbfPBCbkPptRJFruel+DH7zHxu7Ftt84AD/dBD9d\n61kYB0ZDaFU+920yuGDztabI+iKEEKKqCYAq9RumULVazYMUS9uifmsB888W7enpmXT++a2uBS2W\nBXvEwLTHYharxHMecc95+vEp71pX7odFx+OubVKtb429aYoiu9fyCiwXM9M1X2tKrvsnr/fUqXeY\nnp6eSeV+H1TBqNhv9al/gyXP0q7atQzg0FpqLYM4ZLmrRhItdY01iYkJnWNtJuyVpCviG40eA45g\ns1mPYmsBPz4LmGXj2Pb/yDvnWGxCxpzX4YqzbLzd5Ydsjbq96+0OLzwBU8+BSaQWMR74f3D/ZOA9\niQWPB0YnW8qga57NeIVSBqUPJfjdxMU01tePP/vxx7fcGgqFTpRinqIyMHkUIBdCiHIhcRdgUt2H\nlx/K7RgrZj784ffWHTkyF1tPeBu2q8QaErNWZ/5H4hlCWGG3yH1+/wSYOeD+A+t3HGca1D8BTiMs\nAb7uHtO6F6Y2Q+d73HNjCx6v3ANnGL9SJsbsLlKmq39WcTr3K5Bzgobx3MFh4NbizFdUMqYEWdrK\nwBVCFBOJu0CT3GLr2xNgyWHbzgsSS5+077ExeJ6YOXz4lqPwv4G/xYbSDWIzYsfGXWNwN9z4Sbhr\nnH2+klQNMzDacaYvdZ90Q40DV2HHja/A83dbARefndsOzNwJfZemKWUyw3GcovwTS2dNsXNObVFm\nzO61I8X6ItEQfBQDKoQoNhJ3FUUI+Ok9MPOUfR5f+iRWD84TM4OD6+s++MHFHDnyv7AJDvOBtjeg\n411ui7I9rrv192HrOFuQ+C+wCRGxlmKtx+HTF8H6Sfb55TdCxwSvpdnqcfCFU2kmvMsVXt2wZIkn\nSpcDVzZD/ROO41xQLIFHnv1989m/EpFoqBTK0ydZwl+I6kXiLtD4uRv3dyZ9CMfVg0tty3ruue/h\nyJG/IC5O713WosYuN9t2sS1M/BJwm7vPKeA+YC9w7li4cZJ3/KwJieJvHTambn9n4lyXHIa+bldg\nbINV420R5DfwXLn/1QiT2xzH6cz1n0x+/5CyFYGudsojGkTwkfAXosoJQCaI3zCFZohU2yCP+m0k\nZfLV1rY++9WvZspeTci8PQ43+GTWXpx0/F0+55vc4V6/ztbK63KPbXnS9rCN7d/uc+y0x1Jr4FHn\nf2+TV/j0rM1hTRLXL581jRsVl/0VwJpsFbuWpf09DSkDt6C1DPB7o5xD70utZRCHsmWrEZOj+9Cz\naO3/EZz/CIwa2LGjo+czn/nM/tWrlz3n1buLWa+SrTodY+CiX8PU93ln3Qmsx9bIuzm27SRcVZt4\n9ZrJ9ufkFtundjT2vLGEjX6sG9cv5u/tUYnz2Dge/qvPcZxPuPceZ2VommZdy7lbopLXb2RZLEa6\n5TIYZLM2G2XgCiGKTQBUqd8wharVkThI/80/bIwxPT09k1KtV/Hf3I8ZWGW841e5lrfPveZ1nrjE\nWMvex3bB4rh9FxvbgYJQolXtDvcc53Uk1su7zni1+b5i4I9eS7UgdCVYEby5JnfNyN/aMASLRUV+\nE6UwK2WpR0WuZeHrX9K6eAVa7gJXry8IY8S8L7WWFTVkuRu5pI2t2gYQiUROGBNJsm7FW3UexMbQ\npWS63gIrnoHOMTYzdh1wXhjGAFvdfX8bcIydw8bxib1sLz8Eo09BZ423/W+wvWqnAX8OHD8L/szd\nDtZKeA02ri+ZuSRaEWWJyoYZAYkjwSaYcY9G1kIhqhqJuyFQCdlm/f39TJmyqOXgwcP/ET/HpA/3\nGdDc7GXAXgiwC5q+YIVdvOjb+gH7OFYH7zjw+BS7fzJH74FRA3GzwQpJsEIthC2u/Clszbw/wAq7\nladFm13jyaO9EjDXEF9YOf81l6tSCJDwF6KqCYDJ0W+YQk2RwzUosVuD0+60xuU2kSBTg3v/uWzY\nsOGz48YndqdvAAAgAElEQVRdYxITHFLPAdR5bcdibc2o83dhdhm4KS7pot/YOfolU8S3Nzvi4/o9\nYCA2vwMGmh5NTXyIb402+5futYa0zlRRQkWB91LuEci1LN3vJ3hu2dLeb8W9HwO5lhU+tJbFXcu8\njyv3pNMNU+gNDdcoZbZZ6j+EVSaTOPOO8T5UgdCoUdceSY2B8+uh6n8v9jyL9ibO48vueb7sxuL9\n0avwySfgyte9/a46TFzGqzu3RxOvccTAgv9JEpQfTbyHQGX0Be7DahiEw4hZy9L/nkomeAKzlhX8\nfgzcWlbB0FoWdy3zPk5u2UCSHKfTjnWZpo/XMSlZodOXDg6ur0uMgduafFhGjHXdzoYje2DMOPhD\nbOwd2IzYq4CrPghLPggb8a511zh4sdtxpuyCmlPAZqzbttk7+05g06jEPrm/fty2OwOv761ITzDj\nuUQiyX+b1Yvej0IEhTPKPYHKpW+zjdc6Tlz7r4DGbvVjhd39r9nCxcn0dduYNr97aVoAD46zMXIL\nsUbB7XgJGGOxsXLJ3HAhzFsFD6+BBU/AG2Ntq7LYNba9knrM3AlgsEK2aRoMvqNy1lgIIYQICAEw\nOfoNU6gpcjgHJXK3UIBb1u8ctbWtz6bGui3aGx/D513riBv7NvuXJLhUY67RV41XhDi5MPKRuNdi\nLuBj7uO7DNxivLi5he62+fsSXb4LD9m4uztM4rZY7F/ha1yk31Pg3Ayp75OKcYMFbi0reARmLSv4\n/Ri4tayCobUs7lrmfZxjjBlGKZkzBmgADpR7IuXCy8QdrIG3HeveTMzIzZat29vbO+lb39q5/7HH\nVuG5So5i2399Cti1F17YAbtWea8fB2Yu8wodD4yGj18E4UnQgnWnPg58FNtODGyJlEuxJU3mAZdg\ndeNx4DLgARLPv83db8ZK122LtR7O7rNu2YS57IS+S5PvLb91TChavAe6CilaHAaiBOx9WQkZ2z4E\nci0rlECtZYW+H2MEai0rHK1l8QhTwBoq5i6gmCxxOrl0WohEIif27fsVjz0W29KPrR/3Nff5kUZ4\n8T+9DhJgy6AMjE4895++asPmxmJLoMzHCrZ7gF5sKN0/Ae8HnnFfP44Vfb+V4S6tYLX/DJoWwKv3\nAcsT92lphk/0Ft5ForrjgLK9T4QYTvR+FCIYKOauYokXLbFWX7FvzB6trXOprV32nBVb8cWKx7qP\nnVGw7Dicwo5lx4EaWDXNCr6twHs/lHr9M4Bn3ddvxIq+TuDZk3bbNqAN+CawEi9ubjlWQLbvsda6\nll7oWWPHuX8Mbfu8fTdgrYD23hzHCTnO9KV2OKFirKIQQghRbUjcVTmhUIgdOy662rpa7/5x6h4G\nqB9rrW3z3cf/81lYg3Wdzgd+F2uFixdob+KfSHFerT3mSk6H9PEGcB+2UPF44As7oStirXXxAnVT\nIzy93bpitwI3uceDdU+39NoEjZY1MPt5x3Hqsq9AcuJL2z4YGC2BKIQQolqRuKtYcs/Wte3Hdq+F\nPRcnWsba9gGDida8FmD8dLg9btttwFlYC9xfAbsOws+w7tgN2Di+LcC1wC3uttg11gFfwYYMfBn4\n+Z7sMXSDu2H7ocR7e9ux1sTvYsXj/RNg4ZPZBJq9TlfEitvzV8CAsTGGPWugpVcCTwghRLWhmLsK\nxRTQG9I95nx4IS5RY9RnbcxdLCZtJ/CFdyYe2Q/8G1bwASx+n3W5fhe4GGvlux0rujYAV2NF4Kew\n+4Xc15OTI5JbgV3/CnzielsnD2x5lp/eA/s7rct5J7ZeX2yuG8dD9HT8XLpg7lgckONMX2qtg+nj\n7yo8IFwIIYSQuKtk8g1eTszA/dhcK3QA2k5Axxgrwra9AnePsyLtZqywu+IkXFFrXbghYPO74YpT\n8Lejbebt10gtlnzwdfjaWd52AHbFiyVPoD5zC9RdB388wRZGjhdvM0+5+22G99wE88cl3tVgjXdv\nmRNMclufoZ1DCCGEKDdyy44QPOHSswZ+0gH1jVasjQU6x8AXfm4taz86H1bugWuA7wF/OQA73Di6\nr2AzZPuBWaNt7NxTO1Ov9v3X4Xd+mRin17bPz21shdOoAetmTc6s7QfevsBxpj8Kk9vg5b9LPOc6\nrPURsiWY2PsfrIHLD1k3sp8rO7ckFSGEECLIyHI3YkjX0uxK9/mCc+Cqc6D9bOiaB88vAGZAT7N3\nzCqsVe4ObGxd9y7XtRpn7VpyGP7rXnhkhddt4hTw9PbsFrC5JFoMV5yAx2fZ19Y1w89etfX0YmVb\nWoCdp7LdeapFznP3yionhBCi2pDlbkRzCs8C9g7irFULbAIGu1KPGQ2sBm4+bC1hjbfAk/9grX7n\nr4DvnQvvOm73DWHFYzNw5mcdZ/qjjjNlhS1p4oQcZ+pya5V7Yyy07gUHazG85BW4KGotivFlWyIf\ngltesVm887AWxpjlLVOCSbJFbuN4qDmVKuwqqaWcEEII4Y8sd1VOf38/U6YsaoGBfusa7ZxiX/km\n8CGsFawF23XiNDNsjBubYckSK4bAWtVuwlrV3ufAQx12+zr3HCvPhr3rExMlYha4J+IscB+/yD7e\nPMnbduBp27ECYNJc+OIU/zv6zxdg5p32sRVeNlGiiTiLI4UkQxSSpCKEEEIEjgD0TfMbptB+ahre\n6OnpmTR1anyv1gVPQeNyOxY8FdfD9ZTt65rax9b2ob3LwDXu9n4Dn3stsbdsv4Fu92fTUmMS+rk+\nmrpvlzuM24O2y8BNxut5G+tle13c3FcZWGzgvI7Y/ZFjL8tc98sy1CuxeENrqbUM4tBaai2DOApa\nQ7llq5jW1rsve+qpWOmQWJHgUQPGPHU7dM+xyQVbga/XQMfrNoGiDajDSybY3wlP77FxdjtxExI2\npl5tP/ZcA6OzzywWJtcP3IlN1vgacN519vh+4F7gq9gEji8Avw2sAKb9iVebLrcECJNQ627msgJ7\nywohhBAVgdyyFcLQ6q/1A9uxoiomvpoW2AzVWLLEprOsOIuv6Tsw2l7zmUfg8z/yesECtP+Rl6Cw\nDNu1IgTsnus4The0bLNFh38IXD4A366xr68DDmGLIj9Iat26GTVwwyFvbu8FHo7bp3OKrdOXX/9K\nM8J6XqpenxBCjFxkuasAEsuY5N5ZYdOm6x+YPPkb2J6vsVZik+b6H9sP/N3rttPEUWyCw6S5XumU\nSXPhRAiafmCTKLrmWSvYhT+2wq4Ot6zKFGjq8rpJXAXcX2MLHT+AtQyuwrYk2+oz6w9dBa/eZ+fz\nfaxFMJ0uyZwAMVJ70Rb6fhFCCFElBMCf7DdMoX7mahxeHJqJi1uzsW1ZRvirX+0yfscCIVi01z4/\nYqA1Lr5t4SH45KrE4464MW+xeLkr93M6ri7l/C/aGDq/uLxjBr5ivOteO5AYV7fRwKd7YNFxb/ui\nQS/eLxYLGLv25BU2htDek10vQnbb7F96x8XiDb398hwVE0MyhPfLcI2KWcsKGFpLrWUQh9ayuGuZ\n93Fyy1Y5o0f7h8AZY/odZ8p22DoFXsBa1hI6QyRlqz6Mtc7Nd58fmQSNe2HwJbjlaVjvZr62HYeH\nz7HxecmcArqBv8CLk7v9HdatOxkYxMbXRSOJXS86z7SlVtjlWeZidev6sW7co/dAzGq14AmY4Xbf\n+FvgBmzR5lhHDnWeEEIIUb3ILVsR5F5/zXNFTl3+kY/MWXzs2H9z5plf+nfrbt2CdbfGjq05ZcXa\nZJ8zDe5OvOZj2Fpz8XXnJofhS7Pg6MfhD9bCBT+GSWNtWZU/IbGbxDeBt0ktnRcCfv6affwlrCv3\nU3Gv9+O5b2OxY7FECuPuf/8E6zpu6YXzllohNx87RmGFYvzci9t5InjuX9XrE0KIEU0ATI5+wxRq\niqzWgVdaJK1bkZSSH6uMLXGyOM7leu1+EtyXLU9a1+WquH2SXZ+Ny2HWK6muvrlx5VHmvwZXHfbO\ncYd77ZsMtLv7GQN3J11rlYHz1niu3COu6/YOk35eMbdjrPxK/JyaXkzd9qc++8XKruTspg0fO3bM\n1NdfvDbVBTzkMitleb+Ucchlo7UM4tBaai2DOApaw5JOKhwOTw2Hw33hcPhgOBz+WTgcXpDjsabQ\nGxrJwz/Wqt035s47JiYCzuuAaY/ZunTUJb7WtBT4KFz5eqIoO+IKLOPG4SXH6P3+G1YUHogTaUcM\nLDiVGLsXX3NvlSvujhn/uL1YvGDLk6nX7DcwtTd126SfePGFsfi7+OfZBVlqzcBkoem/vhq+Qx/8\nQxjxf5c9PT2TtJZFG3pfai2DOIIVc9fQ0DAaWwfjz6LR6IMNDQ3/C9jb0NDwdDQafb5U1xXJvJrx\nVWO7MmxO7L3avs1xnHm2nMnpbV+EJ++ErcttC7I2bLswsK7Tfe44A/g4cAT4+1rgQ3DjK/D0vbDj\nFIwagL5uOOh2khgYDbtWJfa83Yp1qR7LNOcI7G+Df77O66DRvgfe3A3fvNDG9YF1BztPwJZOt4QK\ntm3aTzq8a66bBs/cAtyebp1aW+++7ODB75B4zPMZXbsqRyKKTXKf5Dlzll3x7//+GUIh/2gAvQeF\nGKGUSm2Gw+HmcDh8OGnb98Ph8B05HG8KVasjeZDWLRvf6WHRXpKsVGmsTz6dJRqXJ1q8Wt3zf8Wk\nWvRiFjiT0Zpl3aNdxsukjblWu4ztUpFqLUu9Z8/9aM+30bVYdrlzSby2//3O/mXyueOHdcdmsiL6\nubSD564NyNC3+gKH33t39epu37XUezDvofel1jKII3AdKs4BDiZtOwCcW8Jrjhj8gviN14lhp7V+\ntQH12E4PM38O56+ALeeblG/vgzWpV3j7zNRtowbg6e323NuAL2M7TMRnv7ZjEyrasYWTM9+DrZ83\nH1uHrxOb8DFwv932QWwv263Ye0rtLGGM6Tdm91pjdrsFiifNhYXYWnpHgGV7U5MJ+jbDksNewsEG\n4NsTMiVZbNp0/QNTp24gOUnBpO1+kVv3DCFKh96DQoxUSlkKZQxwMmnbm+72XJhY1NlUEb29vWNq\na1vvPXlyzScBamuXXdHb23t1JBI5YYzhIx+Zc+Cll2i24mouEKK+fvwjBw48+CC2nkld/Pk+/OG6\n33nppXVYQQawjgkTzvrX3/xmWV3cNZ7bsaOjx7on5+O5J+MzW5M5BRznne+89flHHunoAcLxr9bX\nX9xy8GDnlHiX7Ic/fOW/3H33mh/NmbPsT+21HWpr9z+3Y0fH8kgkUgfU9fb2jmltvfsysKIrEomc\nyHS+X/zCJNyzu0b/56WXtrZZF/NNgMOHP/z+D4bDl6xNPi9AJBJ572c+8xk+97lbu371q/98zb5+\nTx1efOI2d9c6oK6+fvzZB5O+2tTXjz87eQ1GKBOTfooc6enp6JkzZ9kVsb/L97xnebS1taMBn7XU\nezBvJib9FIUzMemnKJyJWMNYfpTKlBgOh9vC4fATSdu+Gg6Hf5jD8SIDq1enZom6rhlz7NgxM2VK\nYjbq5MkrzbFjx7KcL5YcYR+vXt1tjh07Zlav7j79OHb++MSCyZNXmk9/+ispbtm6uptMJHKj+epX\nu8yrr76acp5XX33VhMOXuK7TWAJFl/njP243x44d87223/WnTr3j9OuZ1iWZ5PNMmWLXye+8hZBp\nnkIMhXR/G3776T0oRFWQtwZzjLU6FJ2GhoaZwHej0ei4uG0PAj+LRqN/nU1zArOAl0syuQonHL6k\n5eDB79zqWaiO8+EPX7n+F7/YtsnvtcmTv3R/f//Aq5BqkQJrCZwz54f3JlrpLro6eb/4/eMtZwDX\nX79x4W9+899THOdtc/bZ79l/991LvheJRE74nfumm8b+xTe+8do2Y/7mXfaM38QWML6NbNf3u7/6\n+mu/ceDAg11DuY/BwTff8dJL97f5ndfdMBH4MXm8L9NZGEX+aynSMpEMa6n3YF5MRO/LYjERrWWx\nmAj8Q95HFaIIcxnhcHhUOBx+ORwOX+0+/1Q4HH4tHA5/NIfjjVEgZtpBQuuwmLVswVOkKc0xatS8\nI9mTEiavsEkUjcuTX0/cLz55IbWWWuo+6dqTJW/rSklW8J9D5tIjfnPKbU2zljTJK0C40HmMkKFg\na61lEIfWUmsZxBHIOnefCofD/xIOhw+Ew+HnwuHwRTkeawq9oZEy0mSZpmRvjhsXX0DYpBFDsf2P\nuFmjqQIv+bxpasXVpWbnTV5RXHFXWAZgNrGVw3lz/rAqdI4jaOiDX2sZxKG11FoGcQSrzh1ANBp9\nFvhsKa9RrWSvTxVrHea5ESG+Btzzi+vrx5995ZUzb/3KVzJ1xPJr5UUHtM9O7L8av9924KzGxP6v\n66bB811edl5s24WvweWHbDZqCDfL9Apoexo63R3/AngLr29t2wCcCDmOE0q+7/j7S782fmuZUMcv\npbdsIedNT3yW4um1WQysLex8QgghRB4EQJX6DVOoWq2GQQ6Wn1z2MW7LrNra1mfT7ZelldfSxP2O\nGK/unF93CL/aeLH9Fh6yVrzT7ts6r+XYRpOc0GGPK47Fq0hdJPKw3KlrRabR09MzafXqbreVmyya\nQxyykGgtgzi0lsVdy7yPK2WdO1Ew2etTmbT11RIJhULs2HHR1en3izWZP5VlTn2b4drD8H5s1Y8/\nAdaRVPetJbFh/XJ3v7HYLhI1p2LXNsYchb5pcHKP7XQRAq50B8CzQNM0mNzmV9MP/Gv9BYPYmibW\nxCv3rIKA4zihOXN+eO9tt83DJsa09AbrdyeEEFVAAFSp3zCFqtVqGEW0/OT07YnTCRULD6W38BGC\nqw57r99hbHeKpkeTEirqbNxerDvEHT4xgclJGY2PJfaebTXedS477NcHljzi2tLsW5dnwoMSKoL1\n3tawQxYSrWUQh9ayuGuZ93EljbkThdK32fZyPR0jVlLLj7HWtA7HcTohmibmrGkx3DXOiyO7GRtL\n13dp7HXHmQ401ti4vfj9tgJ9e2xP2cTYN2t9HPUEtMyyFsH9wBq84y8cB/PH+fd0zS2uzaTG03Un\n981NjsEbKu65FGMnhBBi2JG4CyA+YmRYGn7nL0hevc/+jBdslx9K3a9rpxWB6RIN+jbDSlfMZnMP\nF0b8vTnO9KVKeCgXfZtra70OC3JZCyFE8VHMXUAxcT1Th0PYZadvM7Tt8+LIvgm8byFMeygxPvDb\nExL7trbvgb5LM92DSYgf3LQy8Tq79iY+j4mBwuLa3PiuGdaaGIBlHWEYY/p37Ljo6tWrt1Fff+03\n0sWKCiGEKBxZ7kRaEsuxsBme3g5bp9inBnhoPGwdn3hUCPjpPTDTNcHFWx3Tu5sTLWtOJ7yw2DsG\n4p/Hzjf0kijrgBZgpaxHw0gkEjkRicCyZVd2IYUthBBFR+Kuiunt7R2zb9+v2LJlR8vBgw91ZBI/\nyXX17M/k+Lj9P7K16LYBt2ItdZdgRVK7e6b2PbC/0+9aubqbk93DSdmUYx1n+mnBaczuPFyp8W7h\nfuCDwBd+Dn3zZD0SQghRLUjcVSmO44Rqa1vvPXlyDTDvVnj3jHRJA35Ffq2QS45LO/8RK96apiWe\n4beBmT+Hwb+Dveuzu2DTx7ZlFpn9wIoVXvHjQhMh+oE7scke88+B9m3FTqgQQgghyoVi7qqWpsU2\naD19rbz4fVPr6tU0pe43asDGxm1aaePqjgKdwEKg5xz49OzYnoXUoPNEZs8aO1p6YXKbN7fHscIu\n8Z5yv1YsTu9BrLDLZW2KR6Z5BrdmnxBCiEpDljuRhsHd0H52cnxcUtmUH0BPc3LWqeM4m7O1+/LH\nL5t25n9kmWdNrteKcwv/AOY357QMOZKtXVymFmi5tEcTQgghciYABfr8him0cJ+GHUAoU9ux5H39\nCgKTpRBvuoK0hRaq9T+ucbk3tyMGFvUnznPyinyvle5+s8wvbVHOXM6XaU1GYGFfFTjVWgZxaC21\nlkEcKmIsPIwx/b29vVfv27dt/5YtO76RLaECnnnEWskG+pISIjIkLKTLfi3UxdnXDW1xMXVtx2Hv\nFti7PrEA8QsLvOv7XmuG4zhps2dN0esIpqvfp7p5QgghykAAVKnfMIWqVY2EkfXbE4VZsZKOT7Tu\npZ5z4SGgLvu5mpZa61y3O44UYIVb5R6X330MZS1zsbxlWueh/g4qcOhbvdYyiENrqbUM4pDlThRC\nYVYnL8asiWTLl7GWsXnw730wdwJ8fTy8I8eM1BBwpfv4eNbZm4Q4upZmaHPPMZzWs+zt4kwGa2Gm\n14QQQoh8kbgTeZNbAkDTgsQes7mIrcJ66lpxNH2XTZIYm233opOrODMZysBkek0IIYTIB4m7EU8h\ngqo0MWZDs2Clvw/PyjhYA287UHOq2NYxiTMhhBBBQeJuhFM6l2DhVjgKEEmeK/j5Lvf6Lca3zMjp\nlmMqNyKEEKIqkbgTBQgqv6zWvu7kcw5nHJkr4rbFiclt9vrJVsZ2bPs0ZbQKESNbnUYhRGUhcScK\noGkBdIy1Igns4xcWkCSUhtdVmdZVLITIgIpoC1F9qP2YKJBYVuuV7uP0DF9rrX7g++6I/V+KtRw7\njh3rgAvJ1U0sRPXj136w9O34hBClQ5Y7UQC5xdNZITe5DRZeBxvHu/umWAXSuYS87QOj4Qxje9um\ncxn1dcOKeFfxAJxwhWSX6x6OJVTsLHpChRBCCBEUJO5E3uQST+e5epqmwXzSZdamcwnZxy29sGoa\ndGFj5bzXU4VZ0wIr7GLX6ayBrcuh74+gK2LMbsXWCeFLYclPQojgInEnCiJ7PF3M1bMt/S4J+/nF\nysWOb6ewsiuj89xfiJGHimgLUX0o5k6UmLnABryYt1JZBZJj6za41xZCZMMY02/M7rV2SNgJUelI\n3IkSERNbDnANcPkhOH+FdZHG//NIFmUx8de3GVr3wjFgCXCUTOLQnrMrYq9x+SF7TSft/mL4iSXW\nhMOXtPT3Sz8IIUSpkFtWlIR8WnKlLz5c48BV2HHjK/D83bC/M51lwd1+u+M46+E3cjEFiPjYyoMH\n4cILN/C1r00bE4lEyj01IYSoOiTuRMnIpc5d5uLDnVO8WLu7xsHMU7kINbUCCyKJsZVPPXUzra3X\nXnbgQOTpMk9MCCGqDok7UWZKW3y4XJX3VfFfCCFEuVDMnQgo6WLxcsdzBfassaOlt7RFlMt73WCT\n+PucOnUDmzZd/0C5ZyWEENWILHeizPjX2MoWs5ebZSytVbAoLtv0cyjudavBChj/+6yvH3/2449v\nuTUUCp0o97yEEKIakbgTZSWTiEsXOxeEXpjDNYcg3GuxiPt9hoFbh+Oa1SCMhRAiX+SWFWUnvsYW\nQPY+tLn2why6azc9meZQzOuq72ehyD0uhBipyHInAkOxrVTlqrxfHJeyGDqldcsLIURQkbgTAcL/\nn7HjOJsTrWLExen1AzccgsEax3FCyUKpdGVRMvfjzOBSroPZfTB3AjQDK9MKWCsCJ4+GJYdh43i/\n6wghhBDJSNyJgDNYk2zNs50ouiKwvw3Ouw7unwB0QPvsmFDKxTqWtE83NC3ItH88hVgF7fUWPukJ\ntQ3AKl9rUqIVsx/bdePoPbB3vSx9uZJZgAshRLUicScCRN9maL0YZjTa57v2wttOqjXvmVtg1ADQ\nZIWSn6Uvs3s3VTytWAGdY9Pt70f+VsGmxYnzvRnYmmHf+Fi7+yfAzIF8hd1IdgGXyy0vhBDlRuJO\nBIwaB+a7j3c7/vvUuda6XIQR+Mdaxe+zDSvsyhGbteOUtRoWn2rKtC0UdSsRQoxElC0rAkR8y7Gx\n2MdnmMTM0yWH4dsT7OuXAOsoTTZsKejbbOcfm+9K4JujPXdw8r5DzbhVpq0QQoxEZLkTAWfUdNj/\nIzj/EeuKHRgNoVX2tRDQAszcCeyKK36cNtbKc1MOjIa2fVZAXgi0HY9zy5ZEJNq5TbkHtq6C0cBX\nAX/jZPFciv1YyyTY+xRCCFHtSNyJANHXDUuWeAkHbcfh4WYINVvB1RWx29s/7wm3lXug79J44ZNO\nGKW6KVv3wvkrrGjs64YXck6oKJz9ndD3+VyC/IfuUuzrTowlbDteKhewEEKI4CBxJwKBK7y2warx\nNpbuh6/DurOgzt3DxsEZs3ttLhYtf2GUHIu3qRFmPhQrnpy6f/EpZpB/9mSJpgWJsYSdY10Bqxg0\nIYSoYiTuRECIF16LgPlnWZFXn7JnpQfJF2P+Q02WGMlZtEIIUe0ooUIUDcdxQtlbh+XD9kPFTZYo\nZTuyUtx/JnJJlvC/X7XlEkKI6kaWO1EUhl52w6/g7CPzYGbaOLh8rU+lrHuW5v7n5VoYuRSWtPSx\nh9OXFtqWSxY/IYQIPhJ3okgMrY9nBuHle3yhYrJ0Lt3k+181Df4nrhtF+vkVdi+5dV8o5v2qbp4Q\nQlQGEnciMOQnRILeFH4nft0z8J1f5nvxs5YNzQpZaFuuoK+5EEIIkLgTRSMYfTzL5zZMvv/th2D+\nhKGeNZO1rFCrnNpyCSFElWOMCeIwxphwAOZR6SM8nGsJhKBpqR2ESn+tlieh39jR8iRQ57Mtp3nk\nMPesa5l0jpznkuZeQva1pqV2m3FHv4GmpeX43WWaZ5Dfl6VYiwCNQK9lhQ2tpdYyiKOgNZTlThQN\nM4wlSoyP9akQ96a3feixZMn3nzo/sMkMidf3u5d8rz0Ucr3/cs9zOFBcoRCiKgiAKvUbplC1qpEw\nRtS3p0xWLoZoHevp6Zm0enW3qa+/eC0FWHMyXb8UxxVr3Uo0Avu+LMNaVO1aVuDQWmotgzhkuRMj\nnUxxf4UnAziOE6qtbb335Mk1wLxb4d0z8rfmFHZ9MwKsZUIIIYqLihiLqsGKnq4IzFxmh+1F67pC\nZ0CKJpph3XDZihs3LT55cs0nrTAzQNM0aPpBKQr/+hVCNsb0G7N7rR2lEHalLe5cWWgthBCVjyx3\noqowcXFvqfFTbcehYyyEgHXAw82wsteKwK4crGP9wJ3AzcD8ZmjvTbbgpc/WTW9V9I4ZrIEFc2FN\no3PI2+cAAB88SURBVC2l8t4bHcdpMsYcLeoiJSHroIfWQghRFQTAn+w3TKF+Zo2EMaLjHtLET70I\nXQaO5RxTBYRqa1uftcelj8ciS3wcPlmYqcd82cAq4z1feIgyZmz6zbmY78sSnX8kjRH9N661DOzQ\nWhZ3LfM+TpY7MdL4Bcw/x4t9y44xpr+3t/fqb31r5/7HHsu0p39cneM4biZvE6mWoORjPgzMx3u+\ncTxEy1IouNSZo729vWOUmSqEEMVHMXeiivGNn2opJKYqEomcePDBr1Jbu+y5/I4drLECpmeNHS29\npYjVKw3xwnMs9nHM5ezhFyeYC62td1+Wy/lLQaFzFkKISkCWO1G1mDTxU4XGVIVCIXbsuOjqmTNn\nzvQ/tm8ztF4MMxrt81174W0nc5ZscizePz4N//ReuGucfR7sgH7Purdq2nDGCQ4F1bITQlQ7Enei\nqjE+hZX9tuVKJBI5YUwkw7E1jnWrAux2cpmfX7FjOBCAgP5cWso1LbbC7ru4iSYTYMmTjuOcm23e\nmzZd/8DMme0zit2yLnsLOvXIFUJUNxJ3QhSNpsXQOcUTDZ1T4PxtVrSkFzBpxGbZhYYrPOfB8112\nS1+Lv2DbiRV2+cUJRiKREzCzqJmpssoJIYTEnRAlZtSALbPyzC0wajoM9GU7IrvlqbTHJ56nZVuc\nUNpmrYwQd/5ueO+N1mKXP/lYUXO7r1yscrlYJIUQonKRuBOBoFiCpLxkEg2fnu1ub4b2z6ezJg3V\n8pTr8dnW2339B7Zgs8GtDTjNitTT94K9364LYckT1mKXfN/FoZgWuaHEXQohREUQgBoufsMUWttF\nI2FURK0hitg/ldLVTctpLf2un0+/0qH2Ns3l+MT1PmJg9i+hcTlpa+/d4dYF7DfQ9Gji+Y+42xqX\nw+QVOa573u/LXNelmO+lChkV8TdeIUNrqbUM4lCdO1GpFCfAPQjxViYnN2M/wAzHmU6+ViN7j5Pb\noKYJBnfD3vX5319svQ02EeL+CUAHtM+2Fq3k38fNwFagb4/rVm727qML6Gm229r3QFdZ49uMrHJC\nCCHLXZWPivj2NFRrVbHPU+y1JMVStqg/cxcLf8uTfW3BU4kdLBbtzfX41HXq9u24kWYdH7Xnjj9/\n5o4dxVzLXO5rhI6K+BuvkKG11FoGcchyJyqV6g5wN4nWpBnW0uVvpTQZLU9Ni20NvfgOFp1T4IUc\nj48RW++maf4z9v19XBo7T+K9zG8e0uLkSG73JYQQApRQIQJA8f5xB1ckuvez1rpi+5thm/vKhWn3\nHeq1Mr1u13t/G/zzdcmJENl+H969OJuhvXe41nuo6yKEECMFiTsRCIrxj7syrDt93bBiBXS6pre2\n43ZbTsduhvqL4UgjtLvb2vYVIqjcdelwHKfTrUlH/Hrl8vuojPUWQoiRh8SdqCpKZd3p7e0ds2/f\nr9iyZUfLwYMPdRQuYpoWWGF32q06Fl5YgDvnTCVKXDF1gU2o2JmSUFFIOZlSWwmFEEIMPxJ3QmTB\ncZxQbW3rvSdPrgHm3QrvnlGKLNxcsn1jFrdCjhVCCDEyKJm4a2ho+Gus7+hI3OZ/ikajN5TqmkKU\nhqbFJ0+u+WRxepFmigscSkmYzMcOd5Ho6ihKLYQQlUkpLXcG+D/RaPTaEl5DiIrCi1PLvR1ZNhzH\nqYOma2wtukuwFUsSXs/ZqlcMUSYrohBClJczSnhuxx1CVDh9m2trlz0Hx7GjGFmhn55tS6LsWgUt\nvVYQ9W22585+HcdxQo4zfanjfGoVLDoIPefYEimdwFHSWwTHYh/HBFziOa0o61ljR2xe6fHmMX2p\nt29u1xNCCFEaSm25+1RDQ8MTwIeAF4Fbo9HowRJeU4iiY4zp7+3tvXrfvm37t2zZ8Y2hJVRAOheq\nMbvX5pJ9mmgZ20pi3bt2YObPoa8AS1l+bmFrMVz4ZFwplS+6HS7yu6wQQoiiMiRx19DQcClwp89L\n/w38OdYy+E3gJLAaeKShoeHcaDT6Vg6nnziUuQnAW8OJGfYJLL29vWNaW+++DGDTpusfiEQiJ8p1\nrUgk8t5IBJYtu7IXqHNHQeeurx9/9sGkrzj19ePPBsLGGPCK4Plep77+4paDB2MibHTK9X7rt8b8\n6r//25w+tqeno2fOnGVX2LhBqK1d9tyOHR09QDh5Dunm5XdPo0bNe3RwcGNdvBisr//vFZs2Xf9A\nlutNTPopCmdi0k9ROBOTforCmZj0UxTOROBA3kcNVwuNcDhcGw6HB8Ph8Mdz2F+McI4dO2amTr3j\ndJutqVPvMMeOHau4a/md+9VXXx3S9Vavjm8bdszEtyN717tuNK+++qrvPFav7jarV3envVY+62Dn\nkNp+bPXq7pyvJ4QQIify1lyOsZaCotPQ0FAP/Ec0Gn3NfT4GOAack4Nr1gCzgJdLMrmRw0Tgx1Tg\nWobDl7QcPPidWz2r0HHq66/9xoEDD3aV6VoTKWAt051706brH8jHKhlv/bvppj/YvmzZzzedPLn8\nk7ATx9n66zPPPPHGGWec+VZb2/TFa9as+WWu88t0nUzz+shH5ix+6aVZbfBvwCoARo265ejf//1l\nn8vBwjqRCn1fBpCJaC2LxUS0lsViIlrLYjER+Id8DyplzN0dwP80NDRc5bphlwLPA/+a4/EvU4gp\nUvjxMhW2lgcPHv6PNNuKfh95XuvlfOaQ7tyRSOTpAwciT+dyDi/G7jvTAG6+uX0GdH0RTjwBXx9v\nzJH3DQ7ajhVr17bfvnatE7FH5p/1GolEyDQvO5fGW+ADfwpfcLcuAX79yuDg30+LRLYczeU6Li9T\nYe/LAPMyWsti8TJay2LxMlrLslDKbNnFwJlAtKGh4efAJGBeNBotjalQVBm5Z44Ox7V6e3vHrFnz\nfcLhS1qyZZDme+7s+GafrreJDI9jkyjiX5v6ECx8IZ+s11zwROZPOuCBcfBd95obgd982xiTj7AT\nQghRIkpmuYtGo/8JXFqq84vqxgxj39Js18q3Q0VirTg2Q1fG+yh+wd+mWfA1ilN0OeG8Sdm0N2Nz\nP+YBowZie6mAsRBClJlCAvWGYRhjTDgA86j0EdZaDn1A09LkxAFoWuq/LyFoeTKWlGAfE0p/7uz7\np9mnzv48kpBQYR/fnZLokG6+Q1+HroQ553I/PT09k1av7jb19RevzbQ2GjkN/Y1rLYM4tJbFXcu8\nj1NvWSGKSr4txLLvb9JYFr1tA6Nhh7EdLx5utufagLWsQfFc2smt05Ychp/eA/s7zWnrXPY2aNYK\nuhw4dSu8Od9xnCYjl64QQhQNiTshstK3ubbWq9tW2vg/f1zxtDbTNusOXekWN74GuPwQHL0H9q43\nRXCNphOZ+Z2labHN8v0uVnzOnwBLnnQc59zY64WfWyQjF7kQI5QAmBz9hinUFKmRMGQaL9LI1ZVI\nCdyy+Qx7vqalduR+nkKPy34/Cw/B5BWcdts2LfWrjweNy4u5DiNopP0bL/Z7awQMfV5qLYM4ClrD\nktW5GyIGaEAp1EMlDETRWhaDnNcyX2tJOawrSdfshgU7YEajfb5rL3RfUOg8vHIpddfBtydACGjd\nCy9uBzjzzPff+NZbP/hAfO0/mLnT9tpN2LbMmN1DTAKpetK+Lx1n+lKbLa01zRF9XhYPrWXxCFPA\nGsotK0SRMT4u1GLun41MYtETXrPjhNfFS6B+vO1RC3CkESa3AR2FXN8Y0+840wfg/glWWPQD9Y2w\nqRHgHe/485+9//23feDIkdXuEe17YKAPaC7ohoUQQiRQyjp3Qogi4zhOyHGmLnec6Y86zpQVyfXr\nvFp0qTXuEuvU3T/Bxr0ZrLCLr5XXDtQ0+V97+lI78qmbt53487/55rc+fsMNk6ivv/YbMHOZLRWz\nv3P46hqOFIazVqQQIkjIcidEGcluZfNesz8X/QQ6p9jH65rh3DmO48S5UDNlq6arU3eOz8wGd6fO\ns6XXy5Rt/2KmWn+JmbWnUl4dPXo0bnu30+6G4aprOFIww1grUggRLCTuhCgTmQST32vwzCNW2MXE\nWTuwtREODqFA8Smgby/sOxPWT7Lb2vbB3vWJ++VX4sWklGrZPTcmSmtrlz3X2rr6k6lroazOYlNs\nl78QojKQuBOibORjZVs3DWam9KlNJbkWXbwrLn2dOvv8Z0UVV/HCwnGcTnhhMcCOHR09oVBof2y/\n/K2CQgghMiFxJ8QwYUXM5DYbzza4G9528jvDQB+0vT/OLQu8+AoMjHYcJ2SM6c/kisvBTZfBwpNJ\nNGYnyYIUTnw138LPQgghMiFxJ8QwYIXdgids1mg7QDPc8rQtEbLJLUGSzsrWD9xwCM4wsGU2PLsI\nzvh9+O2Pw3fGQ2gVtH8+Zu3K5Ior1E2n+C0hhKgcJO6EGBaaFts6cvPxLFTrJ8H5K2DmQ/a5n5Xt\nyaUwYQlcNAGaO2DlbJtd2jQAD80aTmtX6eK3hmYVFEIIkYjEnRBlZdR0YFd6S9jkhbDxLPt4A7Bq\nmmc9S2ZgtC1cC8WwrOWa5DDUZAhZBYUQorhI3AkxLPRthvqLbYHgdndb2wl4uBlCzf5JBE2LYeP4\nxNIlW+POF2/tat0Lk+Z68Xj2fN557DF+oslPnOWa5FCsZAhldQohRPGQuBNiGHAF0wU2oWJnE7x1\nJmyfBXXuHrm6VbcfihNgcdauwRpbnDjWEaJpGjz7EJzzO3ExfSnCK504yz3JQckQQggRNNShQohh\nwiY77OswZvfn4MwnbOuvTCR3GFhyGB5pio/Ls31C+za77l2ssLsTG9v3xCybwGGw4mvdNM9CFyNe\nnKXbRwghRCUhcSdEWcjeGsqKuK55MHOnHd+7AJoWxLf/8ixvDzfb0igPYt238a3EtpdkfvntJ4QQ\nYriQW1aIMpBLEoEr3LZ5LtO2/w0dY63Fz8992gZ8GWu1i+cU6YWXf6ZqrkkO3n774+r3CSGEKCcS\nd0IMA35JC9mTCJLj2TrH2l6wVxIX2+bSj7XQnQNc/wrcPc5ub9sHT2+HrlPQ1w1Nix1nesIcMhU9\nzjy/eCZ/3hWIzdA+Wx0mhBCifEjcCVFi8s0ojROCM7KfvW8ztF4cVxwZ2PcbmHE31JzKJft16Jmq\nSqoQQoggoZg7IUpO7kkLngjrWWPj6NqOe/FsbcfhM8AW4LJX4IQrAl94zAq72PnXT4KaU8bsXusJ\nSCVOCCHESEGWOyECRbII6xhrkynYBX0Pw+ATtvbd/HGwbjm0YFuTFY/8ixKrw4QQQgQJiTshSs5Q\nxE8IYJcxu9fa7hPxRY3bsUWNZ02AltdhptvJYtfeXBMnYq96gm5gNCxKKYbsuXZTRZ86TAghRLCQ\nuBOixOQnfvIVgruwrtr3n+Vlyf7TB/CqGWedQ2I83lYS+9/a+DnHcTZ7+/QDN9zoOFPvgb3rJeSE\nECJYSNwJMQzkmrSQWQgmC78vAxOAdwJ34Amyu8bBa32O43wiXniln0PMFWyAF7AC7xISiyzH7/Nd\n4P4JQIebGTsvsWRL7i3IhtqXVgghRCoSd0IEjHQiLFH4DdYAC+AnYVseJZm5E+A3eWSs9mNF2yr3\n+TpsPN9K13IYE2Db8Yokg2vZ6yokW7a3t3dMMfrSCiGESETZskJUEF7Lsb3rgcN261xgA15W7Qag\nOY+z9m22SRnJnS3mRaFrnhVbsU4Up4p2L62td1+mDF4hhCg+EndCDCOO44Rs+zCvhVgh54AFT8Cs\nC62FzQGuAa4YgPvcxytzTtqw4u3oPamvfKwBFuxwHCfktkKLwKaVtsdtQruxFrUgE0KI4CC3rBDD\nRL7FjNPTtBhmNNrEB4N1y54CXloL3f3QTf7xa3vXw5LrbTYuWOvf14GdjXBwMRCrmdfhOE4nRBPi\n5ArJlt206foHZs5sn6ESKkIIUVwk7oQYNkrRySGEbUd2HOhyXbb54SU1vPAzuG88/BZwE9YimIpf\nTGD8tph10r6SXuhFIpETMFMlVIQQoshI3AkxDLgCKod2YrnQtxnqL4YjcS3H2vYVYvVKtSa2nYCO\nMVbYrQMO+tTMy+d8ma2TQ299JoQQIhmJOyFKjCd4Vk2zgikmyApzQ7pu0AtgchvsbILB3YXXm0u2\nJnaOgQt/DGe8BQN9sL8zv/Oqz6wQQpQbiTshSk684GnD1pHr2gl9lxbqhozFvxVzlh5nPFGIe1cI\nIUQwULasEMNKCLeTxK5gxJfFSpykZroWltmb/nxCCCGGB1nuxP/f3h3GWFbWdxz/jqir7GILYmjT\n1txg1j9bjApYs6kv2iqrpCRCuk2FxBhitMKatGxbS2LSloaYomILXbtbqo1GTdmluojGVCuBqGzZ\nF6QqYdv8F7RjQuqLFrIbWN0gy/TFudO9nJ25c++5584995nvJyFn5py55zz78NyZ332e8zxHUzfJ\ns2Wna7WZrk1n9vqcWUmaPcOdNGVdDzwrT2oY7d65lR4f5iQJSZotw520DkoMPO2t2ydJapP33Ekb\nyOj30Y1y79xy797yQsrb31zN4JUkzZI9d9IGMU5P2+hDyU8Dn6F6Li3Ad96/sLAw8vIpKw3rjvnP\nkiTVGO6kDWO8NejWHko+vA8+8EH4p1efPucnf6X/aLI1h6Dvu+++zQ7rSlL7HJaV1EgVwn78qaav\n37XrH649HTa3UH293IsnSWrKcCdtGNNYg+7hO1zXTpK6xWFZaYOYxpIsk5xz797fv2vHjt2/0cX1\n/yRpnhnupDky6QSESZZkWe3aTc95+eWXn4AdnV3/T5LmleFOmhNN15VrY0bqtNa0K3H9P0maNe+5\nk6ao2fNZVzM423W0CQinQ9k3P1r99777mpVj/GtLkmbDnjtpSrrxBIfxlj+RJM0/e+6kqWm7t2sa\ns13n4dqSpHHYcyetq+de2vSVL5yZ+uwmeNESbL9hYWFhyH10h/fB7p2TzkidxkxbSdJ0GO6kqTm8\nD278Pbj9sur7vwG2XbWwsHBH02DUD1n72n+M2GjXxuFcSeo8w500JVWwuuxeOHAZbAJuBBbeBI9N\neM9b248RkySVxHvuJEmSCmK4k6akmi17yVXwLuBq4HZg18OTT0SYbHJDu8uzSJK6xmFZaWq231Dd\nb7c8fLob+K17Z/nIr24szyJJmibDnbSuXvxsG2dpfh+d695JUukclpWmxrXhJEnrz547aUq6uTZc\nO+veSZK6y3AnTVHXliHpZuCUJLXJcCdtMF0LnJKkdnnPnSRJUkHsuZM0NdXSK9sdApakdWS4kzQV\nQ9bUm23BJKlwDstKmpLBNfW2UH293IsnSZoWw50kSVJBDHeSpsRFnCVpFrznTtLYRpkoMWRNvV9c\nx6JK0oZjuJM0liETJVYMeLimniStK4dlJY3JiRKS1GUT9dxFxHnAncBO4PzMfGrg2BXArcBm4ARw\nU2Z+Y5LrSZIkabjGPXf9YHcI+N4Kxy4ADgA3ZOZW4HrgQES8qun1JHWFEyUkqcsm6bk7BVzZ395S\nO7YTeCQzHwLIzMMR8ShwNfCpCa4pacaGTJSQJHVA43CXmceB4xHRW+HwRcDR2r6jwMVNryepO5wo\nIUndNTTcRcQ1wJ4VDh3rD7eu5mzgZG3fT6nuv5MkSdKUDA13mbkf2N/gvM8Ar6jt2wI8OcY5eg2u\nqxfq1bZqrlfbqrlebavmerWtmuvVtmquV9uquR5njoSuaVrr3B0Brqvt2wbsHeMczqxtj3XZHuuy\nPdZle6zL9liX7bEu27Ew7gvaDHeDFz8IfCwi3pqZ90fE24ELgS+Pcb53AIstlm8j6lG9uazLyfWw\nLtvSw7psSw/rsi09rMu29LAu29Jr8qLG4S4irgP2UYW6JeCJiADYkZkPRsRO4LaI2AIcA67OzGNj\nXGKRBl2RWtEi1mVbFrEu27KIddmWRazLtixiXbZlEetyJiaZLftZ4LNDjt8PXNr0/JIkSRqfjx+T\nJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIkqSCGO0mSpIIY7iRJkgpiuJMkSSqI4U6S\nJKkghjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIkqSCGO0mS\npIIY7iRJkgpiuJMkSSqI4U6SJKkghjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmS\nCmK4kyRJKojhTpIkqSCGO0mSpIIY7iRJkgpiuJMkSSqI4U6SJKkghjtJkqSCGO4kSZIKYriTJEkq\niOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIkqSCGO0mSpIIY7iRJkgpiuJMkSSqI4U6SJKkg\nhjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4kyRJKojhTpIkqSCGO0mSpIIY\n7iRJkgpiuJMkSSqI4U6SJKkghjtJkqSCGO4kSZIKYriTJEkqiOFOkiSpIIY7SZKkghjuJEmSCmK4\nkyRJKojhTpIkqSCGO0mSpIIY7iRJkgpiuJMkSSqI4U6SJKkgL57kxRFxHnAnsBM4PzOf6u//TeCb\nwOMDP34yMy+Z5HqSJEkarnG46we7Q8AXqMJd3ROZua3p+SVJkjS+SYZlTwFXUoU7SZIkdUDjnrvM\nPA4cj4jeKj9yTkR8CdgGPAXckpnfaHo9SZIkrW1ouIuIa4A9Kxw6lplbh7z0x8AB4OOZuRgRvwPc\nExGvz8zHh7xOkiRJExga7jJzP7B/3JNmZgIfHPj+YER8H3gHL5xkMUxv3OvqDL3aVs31als116tt\n1VyvtlVzvdpWzfVqWzXXA46O+6KJZsuuJiIuAF6WmT8a2H0W8OyIp1hov1Qb0lGsy7ZYl+2xLttj\nXbbHumyPddmesYMdtLvO3eD/yN8F/iUizgWIiLdR3Xv39RavJ0mSpJqFpaWlRi+MiOuAfVSh7iWc\n7pXbQbVEyi3Au4DngGPAhzPzgQnLK0mSpCEahztJkiR1j48fkyRJKojhTpIkqSCGO0mSpIIY7iRJ\nkgpiuJMkSSrIVBYxbioizgPuBHYC52fmUwPHrgBuBTYDJ4CbfFbt2iLiZmA38N8Du7+dmR+YTYnm\nT0T8GtVj+F4J/Az4q8z8/GxLNX/6z6H+IZC1Q28ZfK9rdRFxPfAJ4M8z8xP9fecD/whcDDwPfAX4\nUGa6FMIQq9TlItXyXj8Z+NHdmekaravor2P7EeDnqB5WsDczb7ddjm9IXS4yZrvsTLjrB7tDwBeo\nwt3gsQuonlV7RWY+FBHbga9HxNbM/J/1L+1cWQK+lJnvnXVB5lFEbALuAf4oM++OiNcAD0fEdzPz\n0RkXby5l5rZZl2EeRcReYAtwhOp9vezvgScy86qIOBv4FnA91TqkWsGQulwC3pOZ355JweZMRPwC\n8GXgnZn5QERcCHwvIg4Df4LtcmRr1OXY7bJLw7KngCupwl3dTuCRzHwIIDMPA48CV69f8ebWAj4G\nZhJvA5Yy826AzPwB8DXg2pmWShvRpzPzPVQjFwBExDnAVcBfA2TmT6hGP949kxLOjzPqcoC/L0f3\nHPDu5QcUZOYPgf8A3oztclyr1eXr+8fHaped6bnLzOPA8f7QTd1FnPl8taNU3b0abgl4Q0TcD/wS\n8J9UXeOPzbZYc+MioF5XR4FLZ1CWIkTE54BLgJPAHZm50gc61WTmv6+we2v/2A8G9j2GvxuHWqUu\nl+2OiNuobgG6B7g5M3+2PiWbL5n5v8C9y9/3RzZeB3y3f9x2OaIhdXmov2usdrmu4S4irqG6d6nu\nWGZuHfLSs6n+EAz6KdU/csMbUq/HgT+m6qG9jarObgW+GhEXZ+ap9Svl3NpMVW+DTmLba+Jpqntw\n9mTmIxHxFuBfI+JHmfmdGZdtXm3m9KMfl/m7sbkvAg9l5sGI+GWq56GfpHqcpobo19dXgY/2d9ku\nGxqsy8w8EhFjt8t1DXeZuR/Y3+ClzwCvqO3bAjw5caEKMEK9Dn4a+DPgRiCounw13NPAy2v7NlO1\nSY0hM58E3j/w/aGI+ArwTsBw18wzwKbaPttnQ5n5oYGvn4iIPcD7MNwNFRGXUt0vticzPx4Rl2C7\nbKRel9CsXXbpnrthjlCFkUHbgEdmUJa5EhFbI+LcgV0vohq7d5hhNEeA19b2bQO+P4OyzLWIODci\n6j30Z3HmJ3yN7ihwqlavts8GImJTRLyhttv2uYZ+GPka8IfLYQTbZSMr1WXTdtnlcDd48+BB4Fcj\n4q0AEfF24EKqdKvhPgJ8MiLO6n//p1STUR6fXZHmygPAcxFxHUD/TbaDlSf+aLhfBx6MiFcDRMTr\ngCvwfTyu/58klZknqIYSPwwQET8P3AB8Zmalmy+DE87OAf4tIn4bqg8jVL0jB2dUts6LiJcB/wzs\nysx7lvfbLse3Wl3SsF0uLC11Y8mZ/h/PfVRvtJdwOpXuyMwH+8HuNqrh2GNUS1M8OIuyzpOIeCXw\nd8CbqGbjHKX6VPBfMy3YHOkHur3Aq6juc/iL2ptPI4qIPwB2UU30OUm1ZuDdsy1V9/U/nJ2gqreX\nUq0ucAr4HHAT8Gngjf19d2XmzbMpafetUZcHgI9R/Z15nuqP7V9m5vOzKW23RcS1wOc5c9LZXcDf\nYrsc2Rp1eYjqXsaR22Vnwp0kSZIm1+VhWUmSJI3JcCdJklQQw50kSVJBDHeSJEkFMdxJkiQVxHAn\nSZJUEMOdJElSQQx3kiRJBTHcSZIkFeT/AKyCeUCO16lKAAAAAElFTkSuQmCC\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde39d38cd0>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "print summary(prcomp_res_drop)",
"execution_count": 40,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Importance of components:\n PC1 PC2 PC3 PC4 PC5 PC6 PC7\nStandard deviation 6.04309 3.80099 3.14407 2.95914 2.89047 2.85444 2.82015\nProportion of Variance 0.01799 0.00712 0.00487 0.00431 0.00412 0.00401 0.00392\nCumulative Proportion 0.01799 0.02511 0.02998 0.03430 0.03841 0.04243 0.04635\n PC8 PC9 PC10 PC11 PC12 PC13 PC14\nStandard deviation 2.80660 2.79209 2.78734 2.77330 2.76292 2.74726 2.73089\nProportion of Variance 0.00388 0.00384 0.00383 0.00379 0.00376 0.00372 0.00367\nCumulative Proportion 0.05023 0.05407 0.05790 0.06169 0.06545 0.06917 0.07284\n PC15 PC16 PC17 PC18 PC19 PC20 PC21\nStandard deviation 2.70648 2.70016 2.69946 2.69158 2.68432 2.68015 2.66814\nProportion of Variance 0.00361 0.00359 0.00359 0.00357 0.00355 0.00354 0.00351\nCumulative Proportion 0.07645 0.08004 0.08364 0.08720 0.09076 0.09429 0.09780\n PC22 PC23 PC24 PC25 PC26 PC27 PC28\nStandard deviation 2.6645 2.64459 2.64158 2.63103 2.62462 2.62051 2.61768\nProportion of Variance 0.0035 0.00345 0.00344 0.00341 0.00339 0.00338 0.00338\nCumulative Proportion 0.1013 0.10475 0.10818 0.11160 0.11499 0.11837 0.12175\n PC29 PC30 PC31 PC32 PC33 PC34 PC35\nStandard deviation 2.60253 2.59829 2.59439 2.59176 2.57763 2.57151 2.56083\nProportion of Variance 0.00334 0.00333 0.00332 0.00331 0.00327 0.00326 0.00323\nCumulative Proportion 0.12509 0.12841 0.13173 0.13504 0.13831 0.14157 0.14480\n PC36 PC37 PC38 PC39 PC40 PC41 PC42\nStandard deviation 2.55704 2.55479 2.5470 2.54427 2.53246 2.52660 2.52451\nProportion of Variance 0.00322 0.00322 0.0032 0.00319 0.00316 0.00315 0.00314\nCumulative Proportion 0.14802 0.15124 0.1544 0.15763 0.16079 0.16393 0.16707\n PC43 PC44 PC45 PC46 PC47 PC48 PC49\nStandard deviation 2.51976 2.51260 2.5085 2.50314 2.49651 2.49382 2.48842\nProportion of Variance 0.00313 0.00311 0.0031 0.00309 0.00307 0.00306 0.00305\nCumulative Proportion 0.17020 0.17331 0.1764 0.17950 0.18257 0.18563 0.18869\n PC50 PC51 PC52 PC53 PC54 PC55 PC56\nStandard deviation 2.48064 2.47479 2.47183 2.47132 2.4662 2.45608 2.45287\nProportion of Variance 0.00303 0.00302 0.00301 0.00301 0.0030 0.00297 0.00296\nCumulative Proportion 0.19172 0.19474 0.19775 0.20076 0.2037 0.20672 0.20969\n PC57 PC58 PC59 PC60 PC61 PC62 PC63\nStandard deviation 2.44503 2.44453 2.44125 2.43053 2.4271 2.42019 2.41750\nProportion of Variance 0.00295 0.00294 0.00294 0.00291 0.0029 0.00289 0.00288\nCumulative Proportion 0.21263 0.21558 0.21852 0.22143 0.2243 0.22721 0.23009\n PC64 PC65 PC66 PC67 PC68 PC69 PC70\nStandard deviation 2.40876 2.40764 2.40425 2.40010 2.39960 2.39375 2.38956\nProportion of Variance 0.00286 0.00286 0.00285 0.00284 0.00284 0.00282 0.00281\nCumulative Proportion 0.23295 0.23581 0.23866 0.24150 0.24433 0.24716 0.24997\n PC71 PC72 PC73 PC74 PC75 PC76 PC77\nStandard deviation 2.38819 2.3848 2.38148 2.37706 2.37440 2.37280 2.36630\nProportion of Variance 0.00281 0.0028 0.00279 0.00278 0.00278 0.00277 0.00276\nCumulative Proportion 0.25278 0.2556 0.25838 0.26116 0.26394 0.26671 0.26947\n PC78 PC79 PC80 PC81 PC82 PC83 PC84\nStandard deviation 2.36313 2.35909 2.34970 2.34693 2.34585 2.3419 2.3403\nProportion of Variance 0.00275 0.00274 0.00272 0.00271 0.00271 0.0027 0.0027\nCumulative Proportion 0.27222 0.27497 0.27769 0.28040 0.28311 0.2858 0.2885\n PC85 PC86 PC87 PC88 PC89 PC90 PC91\nStandard deviation 2.33620 2.33244 2.32253 2.31886 2.31689 2.31579 2.31155\nProportion of Variance 0.00269 0.00268 0.00266 0.00265 0.00264 0.00264 0.00263\nCumulative Proportion 0.29120 0.29388 0.29654 0.29919 0.30183 0.30448 0.30711\n PC92 PC93 PC94 PC95 PC96 PC97 PC98\nStandard deviation 2.30745 2.30453 2.30239 2.29457 2.28945 2.28542 2.28183\nProportion of Variance 0.00262 0.00262 0.00261 0.00259 0.00258 0.00257 0.00257\nCumulative Proportion 0.30973 0.31235 0.31496 0.31756 0.32014 0.32271 0.32528\n PC99 PC100 PC101 PC102 PC103 PC104 PC105\nStandard deviation 2.27754 2.27459 2.27278 2.26827 2.26452 2.26242 2.25961\nProportion of Variance 0.00256 0.00255 0.00255 0.00254 0.00253 0.00252 0.00252\nCumulative Proportion 0.32783 0.33038 0.33293 0.33546 0.33799 0.34051 0.34303\n PC106 PC107 PC108 PC109 PC110 PC111 PC112\nStandard deviation 2.25641 2.2518 2.24685 2.24385 2.24156 2.23910 2.23561\nProportion of Variance 0.00251 0.0025 0.00249 0.00248 0.00248 0.00247 0.00246\nCumulative Proportion 0.34554 0.3480 0.35052 0.35300 0.35548 0.35795 0.36041\n PC113 PC114 PC115 PC116 PC117 PC118 PC119\nStandard deviation 2.23135 2.23061 2.22593 2.22392 2.22052 2.21487 2.21200\nProportion of Variance 0.00245 0.00245 0.00244 0.00244 0.00243 0.00242 0.00241\nCumulative Proportion 0.36287 0.36532 0.36776 0.37020 0.37262 0.37504 0.37745\n PC120 PC121 PC122 PC123 PC124 PC125 PC126\nStandard deviation 2.21099 2.20953 2.2093 2.20295 2.19658 2.19337 2.19028\nProportion of Variance 0.00241 0.00241 0.0024 0.00239 0.00238 0.00237 0.00236\nCumulative Proportion 0.37986 0.38227 0.3847 0.38706 0.38944 0.39181 0.39417\n PC127 PC128 PC129 PC130 PC131 PC132 PC133\nStandard deviation 2.18762 2.18642 2.18367 2.18169 2.17918 2.17778 2.16952\nProportion of Variance 0.00236 0.00236 0.00235 0.00235 0.00234 0.00234 0.00232\nCumulative Proportion 0.39653 0.39889 0.40124 0.40358 0.40592 0.40826 0.41058\n PC134 PC135 PC136 PC137 PC138 PC139 PC140\nStandard deviation 2.16902 2.16301 2.1601 2.1592 2.15393 2.14780 2.14719\nProportion of Variance 0.00232 0.00231 0.0023 0.0023 0.00229 0.00227 0.00227\nCumulative Proportion 0.41290 0.41520 0.4175 0.4198 0.42208 0.42436 0.42663\n PC141 PC142 PC143 PC144 PC145 PC146 PC147\nStandard deviation 2.14447 2.14083 2.13701 2.13421 2.13273 2.12913 2.12508\nProportion of Variance 0.00227 0.00226 0.00225 0.00224 0.00224 0.00223 0.00223\nCumulative Proportion 0.42890 0.43115 0.43340 0.43565 0.43789 0.44012 0.44235\n PC148 PC149 PC150 PC151 PC152 PC153 PC154\nStandard deviation 2.12141 2.11858 2.11686 2.1153 2.11060 2.10851 2.10796\nProportion of Variance 0.00222 0.00221 0.00221 0.0022 0.00219 0.00219 0.00219\nCumulative Proportion 0.44457 0.44678 0.44899 0.4512 0.45338 0.45558 0.45776\n PC155 PC156 PC157 PC158 PC159 PC160 PC161\nStandard deviation 2.10025 2.09946 2.09444 2.09194 2.08932 2.08661 2.08236\nProportion of Variance 0.00217 0.00217 0.00216 0.00216 0.00215 0.00215 0.00214\nCumulative Proportion 0.45994 0.46211 0.46427 0.46643 0.46858 0.47072 0.47286\n PC162 PC163 PC164 PC165 PC166 PC167 PC168\nStandard deviation 2.08083 2.07533 2.07492 2.07159 2.06862 2.06783 2.0664\nProportion of Variance 0.00213 0.00212 0.00212 0.00211 0.00211 0.00211 0.0021\nCumulative Proportion 0.47499 0.47712 0.47924 0.48135 0.48346 0.48557 0.4877\n PC169 PC170 PC171 PC172 PC173 PC174 PC175\nStandard deviation 2.0642 2.05881 2.05646 2.05416 2.05218 2.05056 2.04712\nProportion of Variance 0.0021 0.00209 0.00208 0.00208 0.00208 0.00207 0.00206\nCumulative Proportion 0.4898 0.49186 0.49394 0.49602 0.49810 0.50017 0.50223\n PC176 PC177 PC178 PC179 PC180 PC181 PC182\nStandard deviation 2.04174 2.03732 2.03420 2.03038 2.02984 2.02683 2.02539\nProportion of Variance 0.00205 0.00205 0.00204 0.00203 0.00203 0.00202 0.00202\nCumulative Proportion 0.50429 0.50633 0.50837 0.51040 0.51243 0.51446 0.51648\n PC183 PC184 PC185 PC186 PC187 PC188 PC189\nStandard deviation 2.02122 2.02045 2.01728 2.0151 2.01198 2.00963 2.00284\nProportion of Variance 0.00201 0.00201 0.00201 0.0020 0.00199 0.00199 0.00198\nCumulative Proportion 0.51849 0.52050 0.52251 0.5245 0.52650 0.52849 0.53047\n PC190 PC191 PC192 PC193 PC194 PC195 PC196\nStandard deviation 2.00032 1.99741 1.99696 1.99295 1.99157 1.99130 1.98671\nProportion of Variance 0.00197 0.00197 0.00196 0.00196 0.00195 0.00195 0.00194\nCumulative Proportion 0.53244 0.53441 0.53637 0.53833 0.54028 0.54224 0.54418\n PC197 PC198 PC199 PC200 PC201 PC202 PC203\nStandard deviation 1.98577 1.98203 1.98015 1.97907 1.97338 1.97010 1.96868\nProportion of Variance 0.00194 0.00194 0.00193 0.00193 0.00192 0.00191 0.00191\nCumulative Proportion 0.54613 0.54806 0.54999 0.55192 0.55384 0.55575 0.55766\n PC204 PC205 PC206 PC207 PC208 PC209 PC210\nStandard deviation 1.9658 1.9634 1.9619 1.95990 1.95720 1.95106 1.94759\nProportion of Variance 0.0019 0.0019 0.0019 0.00189 0.00189 0.00188 0.00187\nCumulative Proportion 0.5596 0.5615 0.5634 0.56526 0.56714 0.56902 0.57089\n PC211 PC212 PC213 PC214 PC215 PC216 PC217\nStandard deviation 1.94572 1.94367 1.94134 1.93648 1.93366 1.93053 1.92852\nProportion of Variance 0.00187 0.00186 0.00186 0.00185 0.00184 0.00184 0.00183\nCumulative Proportion 0.57275 0.57462 0.57647 0.57832 0.58016 0.58200 0.58383\n PC218 PC219 PC220 PC221 PC222 PC223 PC224\nStandard deviation 1.92759 1.92570 1.92318 1.92088 1.91846 1.91485 1.9108\nProportion of Variance 0.00183 0.00183 0.00182 0.00182 0.00181 0.00181 0.0018\nCumulative Proportion 0.58566 0.58749 0.58931 0.59113 0.59294 0.59475 0.5966\n PC225 PC226 PC227 PC228 PC229 PC230 PC231\nStandard deviation 1.90837 1.90603 1.90428 1.90091 1.89921 1.89549 1.89199\nProportion of Variance 0.00179 0.00179 0.00179 0.00178 0.00178 0.00177 0.00176\nCumulative Proportion 0.59834 0.60013 0.60192 0.60370 0.60548 0.60725 0.60901\n PC232 PC233 PC234 PC235 PC236 PC237 PC238\nStandard deviation 1.88815 1.88513 1.88295 1.88224 1.88108 1.87493 1.87335\nProportion of Variance 0.00176 0.00175 0.00175 0.00175 0.00174 0.00173 0.00173\nCumulative Proportion 0.61077 0.61252 0.61427 0.61601 0.61776 0.61949 0.62122\n PC239 PC240 PC241 PC242 PC243 PC244 PC245\nStandard deviation 1.87238 1.86869 1.86397 1.86320 1.8599 1.8561 1.8560\nProportion of Variance 0.00173 0.00172 0.00171 0.00171 0.0017 0.0017 0.0017\nCumulative Proportion 0.62294 0.62467 0.62638 0.62809 0.6298 0.6315 0.6332\n PC246 PC247 PC248 PC249 PC250 PC251 PC252\nStandard deviation 1.85075 1.84853 1.84556 1.84385 1.84118 1.83964 1.83662\nProportion of Variance 0.00169 0.00168 0.00168 0.00168 0.00167 0.00167 0.00166\nCumulative Proportion 0.63487 0.63656 0.63824 0.63991 0.64158 0.64325 0.64491\n PC253 PC254 PC255 PC256 PC257 PC258 PC259\nStandard deviation 1.83391 1.83271 1.82941 1.82651 1.82632 1.82232 1.81746\nProportion of Variance 0.00166 0.00165 0.00165 0.00164 0.00164 0.00164 0.00163\nCumulative Proportion 0.64657 0.64822 0.64987 0.65152 0.65316 0.65480 0.65642\n PC260 PC261 PC262 PC263 PC264 PC265 PC266\nStandard deviation 1.81683 1.81562 1.81483 1.80912 1.80868 1.80572 1.8037\nProportion of Variance 0.00163 0.00162 0.00162 0.00161 0.00161 0.00161 0.0016\nCumulative Proportion 0.65805 0.65967 0.66130 0.66291 0.66452 0.66613 0.6677\n PC267 PC268 PC269 PC270 PC271 PC272 PC273\nStandard deviation 1.8001 1.79668 1.79469 1.79272 1.78877 1.78801 1.78647\nProportion of Variance 0.0016 0.00159 0.00159 0.00158 0.00158 0.00158 0.00157\nCumulative Proportion 0.6693 0.67092 0.67251 0.67409 0.67567 0.67724 0.67881\n PC274 PC275 PC276 PC277 PC278 PC279 PC280\nStandard deviation 1.78476 1.78271 1.78022 1.77883 1.77840 1.77103 1.76918\nProportion of Variance 0.00157 0.00157 0.00156 0.00156 0.00156 0.00155 0.00154\nCumulative Proportion 0.68038 0.68195 0.68351 0.68507 0.68663 0.68817 0.68972\n PC281 PC282 PC283 PC284 PC285 PC286 PC287\nStandard deviation 1.76654 1.76346 1.75938 1.75836 1.75675 1.75394 1.75122\nProportion of Variance 0.00154 0.00153 0.00153 0.00152 0.00152 0.00152 0.00151\nCumulative Proportion 0.69125 0.69279 0.69431 0.69583 0.69735 0.69887 0.70038\n PC288 PC289 PC290 PC291 PC292 PC293 PC294\nStandard deviation 1.7475 1.7461 1.7429 1.74141 1.74030 1.73634 1.73557\nProportion of Variance 0.0015 0.0015 0.0015 0.00149 0.00149 0.00149 0.00148\nCumulative Proportion 0.7019 0.7034 0.7049 0.70638 0.70787 0.70936 0.71084\n PC295 PC296 PC297 PC298 PC299 PC300 PC301\nStandard deviation 1.73244 1.72923 1.72456 1.72227 1.71963 1.71878 1.71811\nProportion of Variance 0.00148 0.00147 0.00147 0.00146 0.00146 0.00146 0.00145\nCumulative Proportion 0.71232 0.71379 0.71526 0.71672 0.71818 0.71963 0.72109\n PC302 PC303 PC304 PC305 PC306 PC307 PC308\nStandard deviation 1.71597 1.71284 1.70997 1.70822 1.70648 1.70217 1.70075\nProportion of Variance 0.00145 0.00145 0.00144 0.00144 0.00143 0.00143 0.00143\nCumulative Proportion 0.72254 0.72398 0.72543 0.72686 0.72830 0.72973 0.73115\n PC309 PC310 PC311 PC312 PC313 PC314 PC315\nStandard deviation 1.69463 1.69396 1.69210 1.68959 1.6886 1.6829 1.68099\nProportion of Variance 0.00142 0.00141 0.00141 0.00141 0.0014 0.0014 0.00139\nCumulative Proportion 0.73257 0.73398 0.73539 0.73680 0.7382 0.7396 0.74099\n PC316 PC317 PC318 PC319 PC320 PC321 PC322\nStandard deviation 1.68076 1.67898 1.67703 1.67482 1.67394 1.66997 1.66660\nProportion of Variance 0.00139 0.00139 0.00139 0.00138 0.00138 0.00137 0.00137\nCumulative Proportion 0.74238 0.74377 0.74516 0.74654 0.74792 0.74929 0.75066\n PC323 PC324 PC325 PC326 PC327 PC328 PC329\nStandard deviation 1.66491 1.66404 1.66011 1.65582 1.65487 1.65244 1.65101\nProportion of Variance 0.00137 0.00136 0.00136 0.00135 0.00135 0.00135 0.00134\nCumulative Proportion 0.75203 0.75339 0.75475 0.75610 0.75745 0.75880 0.76014\n PC330 PC331 PC332 PC333 PC334 PC335 PC336\nStandard deviation 1.64931 1.64513 1.64338 1.64137 1.63705 1.63662 1.63303\nProportion of Variance 0.00134 0.00133 0.00133 0.00133 0.00132 0.00132 0.00131\nCumulative Proportion 0.76148 0.76281 0.76414 0.76547 0.76679 0.76811 0.76942\n PC337 PC338 PC339 PC340 PC341 PC342 PC343\nStandard deviation 1.62881 1.62815 1.6252 1.6227 1.61974 1.61816 1.61541\nProportion of Variance 0.00131 0.00131 0.0013 0.0013 0.00129 0.00129 0.00129\nCumulative Proportion 0.77073 0.77204 0.7733 0.7746 0.77593 0.77722 0.77851\n PC344 PC345 PC346 PC347 PC348 PC349 PC350\nStandard deviation 1.61343 1.61160 1.60880 1.60585 1.60514 1.60323 1.60233\nProportion of Variance 0.00128 0.00128 0.00128 0.00127 0.00127 0.00127 0.00127\nCumulative Proportion 0.77979 0.78107 0.78234 0.78361 0.78488 0.78615 0.78742\n PC351 PC352 PC353 PC354 PC355 PC356 PC357\nStandard deviation 1.59783 1.59499 1.59310 1.59049 1.58766 1.58584 1.58329\nProportion of Variance 0.00126 0.00125 0.00125 0.00125 0.00124 0.00124 0.00124\nCumulative Proportion 0.78867 0.78993 0.79118 0.79242 0.79367 0.79490 0.79614\n PC358 PC359 PC360 PC361 PC362 PC363 PC364\nStandard deviation 1.58234 1.57971 1.57615 1.57535 1.57225 1.57039 1.56888\nProportion of Variance 0.00123 0.00123 0.00122 0.00122 0.00122 0.00122 0.00121\nCumulative Proportion 0.79737 0.79860 0.79983 0.80105 0.80227 0.80348 0.80470\n PC365 PC366 PC367 PC368 PC369 PC370 PC371\nStandard deviation 1.56779 1.56478 1.5589 1.5575 1.55653 1.55260 1.55220\nProportion of Variance 0.00121 0.00121 0.0012 0.0012 0.00119 0.00119 0.00119\nCumulative Proportion 0.80591 0.80711 0.8083 0.8095 0.81070 0.81189 0.81307\n PC372 PC373 PC374 PC375 PC376 PC377 PC378\nStandard deviation 1.55044 1.54760 1.54552 1.54140 1.53862 1.53659 1.53557\nProportion of Variance 0.00118 0.00118 0.00118 0.00117 0.00117 0.00116 0.00116\nCumulative Proportion 0.81426 0.81544 0.81662 0.81779 0.81895 0.82012 0.82128\n PC379 PC380 PC381 PC382 PC383 PC384 PC385\nStandard deviation 1.53481 1.53128 1.52725 1.52340 1.52299 1.52121 1.51745\nProportion of Variance 0.00116 0.00116 0.00115 0.00114 0.00114 0.00114 0.00113\nCumulative Proportion 0.82244 0.82359 0.82474 0.82589 0.82703 0.82817 0.82931\n PC386 PC387 PC388 PC389 PC390 PC391 PC392\nStandard deviation 1.51596 1.51205 1.50928 1.50726 1.50505 1.50415 1.50012\nProportion of Variance 0.00113 0.00113 0.00112 0.00112 0.00112 0.00111 0.00111\nCumulative Proportion 0.83044 0.83156 0.83269 0.83381 0.83492 0.83604 0.83715\n PC393 PC394 PC395 PC396 PC397 PC398 PC399\nStandard deviation 1.4971 1.4947 1.4936 1.4922 1.48919 1.48799 1.48646\nProportion of Variance 0.0011 0.0011 0.0011 0.0011 0.00109 0.00109 0.00109\nCumulative Proportion 0.8383 0.8394 0.8405 0.8416 0.84264 0.84373 0.84482\n PC400 PC401 PC402 PC403 PC404 PC405 PC406\nStandard deviation 1.48163 1.48085 1.47793 1.47633 1.47410 1.47180 1.47061\nProportion of Variance 0.00108 0.00108 0.00108 0.00107 0.00107 0.00107 0.00107\nCumulative Proportion 0.84590 0.84698 0.84806 0.84913 0.85020 0.85127 0.85234\n PC407 PC408 PC409 PC410 PC411 PC412 PC413\nStandard deviation 1.47004 1.46675 1.46419 1.46067 1.45954 1.45680 1.45490\nProportion of Variance 0.00106 0.00106 0.00106 0.00105 0.00105 0.00105 0.00104\nCumulative Proportion 0.85340 0.85446 0.85552 0.85657 0.85762 0.85866 0.85971\n PC414 PC415 PC416 PC417 PC418 PC419 PC420\nStandard deviation 1.45231 1.44918 1.44573 1.44403 1.44066 1.43855 1.43566\nProportion of Variance 0.00104 0.00103 0.00103 0.00103 0.00102 0.00102 0.00102\nCumulative Proportion 0.86075 0.86178 0.86281 0.86384 0.86486 0.86588 0.86690\n PC421 PC422 PC423 PC424 PC425 PC426 PC427\nStandard deviation 1.43404 1.43277 1.42965 1.4264 1.4250 1.4227 1.4213\nProportion of Variance 0.00101 0.00101 0.00101 0.0010 0.0010 0.0010 0.0010\nCumulative Proportion 0.86791 0.86892 0.86993 0.8709 0.8719 0.8729 0.8739\n PC428 PC429 PC430 PC431 PC432 PC433 PC434\nStandard deviation 1.41989 1.41639 1.41549 1.40963 1.40812 1.40579 1.40296\nProportion of Variance 0.00099 0.00099 0.00099 0.00098 0.00098 0.00097 0.00097\nCumulative Proportion 0.87492 0.87590 0.87689 0.87787 0.87885 0.87982 0.88079\n PC435 PC436 PC437 PC438 PC439 PC440 PC441\nStandard deviation 1.39977 1.39704 1.39550 1.39262 1.39133 1.38653 1.38374\nProportion of Variance 0.00097 0.00096 0.00096 0.00096 0.00095 0.00095 0.00094\nCumulative Proportion 0.88176 0.88272 0.88368 0.88463 0.88559 0.88653 0.88748\n PC442 PC443 PC444 PC445 PC446 PC447 PC448\nStandard deviation 1.38250 1.37999 1.37863 1.37633 1.37391 1.36981 1.36870\nProportion of Variance 0.00094 0.00094 0.00094 0.00093 0.00093 0.00092 0.00092\nCumulative Proportion 0.88842 0.88936 0.89029 0.89123 0.89216 0.89308 0.89401\n PC449 PC450 PC451 PC452 PC453 PC454 PC455\nStandard deviation 1.36580 1.36477 1.36242 1.35875 1.35843 1.35611 1.3546\nProportion of Variance 0.00092 0.00092 0.00091 0.00091 0.00091 0.00091 0.0009\nCumulative Proportion 0.89493 0.89584 0.89676 0.89767 0.89858 0.89948 0.9004\n PC456 PC457 PC458 PC459 PC460 PC461 PC462\nStandard deviation 1.3525 1.3493 1.3479 1.34514 1.34428 1.33931 1.33785\nProportion of Variance 0.0009 0.0009 0.0009 0.00089 0.00089 0.00088 0.00088\nCumulative Proportion 0.9013 0.9022 0.9031 0.90397 0.90486 0.90575 0.90663\n PC463 PC464 PC465 PC466 PC467 PC468 PC469\nStandard deviation 1.33390 1.33208 1.32916 1.32868 1.32666 1.32519 1.32181\nProportion of Variance 0.00088 0.00087 0.00087 0.00087 0.00087 0.00087 0.00086\nCumulative Proportion 0.90750 0.90838 0.90925 0.91012 0.91099 0.91185 0.91271\n PC470 PC471 PC472 PC473 PC474 PC475 PC476\nStandard deviation 1.31974 1.31854 1.31379 1.31060 1.30860 1.30594 1.30257\nProportion of Variance 0.00086 0.00086 0.00085 0.00085 0.00084 0.00084 0.00084\nCumulative Proportion 0.91357 0.91443 0.91528 0.91612 0.91697 0.91781 0.91864\n PC477 PC478 PC479 PC480 PC481 PC482 PC483\nStandard deviation 1.29989 1.29780 1.29762 1.29305 1.29025 1.28962 1.28832\nProportion of Variance 0.00083 0.00083 0.00083 0.00082 0.00082 0.00082 0.00082\nCumulative Proportion 0.91948 0.92031 0.92114 0.92196 0.92278 0.92360 0.92442\n PC484 PC485 PC486 PC487 PC488 PC489 PC490\nStandard deviation 1.28516 1.28262 1.2771 1.2744 1.2731 1.2720 1.26952\nProportion of Variance 0.00081 0.00081 0.0008 0.0008 0.0008 0.0008 0.00079\nCumulative Proportion 0.92523 0.92604 0.9268 0.9276 0.9284 0.9292 0.93004\n PC491 PC492 PC493 PC494 PC495 PC496 PC497\nStandard deviation 1.26779 1.26500 1.26145 1.25954 1.25799 1.25504 1.25413\nProportion of Variance 0.00079 0.00079 0.00078 0.00078 0.00078 0.00078 0.00077\nCumulative Proportion 0.93083 0.93162 0.93240 0.93318 0.93396 0.93474 0.93551\n PC498 PC499 PC500 PC501 PC502 PC503 PC504\nStandard deviation 1.25220 1.24881 1.24809 1.24538 1.24210 1.24022 1.23714\nProportion of Variance 0.00077 0.00077 0.00077 0.00076 0.00076 0.00076 0.00075\nCumulative Proportion 0.93629 0.93705 0.93782 0.93859 0.93935 0.94010 0.94086\n PC505 PC506 PC507 PC508 PC509 PC510 PC511\nStandard deviation 1.23600 1.22994 1.22768 1.22643 1.22418 1.22290 1.22073\nProportion of Variance 0.00075 0.00075 0.00074 0.00074 0.00074 0.00074 0.00073\nCumulative Proportion 0.94161 0.94236 0.94310 0.94384 0.94458 0.94531 0.94605\n PC512 PC513 PC514 PC515 PC516 PC517 PC518\nStandard deviation 1.21941 1.21595 1.21452 1.21172 1.21018 1.20413 1.20268\nProportion of Variance 0.00073 0.00073 0.00073 0.00072 0.00072 0.00071 0.00071\nCumulative Proportion 0.94678 0.94751 0.94824 0.94896 0.94968 0.95040 0.95111\n PC519 PC520 PC521 PC522 PC523 PC524 PC525\nStandard deviation 1.19923 1.19861 1.1955 1.1906 1.1891 1.18578 1.18306\nProportion of Variance 0.00071 0.00071 0.0007 0.0007 0.0007 0.00069 0.00069\nCumulative Proportion 0.95182 0.95253 0.9532 0.9539 0.9546 0.95532 0.95601\n PC526 PC527 PC528 PC529 PC530 PC531 PC532\nStandard deviation 1.17909 1.17776 1.17571 1.17445 1.17280 1.16838 1.16298\nProportion of Variance 0.00069 0.00068 0.00068 0.00068 0.00068 0.00067 0.00067\nCumulative Proportion 0.95669 0.95738 0.95806 0.95874 0.95941 0.96009 0.96075\n PC533 PC534 PC535 PC536 PC537 PC538 PC539\nStandard deviation 1.15885 1.15633 1.15446 1.15006 1.14780 1.14485 1.14063\nProportion of Variance 0.00066 0.00066 0.00066 0.00065 0.00065 0.00065 0.00064\nCumulative Proportion 0.96142 0.96207 0.96273 0.96338 0.96403 0.96468 0.96532\n PC540 PC541 PC542 PC543 PC544 PC545 PC546\nStandard deviation 1.13865 1.13741 1.13405 1.13299 1.12734 1.12346 1.12033\nProportion of Variance 0.00064 0.00064 0.00063 0.00063 0.00063 0.00062 0.00062\nCumulative Proportion 0.96596 0.96659 0.96723 0.96786 0.96849 0.96911 0.96973\n PC547 PC548 PC549 PC550 PC551 PC552 PC553\nStandard deviation 1.11934 1.11738 1.11391 1.11106 1.10892 1.1049 1.1012\nProportion of Variance 0.00062 0.00062 0.00061 0.00061 0.00061 0.0006 0.0006\nCumulative Proportion 0.97034 0.97096 0.97157 0.97218 0.97279 0.9734 0.9740\n PC554 PC555 PC556 PC557 PC558 PC559 PC560\nStandard deviation 1.0999 1.09758 1.09311 1.08947 1.08735 1.08606 1.08186\nProportion of Variance 0.0006 0.00059 0.00059 0.00058 0.00058 0.00058 0.00058\nCumulative Proportion 0.9746 0.97517 0.97576 0.97635 0.97693 0.97751 0.97809\n PC561 PC562 PC563 PC564 PC565 PC566 PC567\nStandard deviation 1.08025 1.07435 1.07238 1.06965 1.06688 1.06236 1.06016\nProportion of Variance 0.00057 0.00057 0.00057 0.00056 0.00056 0.00056 0.00055\nCumulative Proportion 0.97866 0.97923 0.97980 0.98036 0.98092 0.98148 0.98203\n PC568 PC569 PC570 PC571 PC572 PC573 PC574\nStandard deviation 1.05798 1.05346 1.05129 1.04752 1.04500 1.04319 1.03509\nProportion of Variance 0.00055 0.00055 0.00054 0.00054 0.00054 0.00054 0.00053\nCumulative Proportion 0.98258 0.98313 0.98368 0.98422 0.98475 0.98529 0.98582\n PC575 PC576 PC577 PC578 PC579 PC580 PC581\nStandard deviation 1.02906 1.02414 1.02254 1.01782 1.01355 1.0086 1.0061\nProportion of Variance 0.00052 0.00052 0.00052 0.00051 0.00051 0.0005 0.0005\nCumulative Proportion 0.98634 0.98686 0.98737 0.98788 0.98839 0.9889 0.9894\n PC582 PC583 PC584 PC585 PC586 PC587 PC588\nStandard deviation 1.0048 0.99461 0.99397 0.99041 0.98879 0.98543 0.98105\nProportion of Variance 0.0005 0.00049 0.00049 0.00048 0.00048 0.00048 0.00047\nCumulative Proportion 0.9899 0.99037 0.99086 0.99134 0.99183 0.99230 0.99278\n PC589 PC590 PC591 PC592 PC593 PC594 PC595\nStandard deviation 0.97196 0.96737 0.96389 0.95702 0.95335 0.94892 0.94601\nProportion of Variance 0.00047 0.00046 0.00046 0.00045 0.00045 0.00044 0.00044\nCumulative Proportion 0.99324 0.99371 0.99416 0.99461 0.99506 0.99551 0.99595\n PC596 PC597 PC598 PC599 PC600 PC601 PC602\nStandard deviation 0.93930 0.93429 0.93035 0.92419 0.91349 0.9063 0.88897\nProportion of Variance 0.00043 0.00043 0.00043 0.00042 0.00041 0.0004 0.00039\nCumulative Proportion 0.99638 0.99681 0.99724 0.99766 0.99807 0.9985 0.99886\n PC603 PC604 PC605 PC606 PC607\nStandard deviation 0.88636 0.80084 0.68584 0.6382 3.021e-15\nProportion of Variance 0.00039 0.00032 0.00023 0.0002 0.000e+00\nCumulative Proportion 0.99925 0.99957 0.99980 1.0000 1.000e+00\n\n"
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "tw = TWcalc(com.convert_to_r_matrix(pca_drop_std), 25)",
"execution_count": 41,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "tw_p = com.convert_robj(tw.rx2(2))\ntw_e = com.convert_robj(tw.rx2(1))",
"execution_count": 42,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "tw_num = 0\nfor i, p in enumerate(tw_p):\n print i, p\n if p > 0.05:\n tw_num = i\n break\nprint \"Tracy-Widom test yields %d axes of pop structure\" % tw_num",
"execution_count": 43,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "0 8e-09\n1 8e-09\n2 8e-09\n3 8e-09\n4 8e-09\n5 8e-09\n6 8e-09\n7 5.9e-08\n8 1.501e-06\n9 1.501e-06\n10 2.8955e-05\n11 0.000177359\n12 0.003013114\n13 0.042180992\n14 0.573774198\nTracy-Widom test yields 14 axes of pop structure\n"
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "hierf_trans = {0:11, 1:12, 2:22, -1:'NA'}",
"execution_count": 44,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "def apply_hierf_trans(series):\n return [hierf_trans[x] if x in hierf_trans else x for x in series]",
"execution_count": 45,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "hierf_df = z12_drop.apply(apply_hierf_trans)",
"execution_count": 542,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "hierf_df.shape",
"execution_count": 545,
"outputs": [
{
"execution_count": 545,
"output_type": "execute_result",
"data": {
"text/plain": "(607, 3083)"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "hierf_df.insert(0, \"countyid\", None)\nhierf_df[0:5]",
"execution_count": 543,
"outputs": [
{
"execution_count": 543,
"output_type": "execute_result",
"data": {
"text/plain": " countyid 0-10037-01-257 0-10040-02-394 0-10044-01-392 0-10048-01-60 \\\n0 None 22 12 22 22 \n1 None 11 11 22 22 \n3 None 11 22 11 11 \n4 None 11 12 11 NA \n5 None 12 11 12 22 \n\n 0-10051-02-166 0-10054-01-402 0-10067-03-111 0-10079-02-168 0-10112-01-169 \\\n0 11 12 11 11 12 \n1 11 12 11 12 11 \n3 12 11 11 11 11 \n4 11 12 11 11 11 \n5 11 12 11 11 11 \n\n 0-10113-01-119 0-10116-01-165 0-10151-01-86 0-10162-01-255 0-10207-01-280 \\\n0 11 11 11 11 12 \n1 22 11 11 11 12 \n3 12 11 11 11 22 \n4 11 11 11 NA 12 \n5 12 11 11 11 22 \n\n ... UMN-CL299Contig1-01-46 UMN-CL306Contig1-04-261 \\\n0 ... 11 11 \n1 ... 11 11 \n3 ... 11 11 \n4 ... 11 11 \n5 ... 11 11 \n\n UMN-CL307Contig1-04-143 UMN-CL319Contig1-03-131 UMN-CL326Contig1-05-421 \\\n0 11 12 12 \n1 11 11 11 \n3 11 11 11 \n4 12 11 11 \n5 12 11 12 \n\n UMN-CL339Contig1-05-39 UMN-CL34Contig1-03-89 UMN-CL353Contig1-04-64 \\\n0 11 12 11 \n1 11 11 11 \n3 11 12 11 \n4 11 12 11 \n5 11 12 11 \n\n UMN-CL362Contig1-07-133 UMN-CL363Contig1-01-233 UMN-CL379Contig1-12-117 \\\n0 NA 11 11 \n1 22 11 11 \n3 NA 12 11 \n4 11 12 11 \n5 NA 12 11 \n\n UMN-CL424Contig1-03-94 UMN-CL54Contig1-07-88 UMN-CL91Contig1-02-246 \\\n0 11 11 11 \n1 12 12 11 \n3 12 12 11 \n4 12 11 12 \n5 12 11 12 \n\n UMN-CL97Contig \n0 12 \n1 22 \n3 11 \n4 11 \n5 12 \n\n[5 rows x 3083 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>countyid</th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>0-10067-03-111</th>\n <th>0-10079-02-168</th>\n <th>0-10112-01-169</th>\n <th>0-10113-01-119</th>\n <th>0-10116-01-165</th>\n <th>0-10151-01-86</th>\n <th>0-10162-01-255</th>\n <th>0-10207-01-280</th>\n <th>...</th>\n <th>UMN-CL299Contig1-01-46</th>\n <th>UMN-CL306Contig1-04-261</th>\n <th>UMN-CL307Contig1-04-143</th>\n <th>UMN-CL319Contig1-03-131</th>\n <th>UMN-CL326Contig1-05-421</th>\n <th>UMN-CL339Contig1-05-39</th>\n <th>UMN-CL34Contig1-03-89</th>\n <th>UMN-CL353Contig1-04-64</th>\n <th>UMN-CL362Contig1-07-133</th>\n <th>UMN-CL363Contig1-01-233</th>\n <th>UMN-CL379Contig1-12-117</th>\n <th>UMN-CL424Contig1-03-94</th>\n <th>UMN-CL54Contig1-07-88</th>\n <th>UMN-CL91Contig1-02-246</th>\n <th>UMN-CL97Contig</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td> None</td>\n <td> 22</td>\n <td> 12</td>\n <td> 22</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n </tr>\n <tr>\n <th>1</th>\n <td> None</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n </tr>\n <tr>\n <th>3</th>\n <td> None</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> NA</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n </tr>\n <tr>\n <th>4</th>\n <td> None</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n </tr>\n <tr>\n <th>5</th>\n <td> None</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> NA</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 3083 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "loc_hierf = data_loc.join(hierf_df, how=\"inner\")\nbayenv_df = loc_hierf.copy()",
"execution_count": 549,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "print hierf_df.shape, data_loc.shape, loc_hierf.shape, bayenv_df.shape",
"execution_count": 551,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "(607, 3083) (622, 4) (607, 3087) (607, 3087)\n"
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "loc_hierf['county_state'] = loc_hierf.apply(lambda row: \"%s_%s\" % (row.county, row.state), axis=1)\nusable_counties = set()\ncounty_counts = loc_hierf.county_state.value_counts()\ncounty_counts = county_counts.sort(inplace=False, ascending=False)\nfor c in county_counts.index:\n print c, county_counts[c]\nfor c in county_counts.index:\n if county_counts[c] >=5:\n usable_counties.add(c)\nusable_counties = sorted(list(usable_counties))",
"execution_count": 562,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "TUSCALOOSA_AL 63\nBEAUFORT_NC 36\nCRAVEN_NC 23\nPICKENS_AL 17\nGREENE_AL 17\nCHOCTAW_AL 13\nMARION_FL 13\nONSLOW_NC 13\nBRUNSWICK_NC 11\nLEVY_FL 11\nNEWBERRY_SC 11\nHERTFORD_NC 10\nGEORGETOWN_SC 10\nPRINCE GEORGE_VA 9\nANSON_NC 9\nBRUNSWICK_VA 8\nMECKLENBURG_VA 8\nDINWIDDIE_VA 8\nBERKELEY_SC 7\nWAKE_NC 7\nBERTIE_NC 7\nSUMTER_AL 7\nMcCURTAIN_OK 7\nWILCOX_AL 7\nMARENGO_AL 6\nCLARKE_AL 6\nMARTIN_NC 6\nJASPER_MS 6\nHALIFAX_NC 6\nCOLUMBUS_NC 6\nCHESTERFIELD_VA 5\nSUSSEX_VA 5\nSPOTSYLVANIA_VA 5\nCLEVELAND_AR 5\nHALE_AL 4\nPOLK_TX 4\nLAMAR_AL 4\nHALIFAX_VA 4\nKING & QUEEN_VA 4\nRICHMOND_NC 4\nFLUVANNA_VA 4\nSALUDA_SC 4\nMOORE_NC 4\nFRANKLIN_NC 3\nGATES_NC 3\nCALHOUN_AL 3\nCUMBERLAND_VA 3\nCLARKE_MS 3\nCHOWAN_NC 3\nWINSTON_AL 3\nHOUSTON_TX 3\nTYRRELL_NC 3\nCALHOUN_AR 3\nLUNENBURG_VA 3\nGREENWOOD_SC 3\nJONES_NC 3\nBIBB_AL 3\nJASPER_SC 3\nNEW KENT_VA 3\nWARREN_NC 3\nDURHAM_NC 2\nNORTHAMPTON_NC 2\nFAYETTE_AL 2\nBAMBERG_SC 2\nYORK_SC 2\nBARTOW_GA 2\nMARSHALL_AL 2\nCONECUH_AL 2\nLEE_NC 2\nCHATTOOGA_GA 2\nPASQUOTANK_NC 2\nUNION_SC 2\nROWAN_NC 2\nDORCHESTER_SC 2\nDALLAS_AL 2\nHANCOCK_GA 2\nPICKENS_SC 2\nHORRY_SC 2\nHEARD_GA 2\nMARION_AL 2\nPIKE_AR 2\nUNION_LA 2\nAIKEN_SC 2\nEDGEFIELD_SC 2\nMONTGOMERY_NC 2\nESCAMBIA_AL 2\nTALLAPOOSA_AL 2\nWARREN_GA 2\nMOREHOUSE_LA 2\nCARTERET_NC 2\nWAYNE_TN 1\nMONROE_MS 1\nFAYETTE_TX 1\nKERSHAW_SC 1\nPAMILICO_NC 1\nHOWARD_AR 1\nFLOYD_GA 1\nTISHOMINGO_MS 1\nHARRIS_GA 1\nSCREVEN_GA 1\nCRENSHAW_AL 1\nCHATHAM_NC 1\nDREW_AR 1\nORANGEBURG_SC 1\nLAMAR_GA 1\nHAMPTON_SC 1\nTALIAFERRO_GA 1\nWINN_LA 1\nNATCHITOCHES_LA 1\nPENDER_NC 1\nIREDELL_NC 1\nWAYNE_MS 1\nWALKER_AL 1\nNASH_NC 1\nSTANLY_NC 1\nGRANVILLE_NC 1\nSURRY_NC 1\nLIVINGSTON_LA 1\nMURRAY_GA 1\nTYLER_TX 1\nCAMPBELL_VA 1\nCHILTON_AL 1\nCAROLINE_VA 1\nRANDOLPH_NC 1\nLINCOLN_GA 1\nCHEROKEE_GA 1\nJOHNSTON_NC 1\nCHESTER_SC 1\nPRINCE_VA 1\nCHARLESTON_SC 1\nDARE_NC 1\nFAIRFIELD_SC 1\nMARION_SC 1\nGUILFORD_NC 1\nJASPER_GA 1\nCALDWELL_LA 1\nMERIWETHER_GA 1\nISLE OF WIGHT_VA 1\nWASHINGTON_NC 1\nBARNWELL_SC 1\nELBERT_GA 1\nCHESTERFIELD_SC 1\nDE SOTO_LA 1\nNOTTOWAY_VA 1\nPOLK_NC 1\nTALBOT_GA 1\nHANOVER_VA 1\nPRINCE EDWARD_VA 1\nGREENE_GA 1\nMONROE_GA 1\nGLOUCESTER_VA 1\nCALHOUN_SC 1\nBARROW_GA 1\nPERRY_AL 1\nLENOIR_NC 1\nLAURENS_SC 1\nGASTON_NC 1\nAPPOMATTOX_VA 1\nLAWRENCE_AL 1\nBUCKINGHAM_VA 1\nANDERSON_SC 1\nCHARLES CITY_VA 1\n"
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "county_id = {}\nfor i, county in enumerate(usable_counties):\n county_id[county] = i+1\ncounty_id\n",
"execution_count": 563,
"outputs": [
{
"execution_count": 563,
"output_type": "execute_result",
"data": {
"text/plain": "{u'ANSON_NC': 1,\n u'BEAUFORT_NC': 2,\n u'BERKELEY_SC': 3,\n u'BERTIE_NC': 4,\n u'BRUNSWICK_NC': 5,\n u'BRUNSWICK_VA': 6,\n u'CHESTERFIELD_VA': 7,\n u'CHOCTAW_AL': 8,\n u'CLARKE_AL': 9,\n u'CLEVELAND_AR': 10,\n u'COLUMBUS_NC': 11,\n u'CRAVEN_NC': 12,\n u'DINWIDDIE_VA': 13,\n u'GEORGETOWN_SC': 14,\n u'GREENE_AL': 15,\n u'HALIFAX_NC': 16,\n u'HERTFORD_NC': 17,\n u'JASPER_MS': 18,\n u'LEVY_FL': 19,\n u'MARENGO_AL': 20,\n u'MARION_FL': 21,\n u'MARTIN_NC': 22,\n u'MECKLENBURG_VA': 23,\n u'McCURTAIN_OK': 24,\n u'NEWBERRY_SC': 25,\n u'ONSLOW_NC': 26,\n u'PICKENS_AL': 27,\n u'PRINCE GEORGE_VA': 28,\n u'SPOTSYLVANIA_VA': 29,\n u'SUMTER_AL': 30,\n u'SUSSEX_VA': 31,\n u'TUSCALOOSA_AL': 32,\n u'WAKE_NC': 33,\n u'WILCOX_AL': 34}"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "loc_hierf['usable'] = loc_hierf.apply(lambda row: row.county_state in county_id, axis=1)",
"execution_count": 564,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "drop = loc_hierf[loc_hierf.usable==False]",
"execution_count": 565,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "loc_hierf = loc_hierf.drop(drop.index)",
"execution_count": 566,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "loc_hierf",
"execution_count": 568,
"outputs": [
{
"execution_count": 568,
"output_type": "execute_result",
"data": {
"text/plain": " county state lat long countyid 0-10037-01-257 \\\n8 COLUMBUS NC 34.33010 -78.70453 NaN NA \n10 ONSLOW NC 34.75963 -77.40977 NaN 11 \n11 ONSLOW NC 34.75963 -77.40977 NaN 11 \n12 GEORGETOWN SC 33.36318 -79.30539 NaN NA \n13 BEAUFORT NC 35.55349 -77.05205 NaN 11 \n14 BERTIE NC 35.99815 -76.94897 NaN 12 \n15 CRAVEN NC 35.10917 -77.06917 NaN 12 \n16 ONSLOW NC 34.75963 -77.40977 NaN 11 \n18 BEAUFORT NC 35.55349 -77.05205 NaN 11 \n20 CRAVEN NC 35.10917 -77.06917 NaN 11 \n21 CRAVEN NC 35.10917 -77.06917 NaN 11 \n24 CRAVEN NC 35.10917 -77.06917 NaN 11 \n25 BEAUFORT NC 35.55349 -77.05205 NaN 11 \n26 BEAUFORT NC 35.55349 -77.05205 NaN 11 \n27 BEAUFORT NC 35.55349 -77.05205 NaN 12 \n28 BEAUFORT NC 35.55349 -77.05205 NaN 12 \n29 BEAUFORT NC 35.55349 -77.05205 NaN 22 \n30 BEAUFORT NC 35.55349 -77.05205 NaN 11 \n31 BEAUFORT NC 35.55349 -77.05205 NaN 11 \n32 BEAUFORT NC 35.55349 -77.05205 NaN 22 \n33 BEAUFORT NC 35.55349 -77.05205 NaN NA \n34 BEAUFORT NC 35.55349 -77.05205 NaN 11 \n35 CRAVEN NC 35.10917 -77.06917 NaN 22 \n36 CRAVEN NC 35.10917 -77.06917 NaN 11 \n37 CRAVEN NC 35.10917 -77.06917 NaN 11 \n38 ONSLOW NC 34.75963 -77.40977 NaN 11 \n39 ONSLOW NC 34.75963 -77.40977 NaN 11 \n40 ONSLOW NC 34.75963 -77.40977 NaN 12 \n41 ONSLOW NC 34.75963 -77.40977 NaN 11 \n42 ONSLOW NC 34.75963 -77.40977 NaN NA \n.. ... ... ... ... ... ... \n533 MECKLENBURG VA 36.66800 -78.38900 NaN 11 \n534 MECKLENBURG VA 36.66800 -78.38900 NaN 11 \n544 BRUNSWICK VA 36.75843 -77.85042 NaN 11 \n545 PRINCE GEORGE VA 37.22056 -77.28806 NaN 12 \n546 PRINCE GEORGE VA 37.22056 -77.28806 NaN 11 \n547 PRINCE GEORGE VA 37.22056 -77.28806 NaN 11 \n548 PRINCE GEORGE VA 37.22056 -77.28806 NaN 12 \n549 PRINCE GEORGE VA 37.22056 -77.28806 NaN 11 \n553 SPOTSYLVANIA VA 38.20208 -77.58750 NaN 12 \n555 SPOTSYLVANIA VA 38.20208 -77.58750 NaN 12 \n556 SPOTSYLVANIA VA 38.20208 -77.58750 NaN 12 \n581 JASPER MS 31.97676 -89.27957 NaN 11 \n582 JASPER MS 31.97676 -89.27957 NaN 12 \n583 McCURTAIN OK 33.89639 -94.82917 NaN 12 \n584 McCURTAIN OK 33.89639 -94.82917 NaN 12 \n585 McCURTAIN OK 33.89639 -94.82917 NaN 12 \n594 BERKELEY SC 33.19661 -80.00666 NaN 11 \n595 HALIFAX NC 36.32840 -77.59073 NaN 12 \n598 GEORGETOWN SC 33.36318 -79.30539 NaN 12 \n599 COLUMBUS NC 34.33010 -78.70453 NaN 11 \n600 GEORGETOWN SC 33.36318 -79.30539 NaN 11 \n605 ONSLOW NC 34.64551 -77.41295 NaN 22 \n607 ONSLOW NC 34.64551 -77.41295 NaN 11 \n610 CRAVEN NC 35.10917 -77.06917 NaN 12 \n612 CRAVEN NC 35.10917 -77.06917 NaN 12 \n614 BERKELEY SC 33.19661 -80.00666 NaN 12 \n615 BERKELEY SC 33.19661 -80.00666 NaN 11 \n616 BERKELEY SC 33.19661 -80.00666 NaN 11 \n617 BERKELEY SC 33.19661 -80.00666 NaN 11 \n618 BERKELEY SC 33.19661 -80.00666 NaN 22 \n\n 0-10040-02-394 0-10044-01-392 0-10048-01-60 0-10051-02-166 0-10054-01-402 \\\n8 22 11 11 11 11 \n10 22 12 11 11 12 \n11 12 NA 12 11 12 \n12 12 NA NA 11 12 \n13 NA 12 12 11 22 \n14 12 11 11 11 12 \n15 12 12 12 11 12 \n16 11 11 11 11 22 \n18 11 22 11 12 12 \n20 12 12 22 11 22 \n21 12 11 12 11 12 \n24 22 11 11 11 12 \n25 12 NA 11 11 22 \n26 11 11 11 11 12 \n27 22 22 11 11 22 \n28 11 22 11 11 12 \n29 22 12 11 12 12 \n30 22 11 12 11 12 \n31 22 22 11 11 12 \n32 11 11 11 11 12 \n33 11 12 22 11 22 \n34 12 12 11 11 12 \n35 22 12 12 12 22 \n36 12 12 11 11 12 \n37 11 11 11 11 22 \n38 22 11 11 11 12 \n39 12 12 12 11 12 \n40 12 22 11 11 12 \n41 12 22 22 11 22 \n42 11 22 12 11 12 \n.. ... ... ... ... ... \n533 12 22 11 11 11 \n534 11 22 11 12 12 \n544 11 11 12 11 12 \n545 11 12 12 11 12 \n546 12 22 12 12 12 \n547 22 11 11 12 12 \n548 12 12 11 11 11 \n549 12 11 11 11 12 \n553 12 NA 11 11 12 \n555 12 12 11 12 11 \n556 12 22 12 12 12 \n581 11 12 22 11 22 \n582 12 22 11 11 12 \n583 11 22 12 11 12 \n584 12 22 22 11 22 \n585 12 22 22 11 22 \n594 12 12 11 11 12 \n595 12 22 11 11 22 \n598 12 12 11 11 22 \n599 11 11 11 11 22 \n600 11 22 11 11 12 \n605 12 11 12 11 22 \n607 12 12 12 11 11 \n610 22 12 12 11 22 \n612 12 22 11 11 12 \n614 12 22 11 11 12 \n615 12 11 12 11 12 \n616 12 12 22 11 11 \n617 22 11 11 12 22 \n618 12 12 11 11 11 \n\n 0-10067-03-111 0-10079-02-168 0-10112-01-169 0-10113-01-119 ... \\\n8 11 11 11 12 ... \n10 11 11 11 11 ... \n11 11 11 11 12 ... \n12 11 11 12 12 ... \n13 11 11 11 12 ... \n14 11 11 11 11 ... \n15 11 11 11 22 ... \n16 12 11 12 11 ... \n18 11 11 11 12 ... \n20 11 12 11 11 ... \n21 11 11 11 12 ... \n24 11 11 11 11 ... \n25 11 11 12 12 ... \n26 11 11 11 12 ... \n27 11 11 11 11 ... \n28 11 12 11 11 ... \n29 11 11 11 11 ... \n30 11 11 11 12 ... \n31 11 11 12 22 ... \n32 11 11 11 12 ... \n33 11 11 11 NA ... \n34 11 11 11 12 ... \n35 11 11 11 11 ... \n36 12 12 11 11 ... \n37 11 11 12 11 ... \n38 11 11 11 12 ... \n39 11 12 11 12 ... \n40 11 11 12 11 ... \n41 11 11 11 11 ... \n42 11 11 11 11 ... \n.. ... ... ... ... ... \n533 11 11 11 12 ... \n534 11 11 12 11 ... \n544 11 12 11 11 ... \n545 11 11 11 11 ... \n546 11 11 12 12 ... \n547 11 11 11 12 ... \n548 11 11 11 12 ... \n549 11 11 11 11 ... \n553 11 11 11 12 ... \n555 12 11 12 11 ... \n556 11 11 11 11 ... \n581 11 11 11 11 ... \n582 11 11 11 11 ... \n583 11 11 11 11 ... \n584 11 11 11 11 ... \n585 11 11 11 11 ... \n594 11 11 11 12 ... \n595 11 11 11 12 ... \n598 11 11 11 12 ... \n599 11 11 11 12 ... \n600 11 22 11 22 ... \n605 11 11 11 11 ... \n607 11 11 12 11 ... \n610 12 11 11 11 ... \n612 11 11 11 22 ... \n614 11 11 11 11 ... \n615 11 12 11 11 ... \n616 11 11 11 12 ... \n617 11 11 11 12 ... \n618 11 11 11 11 ... \n\n UMN-CL307Contig1-04-143 UMN-CL319Contig1-03-131 UMN-CL326Contig1-05-421 \\\n8 12 11 11 \n10 11 11 12 \n11 11 12 NA \n12 12 NA 12 \n13 11 11 11 \n14 11 12 11 \n15 11 11 11 \n16 11 12 11 \n18 11 11 11 \n20 12 11 12 \n21 22 12 22 \n24 11 11 11 \n25 12 11 12 \n26 12 22 11 \n27 11 11 11 \n28 12 11 12 \n29 NA 11 11 \n30 11 11 11 \n31 12 12 11 \n32 12 11 22 \n33 NA 11 11 \n34 11 11 12 \n35 11 11 12 \n36 11 11 11 \n37 11 11 11 \n38 11 11 11 \n39 11 12 12 \n40 11 11 12 \n41 11 11 11 \n42 11 11 11 \n.. ... ... ... \n533 11 11 11 \n534 12 12 11 \n544 12 12 NA \n545 12 12 11 \n546 22 11 11 \n547 12 12 11 \n548 12 11 12 \n549 12 11 11 \n553 22 11 11 \n555 12 11 11 \n556 11 11 12 \n581 11 12 12 \n582 11 11 22 \n583 11 11 11 \n584 11 11 11 \n585 11 11 11 \n594 11 11 11 \n595 12 12 11 \n598 12 12 11 \n599 11 12 11 \n600 11 11 11 \n605 11 11 22 \n607 11 11 22 \n610 12 12 22 \n612 12 12 12 \n614 11 11 11 \n615 11 12 11 \n616 12 22 11 \n617 12 11 12 \n618 11 22 NA \n\n UMN-CL339Contig1-05-39 UMN-CL34Contig1-03-89 UMN-CL353Contig1-04-64 \\\n8 11 11 11 \n10 11 12 11 \n11 11 11 11 \n12 11 NA 11 \n13 11 11 11 \n14 12 12 11 \n15 11 12 11 \n16 11 11 11 \n18 12 11 11 \n20 11 12 11 \n21 11 11 11 \n24 11 12 11 \n25 11 12 11 \n26 12 12 11 \n27 11 11 11 \n28 11 NA 11 \n29 11 11 11 \n30 11 11 11 \n31 11 11 11 \n32 11 11 11 \n33 11 11 11 \n34 11 12 11 \n35 11 11 11 \n36 11 11 11 \n37 11 11 11 \n38 11 12 11 \n39 11 11 11 \n40 11 12 11 \n41 11 11 11 \n42 11 NA 11 \n.. ... ... ... \n533 12 11 11 \n534 11 11 11 \n544 11 11 11 \n545 11 12 11 \n546 11 11 11 \n547 11 12 11 \n548 11 12 11 \n549 11 12 11 \n553 11 12 11 \n555 11 11 11 \n556 11 11 11 \n581 11 12 11 \n582 11 12 11 \n583 11 12 11 \n584 11 11 11 \n585 11 11 11 \n594 11 11 11 \n595 11 22 11 \n598 11 11 11 \n599 11 12 11 \n600 11 11 11 \n605 11 12 12 \n607 11 12 11 \n610 11 12 11 \n612 11 11 11 \n614 11 11 11 \n615 12 11 11 \n616 11 22 11 \n617 11 11 11 \n618 11 11 11 \n\n UMN-CL362Contig1-07-133 UMN-CL363Contig1-01-233 UMN-CL379Contig1-12-117 \\\n8 NA 11 11 \n10 12 11 11 \n11 11 11 11 \n12 12 11 11 \n13 12 11 11 \n14 12 11 11 \n15 12 12 11 \n16 12 11 11 \n18 NA 11 11 \n20 11 11 12 \n21 12 12 11 \n24 11 11 11 \n25 12 11 11 \n26 12 11 11 \n27 12 11 11 \n28 12 11 11 \n29 11 11 11 \n30 12 11 11 \n31 11 11 11 \n32 11 11 11 \n33 NA 11 11 \n34 NA 12 11 \n35 12 11 11 \n36 12 11 11 \n37 12 11 11 \n38 12 11 11 \n39 NA NA 11 \n40 11 11 11 \n41 11 12 11 \n42 11 11 11 \n.. ... ... ... \n533 12 11 11 \n534 11 12 11 \n544 11 11 11 \n545 12 11 11 \n546 11 11 11 \n547 12 11 11 \n548 11 11 11 \n549 11 11 11 \n553 12 12 11 \n555 12 11 11 \n556 11 11 11 \n581 11 12 11 \n582 11 11 11 \n583 11 11 11 \n584 11 11 11 \n585 12 11 11 \n594 NA 11 11 \n595 11 11 11 \n598 11 11 11 \n599 11 11 11 \n600 11 12 11 \n605 12 12 11 \n607 12 11 11 \n610 12 NA 11 \n612 11 11 11 \n614 NA 11 11 \n615 12 11 11 \n616 11 11 11 \n617 NA 11 11 \n618 12 NA 11 \n\n UMN-CL424Contig1-03-94 UMN-CL54Contig1-07-88 UMN-CL91Contig1-02-246 \\\n8 12 11 12 \n10 11 12 11 \n11 11 12 11 \n12 11 NA 11 \n13 22 11 12 \n14 11 12 11 \n15 11 12 11 \n16 11 11 11 \n18 12 11 11 \n20 11 12 22 \n21 12 11 11 \n24 12 12 11 \n25 12 11 11 \n26 11 11 11 \n27 12 11 11 \n28 12 12 11 \n29 11 11 11 \n30 11 11 12 \n31 12 11 12 \n32 11 11 12 \n33 NA 12 NA \n34 11 11 11 \n35 12 12 22 \n36 11 11 11 \n37 12 12 11 \n38 12 11 11 \n39 22 11 11 \n40 22 11 12 \n41 11 12 11 \n42 11 12 11 \n.. ... ... ... \n533 11 12 12 \n534 11 22 12 \n544 11 11 11 \n545 12 11 12 \n546 11 11 12 \n547 11 11 11 \n548 11 11 11 \n549 11 11 12 \n553 11 12 11 \n555 11 12 11 \n556 12 11 11 \n581 12 12 12 \n582 11 22 22 \n583 22 12 11 \n584 11 12 11 \n585 12 11 11 \n594 12 11 11 \n595 11 12 12 \n598 11 11 11 \n599 12 12 11 \n600 12 11 12 \n605 12 12 11 \n607 11 12 11 \n610 11 11 22 \n612 11 12 12 \n614 12 11 11 \n615 12 11 11 \n616 11 11 11 \n617 22 12 12 \n618 22 12 11 \n\n UMN-CL97Contig county_state usable \n8 22 COLUMBUS_NC True \n10 11 ONSLOW_NC True \n11 12 ONSLOW_NC True \n12 NA GEORGETOWN_SC True \n13 11 BEAUFORT_NC True \n14 11 BERTIE_NC True \n15 11 CRAVEN_NC True \n16 11 ONSLOW_NC True \n18 11 BEAUFORT_NC True \n20 11 CRAVEN_NC True \n21 11 CRAVEN_NC True \n24 11 CRAVEN_NC True \n25 11 BEAUFORT_NC True \n26 12 BEAUFORT_NC True \n27 12 BEAUFORT_NC True \n28 11 BEAUFORT_NC True \n29 12 BEAUFORT_NC True \n30 11 BEAUFORT_NC True \n31 12 BEAUFORT_NC True \n32 12 BEAUFORT_NC True \n33 12 BEAUFORT_NC True \n34 11 BEAUFORT_NC True \n35 11 CRAVEN_NC True \n36 NA CRAVEN_NC True \n37 11 CRAVEN_NC True \n38 11 ONSLOW_NC True \n39 11 ONSLOW_NC True \n40 11 ONSLOW_NC True \n41 12 ONSLOW_NC True \n42 11 ONSLOW_NC True \n.. ... ... ... \n533 11 MECKLENBURG_VA True \n534 11 MECKLENBURG_VA True \n544 22 BRUNSWICK_VA True \n545 11 PRINCE GEORGE_VA True \n546 12 PRINCE GEORGE_VA True \n547 12 PRINCE GEORGE_VA True \n548 12 PRINCE GEORGE_VA True \n549 12 PRINCE GEORGE_VA True \n553 11 SPOTSYLVANIA_VA True \n555 11 SPOTSYLVANIA_VA True \n556 11 SPOTSYLVANIA_VA True \n581 12 JASPER_MS True \n582 11 JASPER_MS True \n583 22 McCURTAIN_OK True \n584 11 McCURTAIN_OK True \n585 11 McCURTAIN_OK True \n594 11 BERKELEY_SC True \n595 22 HALIFAX_NC True \n598 12 GEORGETOWN_SC True \n599 12 COLUMBUS_NC True \n600 11 GEORGETOWN_SC True \n605 11 ONSLOW_NC True \n607 11 ONSLOW_NC True \n610 12 CRAVEN_NC True \n612 11 CRAVEN_NC True \n614 12 BERKELEY_SC True \n615 12 BERKELEY_SC True \n616 12 BERKELEY_SC True \n617 12 BERKELEY_SC True \n618 11 BERKELEY_SC True \n\n[388 rows x 3089 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>county</th>\n <th>state</th>\n <th>lat</th>\n <th>long</th>\n <th>countyid</th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>0-10067-03-111</th>\n <th>0-10079-02-168</th>\n <th>0-10112-01-169</th>\n <th>0-10113-01-119</th>\n <th>...</th>\n <th>UMN-CL307Contig1-04-143</th>\n <th>UMN-CL319Contig1-03-131</th>\n <th>UMN-CL326Contig1-05-421</th>\n <th>UMN-CL339Contig1-05-39</th>\n <th>UMN-CL34Contig1-03-89</th>\n <th>UMN-CL353Contig1-04-64</th>\n <th>UMN-CL362Contig1-07-133</th>\n <th>UMN-CL363Contig1-01-233</th>\n <th>UMN-CL379Contig1-12-117</th>\n <th>UMN-CL424Contig1-03-94</th>\n <th>UMN-CL54Contig1-07-88</th>\n <th>UMN-CL91Contig1-02-246</th>\n <th>UMN-CL97Contig</th>\n <th>county_state</th>\n <th>usable</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>8 </th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> NaN</td>\n <td> NA</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> COLUMBUS_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>10 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>11 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> NA</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> ONSLOW_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>12 </th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> NaN</td>\n <td> NA</td>\n <td> 12</td>\n <td> NA</td>\n <td> NA</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> NA</td>\n <td> 12</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> NA</td>\n <td> GEORGETOWN_SC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>13 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> NaN</td>\n <td> 11</td>\n <td> NA</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>14 </th>\n <td> BERTIE</td>\n <td> NC</td>\n <td> 35.99815</td>\n <td>-76.94897</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> BERTIE_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>15 </th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> CRAVEN_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>16 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>18 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>20 </th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> CRAVEN_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>21 </th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 22</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> CRAVEN_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>24 </th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> CRAVEN_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>25 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>26 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>27 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 22</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>28 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>29 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> NaN</td>\n <td> 22</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>30 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>31 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 22</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td>...</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>32 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> NaN</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>33 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> NaN</td>\n <td> NA</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td>...</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 12</td>\n <td> NA</td>\n <td> 12</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>34 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> NA</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>35 </th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n <td> NaN</td>\n <td> 22</td>\n <td> 22</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> CRAVEN_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>36 </th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> CRAVEN_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>37 </th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> CRAVEN_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>38 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>39 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> NA</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>40 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>41 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> 22</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> ONSLOW_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>42 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> NaN</td>\n <td> NA</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>533</th>\n <td> MECKLENBURG</td>\n <td> VA</td>\n <td> 36.66800</td>\n <td>-78.38900</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> MECKLENBURG_VA</td>\n <td> True</td>\n </tr>\n <tr>\n <th>534</th>\n <td> MECKLENBURG</td>\n <td> VA</td>\n <td> 36.66800</td>\n <td>-78.38900</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td>...</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> MECKLENBURG_VA</td>\n <td> True</td>\n </tr>\n <tr>\n <th>544</th>\n <td> BRUNSWICK</td>\n <td> VA</td>\n <td> 36.75843</td>\n <td>-77.85042</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 12</td>\n <td> 12</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> BRUNSWICK_VA</td>\n <td> True</td>\n </tr>\n <tr>\n <th>545</th>\n <td> PRINCE GEORGE</td>\n <td> VA</td>\n <td> 37.22056</td>\n <td>-77.28806</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> PRINCE GEORGE_VA</td>\n <td> True</td>\n </tr>\n <tr>\n <th>546</th>\n <td> PRINCE GEORGE</td>\n <td> VA</td>\n <td> 37.22056</td>\n <td>-77.28806</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td>...</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> PRINCE GEORGE_VA</td>\n <td> True</td>\n </tr>\n <tr>\n <th>547</th>\n <td> PRINCE GEORGE</td>\n <td> VA</td>\n <td> 37.22056</td>\n <td>-77.28806</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> PRINCE GEORGE_VA</td>\n <td> True</td>\n </tr>\n <tr>\n <th>548</th>\n <td> PRINCE GEORGE</td>\n <td> VA</td>\n <td> 37.22056</td>\n <td>-77.28806</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> PRINCE GEORGE_VA</td>\n <td> True</td>\n </tr>\n <tr>\n <th>549</th>\n <td> PRINCE GEORGE</td>\n <td> VA</td>\n <td> 37.22056</td>\n <td>-77.28806</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> PRINCE GEORGE_VA</td>\n <td> True</td>\n </tr>\n <tr>\n <th>553</th>\n <td> SPOTSYLVANIA</td>\n <td> VA</td>\n <td> 38.20208</td>\n <td>-77.58750</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> SPOTSYLVANIA_VA</td>\n <td> True</td>\n </tr>\n <tr>\n <th>555</th>\n <td> SPOTSYLVANIA</td>\n <td> VA</td>\n <td> 38.20208</td>\n <td>-77.58750</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td>...</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> SPOTSYLVANIA_VA</td>\n <td> True</td>\n </tr>\n <tr>\n <th>556</th>\n <td> SPOTSYLVANIA</td>\n <td> VA</td>\n <td> 38.20208</td>\n <td>-77.58750</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> SPOTSYLVANIA_VA</td>\n <td> True</td>\n </tr>\n <tr>\n <th>581</th>\n <td> JASPER</td>\n <td> MS</td>\n <td> 31.97676</td>\n <td>-89.27957</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> JASPER_MS</td>\n <td> True</td>\n </tr>\n <tr>\n <th>582</th>\n <td> JASPER</td>\n <td> MS</td>\n <td> 31.97676</td>\n <td>-89.27957</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 22</td>\n <td> 11</td>\n <td> JASPER_MS</td>\n <td> True</td>\n </tr>\n <tr>\n <th>583</th>\n <td> McCURTAIN</td>\n <td> OK</td>\n <td> 33.89639</td>\n <td>-94.82917</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n <td> McCURTAIN_OK</td>\n <td> True</td>\n </tr>\n <tr>\n <th>584</th>\n <td> McCURTAIN</td>\n <td> OK</td>\n <td> 33.89639</td>\n <td>-94.82917</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 22</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> McCURTAIN_OK</td>\n <td> True</td>\n </tr>\n <tr>\n <th>585</th>\n <td> McCURTAIN</td>\n <td> OK</td>\n <td> 33.89639</td>\n <td>-94.82917</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 22</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> McCURTAIN_OK</td>\n <td> True</td>\n </tr>\n <tr>\n <th>594</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> BERKELEY_SC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>595</th>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 36.32840</td>\n <td>-77.59073</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> HALIFAX_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>598</th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> GEORGETOWN_SC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>599</th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> COLUMBUS_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>600</th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 22</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> GEORGETOWN_SC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>605</th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.64551</td>\n <td>-77.41295</td>\n <td> NaN</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>607</th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.64551</td>\n <td>-77.41295</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>610</th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 22</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> CRAVEN_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>612</th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td>...</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> CRAVEN_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>614</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n <td> NaN</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> BERKELEY_SC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>615</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> BERKELEY_SC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>616</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> BERKELEY_SC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>617</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n <td> NaN</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> BERKELEY_SC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>618</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n <td> NaN</td>\n <td> 22</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 22</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> NA</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> BERKELEY_SC</td>\n <td> True</td>\n </tr>\n </tbody>\n</table>\n<p>388 rows × 3089 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "loc_hierf['countyid'] = loc_hierf.apply(lambda row: county_id[row.county_state], axis=1)",
"execution_count": 569,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "loc_hierf[0:10]",
"execution_count": 570,
"outputs": [
{
"execution_count": 570,
"output_type": "execute_result",
"data": {
"text/plain": " county state lat long countyid 0-10037-01-257 \\\n8 COLUMBUS NC 34.33010 -78.70453 11 NA \n10 ONSLOW NC 34.75963 -77.40977 26 11 \n11 ONSLOW NC 34.75963 -77.40977 26 11 \n12 GEORGETOWN SC 33.36318 -79.30539 14 NA \n13 BEAUFORT NC 35.55349 -77.05205 2 11 \n14 BERTIE NC 35.99815 -76.94897 4 12 \n15 CRAVEN NC 35.10917 -77.06917 12 12 \n16 ONSLOW NC 34.75963 -77.40977 26 11 \n18 BEAUFORT NC 35.55349 -77.05205 2 11 \n20 CRAVEN NC 35.10917 -77.06917 12 11 \n\n 0-10040-02-394 0-10044-01-392 0-10048-01-60 0-10051-02-166 0-10054-01-402 \\\n8 22 11 11 11 11 \n10 22 12 11 11 12 \n11 12 NA 12 11 12 \n12 12 NA NA 11 12 \n13 NA 12 12 11 22 \n14 12 11 11 11 12 \n15 12 12 12 11 12 \n16 11 11 11 11 22 \n18 11 22 11 12 12 \n20 12 12 22 11 22 \n\n 0-10067-03-111 0-10079-02-168 0-10112-01-169 0-10113-01-119 ... \\\n8 11 11 11 12 ... \n10 11 11 11 11 ... \n11 11 11 11 12 ... \n12 11 11 12 12 ... \n13 11 11 11 12 ... \n14 11 11 11 11 ... \n15 11 11 11 22 ... \n16 12 11 12 11 ... \n18 11 11 11 12 ... \n20 11 12 11 11 ... \n\n UMN-CL307Contig1-04-143 UMN-CL319Contig1-03-131 UMN-CL326Contig1-05-421 \\\n8 12 11 11 \n10 11 11 12 \n11 11 12 NA \n12 12 NA 12 \n13 11 11 11 \n14 11 12 11 \n15 11 11 11 \n16 11 12 11 \n18 11 11 11 \n20 12 11 12 \n\n UMN-CL339Contig1-05-39 UMN-CL34Contig1-03-89 UMN-CL353Contig1-04-64 \\\n8 11 11 11 \n10 11 12 11 \n11 11 11 11 \n12 11 NA 11 \n13 11 11 11 \n14 12 12 11 \n15 11 12 11 \n16 11 11 11 \n18 12 11 11 \n20 11 12 11 \n\n UMN-CL362Contig1-07-133 UMN-CL363Contig1-01-233 UMN-CL379Contig1-12-117 \\\n8 NA 11 11 \n10 12 11 11 \n11 11 11 11 \n12 12 11 11 \n13 12 11 11 \n14 12 11 11 \n15 12 12 11 \n16 12 11 11 \n18 NA 11 11 \n20 11 11 12 \n\n UMN-CL424Contig1-03-94 UMN-CL54Contig1-07-88 UMN-CL91Contig1-02-246 \\\n8 12 11 12 \n10 11 12 11 \n11 11 12 11 \n12 11 NA 11 \n13 22 11 12 \n14 11 12 11 \n15 11 12 11 \n16 11 11 11 \n18 12 11 11 \n20 11 12 22 \n\n UMN-CL97Contig county_state usable \n8 22 COLUMBUS_NC True \n10 11 ONSLOW_NC True \n11 12 ONSLOW_NC True \n12 NA GEORGETOWN_SC True \n13 11 BEAUFORT_NC True \n14 11 BERTIE_NC True \n15 11 CRAVEN_NC True \n16 11 ONSLOW_NC True \n18 11 BEAUFORT_NC True \n20 11 CRAVEN_NC True \n\n[10 rows x 3089 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>county</th>\n <th>state</th>\n <th>lat</th>\n <th>long</th>\n <th>countyid</th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>0-10067-03-111</th>\n <th>0-10079-02-168</th>\n <th>0-10112-01-169</th>\n <th>0-10113-01-119</th>\n <th>...</th>\n <th>UMN-CL307Contig1-04-143</th>\n <th>UMN-CL319Contig1-03-131</th>\n <th>UMN-CL326Contig1-05-421</th>\n <th>UMN-CL339Contig1-05-39</th>\n <th>UMN-CL34Contig1-03-89</th>\n <th>UMN-CL353Contig1-04-64</th>\n <th>UMN-CL362Contig1-07-133</th>\n <th>UMN-CL363Contig1-01-233</th>\n <th>UMN-CL379Contig1-12-117</th>\n <th>UMN-CL424Contig1-03-94</th>\n <th>UMN-CL54Contig1-07-88</th>\n <th>UMN-CL91Contig1-02-246</th>\n <th>UMN-CL97Contig</th>\n <th>county_state</th>\n <th>usable</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>8 </th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> NA</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> COLUMBUS_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>10</th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>11</th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> 11</td>\n <td> 12</td>\n <td> NA</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> ONSLOW_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>12</th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> 14</td>\n <td> NA</td>\n <td> 12</td>\n <td> NA</td>\n <td> NA</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> NA</td>\n <td> 12</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> NA</td>\n <td> GEORGETOWN_SC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>13</th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> 2</td>\n <td> 11</td>\n <td> NA</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>14</th>\n <td> BERTIE</td>\n <td> NC</td>\n <td> 35.99815</td>\n <td>-76.94897</td>\n <td> 4</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> BERTIE_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>15</th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> CRAVEN_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>16</th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>18</th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> 2</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>20</th>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> CRAVEN_NC</td>\n <td> True</td>\n </tr>\n </tbody>\n</table>\n<p>10 rows × 3089 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "loc_hierf.shape",
"execution_count": 571,
"outputs": [
{
"execution_count": 571,
"output_type": "execute_result",
"data": {
"text/plain": "(388, 3089)"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "sorted(loc_hierf.countyid.unique())",
"execution_count": 572,
"outputs": [
{
"execution_count": 572,
"output_type": "execute_result",
"data": {
"text/plain": "[1,\n 2,\n 3,\n 4,\n 5,\n 6,\n 7,\n 8,\n 9,\n 10,\n 11,\n 12,\n 13,\n 14,\n 15,\n 16,\n 17,\n 18,\n 19,\n 20,\n 21,\n 22,\n 23,\n 24,\n 25,\n 26,\n 27,\n 28,\n 29,\n 30,\n 31,\n 32,\n 33,\n 34]"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "loc_hierf.ix[:,4:-2].to_csv(\"hierf.txt\", sep=\"\\t\", header=True, index=False)",
"execution_count": 573,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "%%R\nlibrary(hierfstat)\ndata = read.table(\"hierf.txt\", header=T, sep=\"\\t\")\ndata = data[order(data$countyid),]\nlevels = data.frame(data$countyid)\nloci = data[,2:ncol(data)]\nbs = basic.stats(data)\nsaveRDS(bs, \"basic_stats.rds\")\nres = varcomp.glob(levels=levels, loci=loci, diploid=T)\nsaveRDS(res, \"hierf.rds\")",
"execution_count": 574,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "%%R\nbs = readRDS(\"basic_stats.rds\")\nres = readRDS(\"hierf.rds\")",
"execution_count": 575,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "res = com.convert_robj(ro.r('res'))",
"execution_count": 576,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "bs = com.convert_robj(ro.r('bs'))\nFis = bs['Fis']\nHs = bs['Hs']\npop_freq_temp = bs['pop.freq']\npop_freq = {}\nperloc = bs['perloc']\nn_ind_samp = bs['n.ind.samp']\nHo = bs['Ho']\noverall = bs['overall']\n\nfor df in [Fis, Hs, perloc, n_ind_samp, Ho]:\n df.index = [x[1:].replace(\".\",\"-\") for x in df.index]\n\nfor locus, data in pop_freq_temp.items():\n if len(data) == 2:\n data.index = ['p','q']\n else:\n data.index = ['p']\n pop_freq[locus[1:].replace(\".\", \"-\")] = data\n\nHo = Ho.T\nperloc = perloc.T\nn_ind_samp = n_ind_samp.T\nHs = Hs.T\nFis = Fis.T",
"execution_count": 577,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "Ho",
"execution_count": 578,
"outputs": [
{
"execution_count": 578,
"output_type": "execute_result",
"data": {
"text/plain": " 0-10037-01-257 0-10040-02-394 0-10044-01-392 0-10048-01-60 \\\n1 0.2222 0.1111 0.4444 0.5556 \n2 0.2059 0.4194 0.5714 0.3824 \n3 0.1429 0.8571 0.4286 0.2857 \n4 0.6667 0.7143 0.5000 0.1667 \n5 0.4545 0.7778 0.7273 0.5000 \n6 0.6250 0.6250 0.2500 0.5000 \n7 0.4000 0.4000 0.5000 0.6000 \n8 0.4615 0.7692 0.5833 0.4615 \n9 0.1667 0.6667 0.5000 0.1667 \n10 0.6000 0.7500 0.8000 0.2000 \n11 0.6000 0.3333 0.3333 0.1667 \n12 0.2857 0.4091 0.4500 0.5238 \n13 0.5000 0.3750 0.2500 0.2500 \n14 0.2222 0.5000 0.5556 0.3333 \n15 0.3529 0.5000 0.5333 0.5882 \n16 0.3333 0.5000 0.5000 0.1667 \n17 0.5000 0.8000 0.5000 0.2000 \n18 0.3333 0.1667 0.6000 0.6000 \n19 0.4545 0.6364 0.6364 0.3636 \n20 0.5000 0.6667 0.6667 0.5000 \n21 0.5385 0.6154 0.6154 0.5385 \n22 0.5000 0.5000 0.6667 0.3333 \n23 0.3750 0.3750 0.5000 0.5000 \n24 1.0000 0.5714 0.1429 0.4286 \n25 0.2727 0.5455 0.5000 0.2727 \n26 0.2500 0.5385 0.3636 0.4615 \n27 0.6250 0.5294 0.4375 0.4118 \n28 0.4444 0.7778 0.4444 0.2222 \n29 0.6000 0.8000 0.2500 0.2000 \n30 0.1429 0.5714 0.4286 0.2857 \n31 0.6000 0.4000 0.2000 0.2000 \n32 0.4286 0.3968 0.4426 0.3492 \n33 0.4286 0.4286 0.7143 0.2857 \n34 0.4286 0.4286 0.1667 0.8571 \n\n 0-10051-02-166 0-10054-01-402 0-10067-03-111 0-10079-02-168 \\\n1 0.0000 0.5556 0.0000 0.1111 \n2 0.0606 0.5312 0.0571 0.0278 \n3 0.1429 0.4286 0.0000 0.1429 \n4 0.0000 0.7143 0.0000 0.0000 \n5 0.1000 0.6000 0.0000 0.0000 \n6 0.2500 0.8750 0.0000 0.1250 \n7 0.2000 0.4000 0.0000 0.0000 \n8 0.0769 0.5385 0.1538 0.0769 \n9 0.0000 0.4000 0.0000 0.1667 \n10 0.0000 0.4000 0.2000 0.0000 \n11 0.3333 0.3333 0.0000 0.1667 \n12 0.1364 0.6522 0.0909 0.1364 \n13 0.2500 0.5000 0.0000 0.0000 \n14 0.1000 0.7000 0.0000 0.2000 \n15 0.0000 0.2941 0.1176 0.0000 \n16 0.3333 0.5000 0.1667 0.0000 \n17 0.3000 0.4000 0.2000 0.2000 \n18 0.0000 0.1667 0.0000 0.0000 \n19 0.0909 0.4545 0.0909 0.1818 \n20 0.0000 0.6667 0.1667 0.1667 \n21 0.0769 0.3846 0.3077 0.4615 \n22 0.3333 0.1667 0.1667 0.0000 \n23 0.3750 0.3750 0.0000 0.0000 \n24 0.0000 0.2857 0.0000 0.0000 \n25 0.1818 0.5455 0.0000 0.0000 \n26 0.0769 0.5385 0.1538 0.0769 \n27 0.0625 0.2941 0.0625 0.0588 \n28 0.2222 0.5556 0.1111 0.0000 \n29 0.6000 0.6000 0.2000 0.0000 \n30 0.1429 0.5714 0.0000 0.0000 \n31 0.2000 0.6000 0.0000 0.0000 \n32 0.0476 0.4603 0.0968 0.0806 \n33 0.0000 0.4286 0.0000 0.2857 \n34 0.0000 0.4286 0.1429 0.0000 \n\n 0-10112-01-169 0-10113-01-119 0-10116-01-165 0-10151-01-86 \\\n1 0.1111 0.5556 0.1111 0.1111 \n2 0.2000 0.5152 0.0278 0.0857 \n3 0.0000 0.4286 0.0000 0.2857 \n4 0.2857 0.2857 0.0000 0.1429 \n5 0.1818 0.4545 0.0000 0.0000 \n6 0.0000 0.3750 0.0000 0.1250 \n7 0.4000 0.4000 0.2000 0.0000 \n8 0.0000 0.4615 0.0000 0.0769 \n9 0.3333 0.3333 0.0000 0.0000 \n10 0.0000 0.4000 0.0000 0.0000 \n11 0.0000 0.6667 0.0000 0.0000 \n12 0.0435 0.3636 0.0952 0.2000 \n13 0.0000 0.5000 0.0000 0.0000 \n14 0.2000 0.5000 0.2000 0.1000 \n15 0.1765 0.6471 0.1176 0.2353 \n16 0.3333 0.3333 0.0000 0.0000 \n17 0.2000 0.3000 0.0000 0.2000 \n18 0.0000 0.6000 0.1667 0.0000 \n19 0.1818 0.4545 0.0000 0.0000 \n20 0.0000 0.1667 0.1667 0.1667 \n21 0.1538 0.4615 0.0000 0.3077 \n22 0.1667 0.3333 0.1667 0.1667 \n23 0.2500 0.5000 0.1250 0.1250 \n24 0.0000 0.4286 0.1429 0.1429 \n25 0.0000 0.6364 0.0000 0.1818 \n26 0.2308 0.3077 0.0000 0.1538 \n27 0.0000 0.6471 0.1176 0.0588 \n28 0.2222 0.5556 0.1111 0.3333 \n29 0.2000 0.2000 0.0000 0.2000 \n30 0.0000 0.1429 0.0000 0.1429 \n31 0.2000 0.4000 0.0000 0.2000 \n32 0.0968 0.5714 0.0000 0.1774 \n33 0.1429 0.4286 0.0000 0.0000 \n34 0.0000 0.4286 0.1429 0.2857 \n\n 0-10162-01-255 0-10207-01-280 0-10210-01-41 ... \\\n1 0.1111 0.5556 0.0000 ... \n2 0.0571 0.3333 0.1714 ... \n3 0.0000 0.2857 0.0000 ... \n4 0.1429 0.7143 0.0000 ... \n5 0.0000 0.5455 0.1000 ... \n6 0.0000 0.1250 0.0000 ... \n7 0.0000 0.6000 0.2000 ... \n8 0.0000 0.1538 0.1667 ... \n9 0.1667 0.5000 0.2000 ... \n10 0.2000 0.2000 0.0000 ... \n11 0.1667 0.6667 0.0000 ... \n12 0.0952 0.4545 0.1176 ... \n13 0.1250 0.5000 0.0000 ... \n14 0.0000 0.3000 0.0000 ... \n15 0.1176 0.3529 0.0000 ... \n16 0.3333 0.5000 0.0000 ... \n17 0.4000 0.4000 0.0000 ... \n18 0.1667 0.1667 0.1667 ... \n19 0.1818 0.1818 0.0000 ... \n20 0.0000 0.3333 0.1667 ... \n21 0.0000 0.2308 0.0000 ... \n22 0.1667 0.3333 0.0000 ... \n23 0.1250 0.2500 0.1429 ... \n24 0.1429 0.1667 0.2500 ... \n25 0.3000 0.6364 0.0000 ... \n26 0.2308 0.3846 0.2500 ... \n27 0.0000 0.4375 0.0714 ... \n28 0.1111 0.3333 0.3750 ... \n29 0.6000 0.6000 0.0000 ... \n30 0.0000 0.1429 0.3333 ... \n31 0.2000 0.4000 0.0000 ... \n32 0.0476 0.3810 0.1017 ... \n33 0.4286 0.4286 0.0000 ... \n34 0.0000 0.1429 0.4000 ... \n\n MN-CL299Contig1-01-46 MN-CL306Contig1-04-261 MN-CL307Contig1-04-143 \\\n1 0.0000 0.0000 0.3333 \n2 0.0278 0.0606 0.4062 \n3 0.0000 0.4286 0.2857 \n4 0.1429 0.2857 0.1667 \n5 0.0000 0.0000 0.4545 \n6 0.0000 0.1250 0.3750 \n7 0.0000 0.0000 0.6000 \n8 0.0769 0.1538 0.2308 \n9 0.0000 0.6667 0.3333 \n10 0.0000 0.2500 0.0000 \n11 0.0000 0.2000 0.4000 \n12 0.0000 0.1364 0.2174 \n13 0.0000 0.2500 0.3750 \n14 0.1000 0.5000 0.4000 \n15 0.0000 0.2353 0.1765 \n16 0.0000 0.0000 0.6667 \n17 0.0000 0.2000 0.4444 \n18 0.0000 0.3333 0.1667 \n19 0.0000 0.0909 0.1818 \n20 0.0000 0.0000 0.1667 \n21 0.1538 0.4615 0.2308 \n22 0.0000 0.0000 0.3333 \n23 0.0000 0.0000 0.3750 \n24 0.0000 0.2857 0.0000 \n25 0.1818 0.1818 0.0909 \n26 0.0000 0.1667 0.0769 \n27 0.0588 0.0588 0.2941 \n28 0.0000 0.3333 0.5556 \n29 0.0000 0.2000 0.4000 \n30 0.0000 0.1429 0.2857 \n31 0.0000 0.0000 0.0000 \n32 0.1111 0.2581 0.3175 \n33 0.1429 0.1429 0.8571 \n34 0.0000 0.1429 0.4286 \n\n MN-CL319Contig1-03-131 MN-CL326Contig1-05-421 MN-CL339Contig1-05-39 \\\n1 0.2222 0.2222 0.1111 \n2 0.2647 0.1875 0.2286 \n3 0.1429 0.3333 0.1429 \n4 0.2857 0.5000 0.1429 \n5 0.0000 0.4000 0.0000 \n6 0.2500 0.4286 0.1250 \n7 0.4000 0.2000 0.2000 \n8 0.3846 0.4615 0.3077 \n9 0.1667 0.1667 0.0000 \n10 0.0000 0.0000 0.0000 \n11 0.6667 0.2000 0.0000 \n12 0.2727 0.3043 0.0000 \n13 0.1250 0.0000 0.0000 \n14 0.2222 0.3000 0.1000 \n15 0.1765 0.3529 0.1875 \n16 0.3333 0.3333 0.0000 \n17 0.1000 0.2222 0.1000 \n18 0.3333 0.2000 0.0000 \n19 0.2727 0.1818 0.0909 \n20 0.1667 0.6667 0.1667 \n21 0.3077 0.1538 0.0000 \n22 0.5000 0.5000 0.3333 \n23 0.3750 0.4286 0.1250 \n24 0.1429 0.0000 0.0000 \n25 0.2727 0.2727 0.1818 \n26 0.2308 0.2500 0.0769 \n27 0.2353 0.3333 0.0588 \n28 0.2222 0.2222 0.0000 \n29 0.0000 0.4000 0.0000 \n30 0.0000 0.4286 0.0000 \n31 0.2000 0.0000 0.0000 \n32 0.2857 0.3387 0.1111 \n33 0.5714 0.0000 0.2857 \n34 0.0000 0.1429 0.0000 \n\n MN-CL34Contig1-03-89 MN-CL353Contig1-04-64 MN-CL362Contig1-07-133 \\\n1 0.2857 0.0000 0.2500 \n2 0.3235 0.0278 0.5357 \n3 0.1429 0.0000 0.5000 \n4 0.4286 0.0000 0.3333 \n5 0.5455 0.0000 0.4000 \n6 0.5000 0.0000 0.5000 \n7 0.4000 0.0000 0.0000 \n8 0.3846 0.0000 0.7273 \n9 0.4000 0.0000 0.8000 \n10 0.8000 0.0000 0.5000 \n11 0.3333 0.0000 0.2000 \n12 0.3810 0.0000 0.5909 \n13 0.3750 0.0000 0.3750 \n14 0.2222 0.0000 0.3000 \n15 0.4375 0.0000 0.4286 \n16 0.6667 0.1667 0.0000 \n17 0.2000 0.0000 0.3750 \n18 0.6667 0.0000 0.6000 \n19 0.4545 0.0000 0.3636 \n20 0.5000 0.0000 0.6000 \n21 0.5385 0.0769 0.4000 \n22 0.3333 0.0000 0.2000 \n23 0.2500 0.1250 0.3750 \n24 0.4286 0.0000 0.2857 \n25 0.4545 0.0000 0.6667 \n26 0.5000 0.0769 0.4167 \n27 0.5000 0.0000 0.5294 \n28 0.4444 0.0000 0.4444 \n29 0.4000 0.0000 0.6000 \n30 0.5000 0.0000 0.7143 \n31 0.4000 0.0000 0.2000 \n32 0.3968 0.0000 0.4483 \n33 0.4286 0.0000 0.8571 \n34 0.2857 0.0000 0.6667 \n\n MN-CL363Contig1-01-233 MN-CL379Contig1-12-117 MN-CL424Contig1-03-94 \\\n1 0.3333 0.0000 0.4444 \n2 0.1389 0.0278 0.4706 \n3 0.0000 0.0000 0.5714 \n4 0.0000 0.0000 0.7143 \n5 0.2727 0.0000 0.3636 \n6 0.1250 0.0000 0.5000 \n7 0.2000 0.0000 0.2000 \n8 0.1538 0.0000 0.2308 \n9 0.1667 0.0000 0.3333 \n10 0.0000 0.0000 0.2000 \n11 0.1667 0.0000 0.6667 \n12 0.1364 0.0435 0.4545 \n13 0.0000 0.0000 0.2500 \n14 0.3000 0.0000 0.3000 \n15 0.0588 0.0000 0.2941 \n16 0.0000 0.0000 0.3333 \n17 0.1111 0.0000 0.3000 \n18 0.3333 0.0000 0.3333 \n19 0.0000 0.0000 0.6364 \n20 0.3333 0.0000 0.1667 \n21 0.2308 0.0769 0.6154 \n22 0.3333 0.0000 0.6667 \n23 0.1250 0.0000 0.3750 \n24 0.0000 0.0000 0.4286 \n25 0.0909 0.1818 0.0909 \n26 0.2500 0.0000 0.1538 \n27 0.0000 0.0000 0.2941 \n28 0.3333 0.0000 0.1111 \n29 0.2000 0.0000 0.4000 \n30 0.1429 0.0000 0.5714 \n31 0.2000 0.0000 0.6000 \n32 0.0484 0.0317 0.2698 \n33 0.0000 0.0000 0.2857 \n34 0.1429 0.0000 0.4286 \n\n MN-CL54Contig1-07-88 MN-CL91Contig1-02-246 MN-CL97Contig \n1 0.4444 0.6667 0.4444 \n2 0.3611 0.2353 0.4118 \n3 0.2857 0.1429 0.5714 \n4 0.5714 0.1429 0.1429 \n5 0.7273 0.4545 0.1000 \n6 0.1250 0.2500 0.3750 \n7 0.6000 0.0000 0.0000 \n8 0.3077 0.3077 0.3846 \n9 0.3333 0.1667 0.4000 \n10 0.5000 0.0000 0.2000 \n11 0.3333 0.1667 0.6667 \n12 0.4783 0.2727 0.2000 \n13 0.5000 0.3750 0.3750 \n14 0.2222 0.4000 0.3333 \n15 0.4118 0.1333 0.4118 \n16 0.5000 0.5000 0.0000 \n17 0.8000 0.3000 0.4444 \n18 0.3333 0.3333 0.2000 \n19 0.3636 0.2727 0.5455 \n20 0.5000 0.2000 0.1667 \n21 0.4615 0.2308 0.2308 \n22 0.5000 0.0000 0.3333 \n23 0.5000 0.2857 0.2500 \n24 0.2857 0.0000 0.2857 \n25 0.4545 0.2727 0.3636 \n26 0.6154 0.0769 0.2308 \n27 0.3750 0.0625 0.2667 \n28 0.1111 0.3333 0.6667 \n29 0.4000 0.2000 0.2000 \n30 0.1429 0.2857 0.2857 \n31 0.2000 0.6000 0.4000 \n32 0.3000 0.3492 0.3103 \n33 0.2857 0.5714 0.4286 \n34 0.4286 0.2857 0.1429 \n\n[34 rows x 3082 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>0-10067-03-111</th>\n <th>0-10079-02-168</th>\n <th>0-10112-01-169</th>\n <th>0-10113-01-119</th>\n <th>0-10116-01-165</th>\n <th>0-10151-01-86</th>\n <th>0-10162-01-255</th>\n <th>0-10207-01-280</th>\n <th>0-10210-01-41</th>\n <th>...</th>\n <th>MN-CL299Contig1-01-46</th>\n <th>MN-CL306Contig1-04-261</th>\n <th>MN-CL307Contig1-04-143</th>\n <th>MN-CL319Contig1-03-131</th>\n <th>MN-CL326Contig1-05-421</th>\n <th>MN-CL339Contig1-05-39</th>\n <th>MN-CL34Contig1-03-89</th>\n <th>MN-CL353Contig1-04-64</th>\n <th>MN-CL362Contig1-07-133</th>\n <th>MN-CL363Contig1-01-233</th>\n <th>MN-CL379Contig1-12-117</th>\n <th>MN-CL424Contig1-03-94</th>\n <th>MN-CL54Contig1-07-88</th>\n <th>MN-CL91Contig1-02-246</th>\n <th>MN-CL97Contig</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>1</th>\n <td> 0.2222</td>\n <td> 0.1111</td>\n <td> 0.4444</td>\n <td> 0.5556</td>\n <td> 0.0000</td>\n <td> 0.5556</td>\n <td> 0.0000</td>\n <td> 0.1111</td>\n <td> 0.1111</td>\n <td> 0.5556</td>\n <td> 0.1111</td>\n <td> 0.1111</td>\n <td> 0.1111</td>\n <td> 0.5556</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.3333</td>\n <td> 0.2222</td>\n <td> 0.2222</td>\n <td> 0.1111</td>\n <td> 0.2857</td>\n <td> 0.0000</td>\n <td> 0.2500</td>\n <td> 0.3333</td>\n <td> 0.0000</td>\n <td> 0.4444</td>\n <td> 0.4444</td>\n <td> 0.6667</td>\n <td> 0.4444</td>\n </tr>\n <tr>\n <th>2</th>\n <td> 0.2059</td>\n <td> 0.4194</td>\n <td> 0.5714</td>\n <td> 0.3824</td>\n <td> 0.0606</td>\n <td> 0.5312</td>\n <td> 0.0571</td>\n <td> 0.0278</td>\n <td> 0.2000</td>\n <td> 0.5152</td>\n <td> 0.0278</td>\n <td> 0.0857</td>\n <td> 0.0571</td>\n <td> 0.3333</td>\n <td> 0.1714</td>\n <td>...</td>\n <td> 0.0278</td>\n <td> 0.0606</td>\n <td> 0.4062</td>\n <td> 0.2647</td>\n <td> 0.1875</td>\n <td> 0.2286</td>\n <td> 0.3235</td>\n <td> 0.0278</td>\n <td> 0.5357</td>\n <td> 0.1389</td>\n <td> 0.0278</td>\n <td> 0.4706</td>\n <td> 0.3611</td>\n <td> 0.2353</td>\n <td> 0.4118</td>\n </tr>\n <tr>\n <th>3</th>\n <td> 0.1429</td>\n <td> 0.8571</td>\n <td> 0.4286</td>\n <td> 0.2857</td>\n <td> 0.1429</td>\n <td> 0.4286</td>\n <td> 0.0000</td>\n <td> 0.1429</td>\n <td> 0.0000</td>\n <td> 0.4286</td>\n <td> 0.0000</td>\n <td> 0.2857</td>\n <td> 0.0000</td>\n <td> 0.2857</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.4286</td>\n <td> 0.2857</td>\n <td> 0.1429</td>\n <td> 0.3333</td>\n <td> 0.1429</td>\n <td> 0.1429</td>\n <td> 0.0000</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.5714</td>\n <td> 0.2857</td>\n <td> 0.1429</td>\n <td> 0.5714</td>\n </tr>\n <tr>\n <th>4</th>\n <td> 0.6667</td>\n <td> 0.7143</td>\n <td> 0.5000</td>\n <td> 0.1667</td>\n <td> 0.0000</td>\n <td> 0.7143</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.2857</td>\n <td> 0.2857</td>\n <td> 0.0000</td>\n <td> 0.1429</td>\n <td> 0.1429</td>\n <td> 0.7143</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.1429</td>\n <td> 0.2857</td>\n <td> 0.1667</td>\n <td> 0.2857</td>\n <td> 0.5000</td>\n <td> 0.1429</td>\n <td> 0.4286</td>\n <td> 0.0000</td>\n <td> 0.3333</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.7143</td>\n <td> 0.5714</td>\n <td> 0.1429</td>\n <td> 0.1429</td>\n </tr>\n <tr>\n <th>5</th>\n <td> 0.4545</td>\n <td> 0.7778</td>\n <td> 0.7273</td>\n <td> 0.5000</td>\n <td> 0.1000</td>\n <td> 0.6000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.1818</td>\n <td> 0.4545</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.5455</td>\n <td> 0.1000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.4545</td>\n <td> 0.0000</td>\n <td> 0.4000</td>\n <td> 0.0000</td>\n <td> 0.5455</td>\n <td> 0.0000</td>\n <td> 0.4000</td>\n <td> 0.2727</td>\n <td> 0.0000</td>\n <td> 0.3636</td>\n <td> 0.7273</td>\n <td> 0.4545</td>\n <td> 0.1000</td>\n </tr>\n <tr>\n <th>6</th>\n <td> 0.6250</td>\n <td> 0.6250</td>\n <td> 0.2500</td>\n <td> 0.5000</td>\n <td> 0.2500</td>\n <td> 0.8750</td>\n <td> 0.0000</td>\n <td> 0.1250</td>\n <td> 0.0000</td>\n <td> 0.3750</td>\n <td> 0.0000</td>\n <td> 0.1250</td>\n <td> 0.0000</td>\n <td> 0.1250</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.1250</td>\n <td> 0.3750</td>\n <td> 0.2500</td>\n <td> 0.4286</td>\n <td> 0.1250</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n <td> 0.5000</td>\n <td> 0.1250</td>\n <td> 0.0000</td>\n <td> 0.5000</td>\n <td> 0.1250</td>\n <td> 0.2500</td>\n <td> 0.3750</td>\n </tr>\n <tr>\n <th>7</th>\n <td> 0.4000</td>\n <td> 0.4000</td>\n <td> 0.5000</td>\n <td> 0.6000</td>\n <td> 0.2000</td>\n <td> 0.4000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.4000</td>\n <td> 0.4000</td>\n <td> 0.2000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.6000</td>\n <td> 0.2000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.6000</td>\n <td> 0.4000</td>\n <td> 0.2000</td>\n <td> 0.2000</td>\n <td> 0.4000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.6000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n </tr>\n <tr>\n <th>8</th>\n <td> 0.4615</td>\n <td> 0.7692</td>\n <td> 0.5833</td>\n <td> 0.4615</td>\n <td> 0.0769</td>\n <td> 0.5385</td>\n <td> 0.1538</td>\n <td> 0.0769</td>\n <td> 0.0000</td>\n <td> 0.4615</td>\n <td> 0.0000</td>\n <td> 0.0769</td>\n <td> 0.0000</td>\n <td> 0.1538</td>\n <td> 0.1667</td>\n <td>...</td>\n <td> 0.0769</td>\n <td> 0.1538</td>\n <td> 0.2308</td>\n <td> 0.3846</td>\n <td> 0.4615</td>\n <td> 0.3077</td>\n <td> 0.3846</td>\n <td> 0.0000</td>\n <td> 0.7273</td>\n <td> 0.1538</td>\n <td> 0.0000</td>\n <td> 0.2308</td>\n <td> 0.3077</td>\n <td> 0.3077</td>\n <td> 0.3846</td>\n </tr>\n <tr>\n <th>9</th>\n <td> 0.1667</td>\n <td> 0.6667</td>\n <td> 0.5000</td>\n <td> 0.1667</td>\n <td> 0.0000</td>\n <td> 0.4000</td>\n <td> 0.0000</td>\n <td> 0.1667</td>\n <td> 0.3333</td>\n <td> 0.3333</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.1667</td>\n <td> 0.5000</td>\n <td> 0.2000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.6667</td>\n <td> 0.3333</td>\n <td> 0.1667</td>\n <td> 0.1667</td>\n <td> 0.0000</td>\n <td> 0.4000</td>\n <td> 0.0000</td>\n <td> 0.8000</td>\n <td> 0.1667</td>\n <td> 0.0000</td>\n <td> 0.3333</td>\n <td> 0.3333</td>\n <td> 0.1667</td>\n <td> 0.4000</td>\n </tr>\n <tr>\n <th>10</th>\n <td> 0.6000</td>\n <td> 0.7500</td>\n <td> 0.8000</td>\n <td> 0.2000</td>\n <td> 0.0000</td>\n <td> 0.4000</td>\n <td> 0.2000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.4000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.2000</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.2500</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.8000</td>\n <td> 0.0000</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n </tr>\n <tr>\n <th>11</th>\n <td> 0.6000</td>\n <td> 0.3333</td>\n <td> 0.3333</td>\n <td> 0.1667</td>\n <td> 0.3333</td>\n <td> 0.3333</td>\n <td> 0.0000</td>\n <td> 0.1667</td>\n <td> 0.0000</td>\n <td> 0.6667</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.1667</td>\n <td> 0.6667</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.4000</td>\n <td> 0.6667</td>\n <td> 0.2000</td>\n <td> 0.0000</td>\n <td> 0.3333</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.1667</td>\n <td> 0.0000</td>\n <td> 0.6667</td>\n <td> 0.3333</td>\n <td> 0.1667</td>\n <td> 0.6667</td>\n </tr>\n <tr>\n <th>12</th>\n <td> 0.2857</td>\n <td> 0.4091</td>\n <td> 0.4500</td>\n <td> 0.5238</td>\n <td> 0.1364</td>\n <td> 0.6522</td>\n <td> 0.0909</td>\n <td> 0.1364</td>\n <td> 0.0435</td>\n <td> 0.3636</td>\n <td> 0.0952</td>\n <td> 0.2000</td>\n <td> 0.0952</td>\n <td> 0.4545</td>\n <td> 0.1176</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.1364</td>\n <td> 0.2174</td>\n <td> 0.2727</td>\n <td> 0.3043</td>\n <td> 0.0000</td>\n <td> 0.3810</td>\n <td> 0.0000</td>\n <td> 0.5909</td>\n <td> 0.1364</td>\n <td> 0.0435</td>\n <td> 0.4545</td>\n <td> 0.4783</td>\n <td> 0.2727</td>\n <td> 0.2000</td>\n </tr>\n <tr>\n <th>13</th>\n <td> 0.5000</td>\n <td> 0.3750</td>\n <td> 0.2500</td>\n <td> 0.2500</td>\n <td> 0.2500</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.1250</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.2500</td>\n <td> 0.3750</td>\n <td> 0.1250</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.3750</td>\n <td> 0.0000</td>\n <td> 0.3750</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.2500</td>\n <td> 0.5000</td>\n <td> 0.3750</td>\n <td> 0.3750</td>\n </tr>\n <tr>\n <th>14</th>\n <td> 0.2222</td>\n <td> 0.5000</td>\n <td> 0.5556</td>\n <td> 0.3333</td>\n <td> 0.1000</td>\n <td> 0.7000</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.2000</td>\n <td> 0.5000</td>\n <td> 0.2000</td>\n <td> 0.1000</td>\n <td> 0.0000</td>\n <td> 0.3000</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.1000</td>\n <td> 0.5000</td>\n <td> 0.4000</td>\n <td> 0.2222</td>\n <td> 0.3000</td>\n <td> 0.1000</td>\n <td> 0.2222</td>\n <td> 0.0000</td>\n <td> 0.3000</td>\n <td> 0.3000</td>\n <td> 0.0000</td>\n <td> 0.3000</td>\n <td> 0.2222</td>\n <td> 0.4000</td>\n <td> 0.3333</td>\n </tr>\n <tr>\n <th>15</th>\n <td> 0.3529</td>\n <td> 0.5000</td>\n <td> 0.5333</td>\n <td> 0.5882</td>\n <td> 0.0000</td>\n <td> 0.2941</td>\n <td> 0.1176</td>\n <td> 0.0000</td>\n <td> 0.1765</td>\n <td> 0.6471</td>\n <td> 0.1176</td>\n <td> 0.2353</td>\n <td> 0.1176</td>\n <td> 0.3529</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.2353</td>\n <td> 0.1765</td>\n <td> 0.1765</td>\n <td> 0.3529</td>\n <td> 0.1875</td>\n <td> 0.4375</td>\n <td> 0.0000</td>\n <td> 0.4286</td>\n <td> 0.0588</td>\n <td> 0.0000</td>\n <td> 0.2941</td>\n <td> 0.4118</td>\n <td> 0.1333</td>\n <td> 0.4118</td>\n </tr>\n <tr>\n <th>16</th>\n <td> 0.3333</td>\n <td> 0.5000</td>\n <td> 0.5000</td>\n <td> 0.1667</td>\n <td> 0.3333</td>\n <td> 0.5000</td>\n <td> 0.1667</td>\n <td> 0.0000</td>\n <td> 0.3333</td>\n <td> 0.3333</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.3333</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.6667</td>\n <td> 0.3333</td>\n <td> 0.3333</td>\n <td> 0.0000</td>\n <td> 0.6667</td>\n <td> 0.1667</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.3333</td>\n <td> 0.5000</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n </tr>\n <tr>\n <th>17</th>\n <td> 0.5000</td>\n <td> 0.8000</td>\n <td> 0.5000</td>\n <td> 0.2000</td>\n <td> 0.3000</td>\n <td> 0.4000</td>\n <td> 0.2000</td>\n <td> 0.2000</td>\n <td> 0.2000</td>\n <td> 0.3000</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.4000</td>\n <td> 0.4000</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.4444</td>\n <td> 0.1000</td>\n <td> 0.2222</td>\n <td> 0.1000</td>\n <td> 0.2000</td>\n <td> 0.0000</td>\n <td> 0.3750</td>\n <td> 0.1111</td>\n <td> 0.0000</td>\n <td> 0.3000</td>\n <td> 0.8000</td>\n <td> 0.3000</td>\n <td> 0.4444</td>\n </tr>\n <tr>\n <th>18</th>\n <td> 0.3333</td>\n <td> 0.1667</td>\n <td> 0.6000</td>\n <td> 0.6000</td>\n <td> 0.0000</td>\n <td> 0.1667</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.6000</td>\n <td> 0.1667</td>\n <td> 0.0000</td>\n <td> 0.1667</td>\n <td> 0.1667</td>\n <td> 0.1667</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.3333</td>\n <td> 0.1667</td>\n <td> 0.3333</td>\n <td> 0.2000</td>\n <td> 0.0000</td>\n <td> 0.6667</td>\n <td> 0.0000</td>\n <td> 0.6000</td>\n <td> 0.3333</td>\n <td> 0.0000</td>\n <td> 0.3333</td>\n <td> 0.3333</td>\n <td> 0.3333</td>\n <td> 0.2000</td>\n </tr>\n <tr>\n <th>19</th>\n <td> 0.4545</td>\n <td> 0.6364</td>\n <td> 0.6364</td>\n <td> 0.3636</td>\n <td> 0.0909</td>\n <td> 0.4545</td>\n <td> 0.0909</td>\n <td> 0.1818</td>\n <td> 0.1818</td>\n <td> 0.4545</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.1818</td>\n <td> 0.1818</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.0909</td>\n <td> 0.1818</td>\n <td> 0.2727</td>\n <td> 0.1818</td>\n <td> 0.0909</td>\n <td> 0.4545</td>\n <td> 0.0000</td>\n <td> 0.3636</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.6364</td>\n <td> 0.3636</td>\n <td> 0.2727</td>\n <td> 0.5455</td>\n </tr>\n <tr>\n <th>20</th>\n <td> 0.5000</td>\n <td> 0.6667</td>\n <td> 0.6667</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n <td> 0.6667</td>\n <td> 0.1667</td>\n <td> 0.1667</td>\n <td> 0.0000</td>\n <td> 0.1667</td>\n <td> 0.1667</td>\n <td> 0.1667</td>\n <td> 0.0000</td>\n <td> 0.3333</td>\n <td> 0.1667</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.1667</td>\n <td> 0.1667</td>\n <td> 0.6667</td>\n <td> 0.1667</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n <td> 0.6000</td>\n <td> 0.3333</td>\n <td> 0.0000</td>\n <td> 0.1667</td>\n <td> 0.5000</td>\n <td> 0.2000</td>\n <td> 0.1667</td>\n </tr>\n <tr>\n <th>21</th>\n <td> 0.5385</td>\n <td> 0.6154</td>\n <td> 0.6154</td>\n <td> 0.5385</td>\n <td> 0.0769</td>\n <td> 0.3846</td>\n <td> 0.3077</td>\n <td> 0.4615</td>\n <td> 0.1538</td>\n <td> 0.4615</td>\n <td> 0.0000</td>\n <td> 0.3077</td>\n <td> 0.0000</td>\n <td> 0.2308</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.1538</td>\n <td> 0.4615</td>\n <td> 0.2308</td>\n <td> 0.3077</td>\n <td> 0.1538</td>\n <td> 0.0000</td>\n <td> 0.5385</td>\n <td> 0.0769</td>\n <td> 0.4000</td>\n <td> 0.2308</td>\n <td> 0.0769</td>\n <td> 0.6154</td>\n <td> 0.4615</td>\n <td> 0.2308</td>\n <td> 0.2308</td>\n </tr>\n <tr>\n <th>22</th>\n <td> 0.5000</td>\n <td> 0.5000</td>\n <td> 0.6667</td>\n <td> 0.3333</td>\n <td> 0.3333</td>\n <td> 0.1667</td>\n <td> 0.1667</td>\n <td> 0.0000</td>\n <td> 0.1667</td>\n <td> 0.3333</td>\n <td> 0.1667</td>\n <td> 0.1667</td>\n <td> 0.1667</td>\n <td> 0.3333</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.3333</td>\n <td> 0.5000</td>\n <td> 0.5000</td>\n <td> 0.3333</td>\n <td> 0.3333</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.3333</td>\n <td> 0.0000</td>\n <td> 0.6667</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n <td> 0.3333</td>\n </tr>\n <tr>\n <th>23</th>\n <td> 0.3750</td>\n <td> 0.3750</td>\n <td> 0.5000</td>\n <td> 0.5000</td>\n <td> 0.3750</td>\n <td> 0.3750</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.2500</td>\n <td> 0.5000</td>\n <td> 0.1250</td>\n <td> 0.1250</td>\n <td> 0.1250</td>\n <td> 0.2500</td>\n <td> 0.1429</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.3750</td>\n <td> 0.3750</td>\n <td> 0.4286</td>\n <td> 0.1250</td>\n <td> 0.2500</td>\n <td> 0.1250</td>\n <td> 0.3750</td>\n <td> 0.1250</td>\n <td> 0.0000</td>\n <td> 0.3750</td>\n <td> 0.5000</td>\n <td> 0.2857</td>\n <td> 0.2500</td>\n </tr>\n <tr>\n <th>24</th>\n <td> 1.0000</td>\n <td> 0.5714</td>\n <td> 0.1429</td>\n <td> 0.4286</td>\n <td> 0.0000</td>\n <td> 0.2857</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.4286</td>\n <td> 0.1429</td>\n <td> 0.1429</td>\n <td> 0.1429</td>\n <td> 0.1667</td>\n <td> 0.2500</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.2857</td>\n <td> 0.0000</td>\n <td> 0.1429</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.4286</td>\n <td> 0.0000</td>\n <td> 0.2857</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.4286</td>\n <td> 0.2857</td>\n <td> 0.0000</td>\n <td> 0.2857</td>\n </tr>\n <tr>\n <th>25</th>\n <td> 0.2727</td>\n <td> 0.5455</td>\n <td> 0.5000</td>\n <td> 0.2727</td>\n <td> 0.1818</td>\n <td> 0.5455</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.6364</td>\n <td> 0.0000</td>\n <td> 0.1818</td>\n <td> 0.3000</td>\n <td> 0.6364</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.1818</td>\n <td> 0.1818</td>\n <td> 0.0909</td>\n <td> 0.2727</td>\n <td> 0.2727</td>\n <td> 0.1818</td>\n <td> 0.4545</td>\n <td> 0.0000</td>\n <td> 0.6667</td>\n <td> 0.0909</td>\n <td> 0.1818</td>\n <td> 0.0909</td>\n <td> 0.4545</td>\n <td> 0.2727</td>\n <td> 0.3636</td>\n </tr>\n <tr>\n <th>26</th>\n <td> 0.2500</td>\n <td> 0.5385</td>\n <td> 0.3636</td>\n <td> 0.4615</td>\n <td> 0.0769</td>\n <td> 0.5385</td>\n <td> 0.1538</td>\n <td> 0.0769</td>\n <td> 0.2308</td>\n <td> 0.3077</td>\n <td> 0.0000</td>\n <td> 0.1538</td>\n <td> 0.2308</td>\n <td> 0.3846</td>\n <td> 0.2500</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.1667</td>\n <td> 0.0769</td>\n <td> 0.2308</td>\n <td> 0.2500</td>\n <td> 0.0769</td>\n <td> 0.5000</td>\n <td> 0.0769</td>\n <td> 0.4167</td>\n <td> 0.2500</td>\n <td> 0.0000</td>\n <td> 0.1538</td>\n <td> 0.6154</td>\n <td> 0.0769</td>\n <td> 0.2308</td>\n </tr>\n <tr>\n <th>27</th>\n <td> 0.6250</td>\n <td> 0.5294</td>\n <td> 0.4375</td>\n <td> 0.4118</td>\n <td> 0.0625</td>\n <td> 0.2941</td>\n <td> 0.0625</td>\n <td> 0.0588</td>\n <td> 0.0000</td>\n <td> 0.6471</td>\n <td> 0.1176</td>\n <td> 0.0588</td>\n <td> 0.0000</td>\n <td> 0.4375</td>\n <td> 0.0714</td>\n <td>...</td>\n <td> 0.0588</td>\n <td> 0.0588</td>\n <td> 0.2941</td>\n <td> 0.2353</td>\n <td> 0.3333</td>\n <td> 0.0588</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n <td> 0.5294</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.2941</td>\n <td> 0.3750</td>\n <td> 0.0625</td>\n <td> 0.2667</td>\n </tr>\n <tr>\n <th>28</th>\n <td> 0.4444</td>\n <td> 0.7778</td>\n <td> 0.4444</td>\n <td> 0.2222</td>\n <td> 0.2222</td>\n <td> 0.5556</td>\n <td> 0.1111</td>\n <td> 0.0000</td>\n <td> 0.2222</td>\n <td> 0.5556</td>\n <td> 0.1111</td>\n <td> 0.3333</td>\n <td> 0.1111</td>\n <td> 0.3333</td>\n <td> 0.3750</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.3333</td>\n <td> 0.5556</td>\n <td> 0.2222</td>\n <td> 0.2222</td>\n <td> 0.0000</td>\n <td> 0.4444</td>\n <td> 0.0000</td>\n <td> 0.4444</td>\n <td> 0.3333</td>\n <td> 0.0000</td>\n <td> 0.1111</td>\n <td> 0.1111</td>\n <td> 0.3333</td>\n <td> 0.6667</td>\n </tr>\n <tr>\n <th>29</th>\n <td> 0.6000</td>\n <td> 0.8000</td>\n <td> 0.2500</td>\n <td> 0.2000</td>\n <td> 0.6000</td>\n <td> 0.6000</td>\n <td> 0.2000</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.2000</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.6000</td>\n <td> 0.6000</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.4000</td>\n <td> 0.0000</td>\n <td> 0.4000</td>\n <td> 0.0000</td>\n <td> 0.4000</td>\n <td> 0.0000</td>\n <td> 0.6000</td>\n <td> 0.2000</td>\n <td> 0.0000</td>\n <td> 0.4000</td>\n <td> 0.4000</td>\n <td> 0.2000</td>\n <td> 0.2000</td>\n </tr>\n <tr>\n <th>30</th>\n <td> 0.1429</td>\n <td> 0.5714</td>\n <td> 0.4286</td>\n <td> 0.2857</td>\n <td> 0.1429</td>\n <td> 0.5714</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.1429</td>\n <td> 0.0000</td>\n <td> 0.1429</td>\n <td> 0.0000</td>\n <td> 0.1429</td>\n <td> 0.3333</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.1429</td>\n <td> 0.2857</td>\n <td> 0.0000</td>\n <td> 0.4286</td>\n <td> 0.0000</td>\n <td> 0.5000</td>\n <td> 0.0000</td>\n <td> 0.7143</td>\n <td> 0.1429</td>\n <td> 0.0000</td>\n <td> 0.5714</td>\n <td> 0.1429</td>\n <td> 0.2857</td>\n <td> 0.2857</td>\n </tr>\n <tr>\n <th>31</th>\n <td> 0.6000</td>\n <td> 0.4000</td>\n <td> 0.2000</td>\n <td> 0.2000</td>\n <td> 0.2000</td>\n <td> 0.6000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.4000</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.2000</td>\n <td> 0.4000</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.4000</td>\n <td> 0.0000</td>\n <td> 0.2000</td>\n <td> 0.2000</td>\n <td> 0.0000</td>\n <td> 0.6000</td>\n <td> 0.2000</td>\n <td> 0.6000</td>\n <td> 0.4000</td>\n </tr>\n <tr>\n <th>32</th>\n <td> 0.4286</td>\n <td> 0.3968</td>\n <td> 0.4426</td>\n <td> 0.3492</td>\n <td> 0.0476</td>\n <td> 0.4603</td>\n <td> 0.0968</td>\n <td> 0.0806</td>\n <td> 0.0968</td>\n <td> 0.5714</td>\n <td> 0.0000</td>\n <td> 0.1774</td>\n <td> 0.0476</td>\n <td> 0.3810</td>\n <td> 0.1017</td>\n <td>...</td>\n <td> 0.1111</td>\n <td> 0.2581</td>\n <td> 0.3175</td>\n <td> 0.2857</td>\n <td> 0.3387</td>\n <td> 0.1111</td>\n <td> 0.3968</td>\n <td> 0.0000</td>\n <td> 0.4483</td>\n <td> 0.0484</td>\n <td> 0.0317</td>\n <td> 0.2698</td>\n <td> 0.3000</td>\n <td> 0.3492</td>\n <td> 0.3103</td>\n </tr>\n <tr>\n <th>33</th>\n <td> 0.4286</td>\n <td> 0.4286</td>\n <td> 0.7143</td>\n <td> 0.2857</td>\n <td> 0.0000</td>\n <td> 0.4286</td>\n <td> 0.0000</td>\n <td> 0.2857</td>\n <td> 0.1429</td>\n <td> 0.4286</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.4286</td>\n <td> 0.4286</td>\n <td> 0.0000</td>\n <td>...</td>\n <td> 0.1429</td>\n <td> 0.1429</td>\n <td> 0.8571</td>\n <td> 0.5714</td>\n <td> 0.0000</td>\n <td> 0.2857</td>\n <td> 0.4286</td>\n <td> 0.0000</td>\n <td> 0.8571</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.2857</td>\n <td> 0.2857</td>\n <td> 0.5714</td>\n <td> 0.4286</td>\n </tr>\n <tr>\n <th>34</th>\n <td> 0.4286</td>\n <td> 0.4286</td>\n <td> 0.1667</td>\n <td> 0.8571</td>\n <td> 0.0000</td>\n <td> 0.4286</td>\n <td> 0.1429</td>\n <td> 0.0000</td>\n <td> 0.0000</td>\n <td> 0.4286</td>\n <td> 0.1429</td>\n <td> 0.2857</td>\n <td> 0.0000</td>\n <td> 0.1429</td>\n <td> 0.4000</td>\n <td>...</td>\n <td> 0.0000</td>\n <td> 0.1429</td>\n <td> 0.4286</td>\n <td> 0.0000</td>\n <td> 0.1429</td>\n <td> 0.0000</td>\n <td> 0.2857</td>\n <td> 0.0000</td>\n <td> 0.6667</td>\n <td> 0.1429</td>\n <td> 0.0000</td>\n <td> 0.4286</td>\n <td> 0.4286</td>\n <td> 0.2857</td>\n <td> 0.1429</td>\n </tr>\n </tbody>\n</table>\n<p>34 rows × 3082 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "perloc['0-10037-01-257']",
"execution_count": 579,
"outputs": [
{
"execution_count": 579,
"output_type": "execute_result",
"data": {
"text/plain": "Ho 0.4312\nHs 0.4181\nHt 0.4139\nDst -0.0043\nHtp 0.4137\nDstp -0.0044\nFst -0.0103\nFstp -0.0106\nFis -0.0313\nDest -0.0075\nName: 0-10037-01-257, dtype: float64"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "loci_fst['0-10037-01-257']",
"execution_count": 580,
"outputs": [
{
"execution_count": 580,
"output_type": "execute_result",
"data": {
"text/plain": "-0.018173713535718613"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "af['0-10037-01-257']",
"execution_count": 581,
"outputs": [
{
"execution_count": 581,
"output_type": "execute_result",
"data": {
"text/plain": "A A\nFis -0.03216907\nHe 0.4090983\nHo 0.4222586\nP 872\nPQ 258\nQ 350\na G\nnum_indiv 611\np 0.7135843\nq 0.2864157\ntotal_alleles 1222\nName: 0-10037-01-257, dtype: object"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "loc_df = res['loc']\nF_df = res['F']\noverall_df = res['overall']",
"execution_count": 582,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "F_df",
"execution_count": 583,
"outputs": [
{
"execution_count": 583,
"output_type": "execute_result",
"data": {
"text/plain": " data.countyid Ind\nTotal 0.009032 0.014992\ndata.countyid 0.000000 0.006014",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>data.countyid</th>\n <th>Ind</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>Total</th>\n <td> 0.009032</td>\n <td> 0.014992</td>\n </tr>\n <tr>\n <th>data.countyid</th>\n <td> 0.000000</td>\n <td> 0.006014</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "def compute_fst(series):\n Va = series[0]\n Vt = sum(series)\n return Va/Vt",
"execution_count": 584,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "loci_fst = loc_df.apply(compute_fst, axis=1).dropna()\nloci_fst.index = [x[1:].replace(\".\", \"-\") for x in loci_fst.index]",
"execution_count": 585,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "plt.hist(loci_fst, bins=50)\nplt.xlim(-.03, .5)\nplt.title(\"Fst for %d loci ($\\mu=%.3f \\pm %.4f$) [%.3f, %.3f]\" % (len(loci_fst),\n np.mean(loci_fst),\n np.std(loci_fst),\n np.min(loci_fst),\n np.max(loci_fst)))\nplt.show()",
"execution_count": 1210,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAHFCAYAAACO6e8yAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcZFV9//9XC8oybKIGNAgtMnxmQBA1LlEBd8SofPFL\nEhMRZ8T8ZGsDMUThmwQT97BF2yAEsZsYQnBDMaKQuIWYTUQxGcJnhhlaAgYxuMDAMDAz/fvj3GaK\norvrVs9Ud9ft1/Px6MftuvfcW+f26ap61zl3GRgfH0eSJEnN8pi5roAkSZK2PkOeJElSAxnyJEmS\nGsiQJ0mS1ECGPEmSpAYy5EmSJDWQIU+SJKmBDHmSJEkNtO1cV0DNFxHfBA6bYvFYZu67lZ5nMXAF\ncADwlsy8Yittd3fgA8BrgScCq4HzM/MTbeXeDZwI7AHcDLw7M79aLdsNeD/wGuAJQAIfyszPtay/\nPfDHwG9U21gJvC8zr5ymbpuA0zLzI1tpXzcBp2bmRzuU+xPK3+MFmfnQ1nhuzU8R8UHgZcCLp2vr\niBgD9q4evjozr52m7JSvlZmsU+e1ExGPBf4EeDPldfwD4Hcz81+ne94trXvb36XVI15ndbZb7cM5\nwBCwPDMvbVl2J/BL1cOXZua3utkvNZMhT7NhHPgKsHySZRvrbCAiTgWemZmTbWPCCcC+wHOAH3Zb\nyWl8Hng88EbgR8Ay4C8j4vaWD5kh4A+B44EbKB82X4yI52bmD4BLgaXAW4DbgWOAz0TEKzPza9Xz\nfIwSAt9GCYFvq8q8MDP/fZr6bc3b1uwJ3DtdgYh4OfB7wLNmK+BVH+IfAv4b2BUgM/94S9aZbnkV\nyoeAh4DtgPWZ+aGadX0BsM90XzK63Z8a+/Lkqr6Pofz/fzUzz23bxgBwLCWYn9y27A+A7YHPVPu7\nDPhKZl4D/BHwcuBs4NRpdn2cEkDOAX42zb50eq3MZJ06r53zq/3/HeB7wAeBayLiwMy8fZr92qK6\n88i/S6uHX2d1thsRe1LaZ9eW7bY6EHga8O+TLNMCZcjTbBigfEjetQXbeAGwrkOZ3YFbM3PFTJ4g\nIrbNzA1t8/YBngm8LjP/qZr9xxHxm8AbgK9WH57vAj7a8sH+/oh4NfD7EXEipdfr7Zn5j9XyP4uI\ntwC/CXwtInalBMC3Z+bVVZkzIuKNVZnpQt5W06mNqn09H7gkM2+ZjTpV3g/cMxFcIuJvI+J3O/Rg\ndlpnuuVnAWdm5rpq2VBEHJ+Zl9So63aUwLQ192fK8lWbvA84OTMfiIjHA/9V/T9/uCr/28CzKT3q\n/znJ9nek9IS9B3gA+JMq4JGZGyLiD4EvR8THOrT72un+hzq9VoDjul0nIk6hw2snInaghLuzMvMz\n1XbfTPnSdgrw7mn2acZ1bzHl36WL7b4RGKvm/U/7djLz7ojYudN+aGEx5GleiIhXUj6ollJ69/6N\nMgz5X63DvVUwGszM29rWby2zidIT8XlK78PRlJ64NZRh1r9sWW8TZYhkGeVb8J6t283MH1brthtg\ncy/kEuApwDVtZb5O6VGYsKFt+XpgU/U8v6h6Y9p70e6iDO/WEhE7Mc0+V8s/TOlJ3A74J8qQ1epq\neafh39cBzwB+rW6dtlTVi/U7wItbZn8eOAOYtJ6d1qmxzVcC72xZ9jXgZKBOyJtWt/tTo/x+wPMp\n/4ffz8yfRcQ1VX0/DJCZfwP8TUSMUP53241TXnuPB1Zk5iP+DzPz2oi4CTgdeHu3+9yi7mul9jqZ\neU+N185+wGOBb08srALx1yi9lL2q+9bc7qcz88+rXmapFk+80Jyreh6+AHwLOBg4lNKb8MWqyNHA\nCsrxdntShjvbHQ18mtJLsWf1+18BrwJ+i/IB9gng41UvXKtTKB+Wz65R1+0j4nTKcTMXVbP3q6a3\nthW/FXgy5QP0MuDUiBistvN/KcMroxOFM/N/M3N9y3M9hfL36KYXr9M+fwJ4KeXv9fyqbl+JiG1a\ntjHdUM9rKSHgv7uo05Y6GNiJR/59fwgcPM0HXqd1plv+eMp742cjYiIkvAH47JbuSM26dVv+Qcr/\n49Nblt/N5F8OJgt4AGTxr+0Br8VXKUOiW2La10rV49b1OjVeOxMdGu1ftH7KI/9uW7vuW227mfmj\nGW5fC5g9eZotU364UHrQdqB8Ux0DiIhlwNMjYqDqmdgArJtqyKMq8wCwMTPvioi9gf8DvDEzv1EV\nOzciXkI5dq/1eKmVmfm3nXYgIlZQvnXfChyRmd+vFk0MkbR/OK5tWf47wJXAmmpfNgHLpjrouwpd\nI8Cd1bSjTvtc9XYeA/x6Zv5ztc4Q8F7gqZShoE5eDPxj+8yIeDHwR5l5RPV4O0owPyQz17aX79JT\nq+l9LfPupfxP7Qn8fAbrTLd8D8rxbV8EboqIy4B/bfmbdjLd/3qdurXvz7TlM/Nm4Elt6zyX8qWp\n3ZQBPiLeTvm/fCrwYGa+r63It4HTI2Kfqod7Jjq9Vnbh0YdldLXOFK+dNZR9+xXgX1q28QxKgO5V\n3aG003Mj4u+Bgyjt+zHgLzJzfAu2K3VkyNNseW1ETNZDcBXwVuA24NMRMQz8fWb+J/DdGTzPxIfY\ns6ppe4j6LvCOtnk31Nz2qylnrx1HORbvyMz8lw7rQHmTv4hyUshrgTuAI4GLIuJ/MvObrYUjYlvg\nbyg9bS+dOC6shk77/CxKD9XD+1uF6jfX3D6U/b9zkvlHAataHj8f2LY94FVDj8N0fu8ZpxwTdyfl\nC8DGzNzUsnyi12aXKdbvtE6n5ddRTpZ5NuVkgy9ExFcz855J9ufstv15CrBzdQJG6/68p/qS0u3+\ndFW+et5nU6NnusVXgP/MzPurbXwjIn6WmX/RUmbiOLAns3VPbNpqpnrtVIdDXAG8OyK+BfwX5TWx\nhNIT2kt3UY7R/BDwE8pr/zxKuPtgj59bC5whT7Pl65Rj39qtzcz1VU/QuynH/JwbEUk5kPzrM3y+\niW/H97TNv7dlWeu8jqohyv8GvludkPFB4CXAL6oiu/DIswonzoJ7GiUYvqwl0N0YEc+mHOA/MY+I\neBxlqPlQ4FWZ+b06dat02ufHtzyeqV0m2T6Uv0Pr2aeH07JfEzLzAUqvZjcm66mb6H15YIbrTLd8\nPSUovD8zv1edOPMhytD6G1pXqPZnqHVeRBxOOW70UibX7f7ULh8Riyi9RMdkZk7x/I+Sjz57+zrK\nYQytIW+iHh2PCYuIQ4GrW2Z9KjNPovNr5Rc8Wq11arx2TgH+Fvg+Zdj208DFlBMa6phJ3cnM57XN\n+kHV6/4OynvIjLYr1eExeZot92Xmmkl+7gLIzNsz85TMfArlTNrbgKu24CDjiTfGXdvm70oXb5oR\nsU9ELKvOgGt1M5uPpZnowWo/tmcxZT/2qh7f1LZ8dVWm1SXArwIvmeSDt5NO+/yT6vFkJ5LUdQ9t\nvUdVGz0TaB3OPIzJhwtn4kfANm3HPE0E2qmODey0znTLd6UMV34PIDM/TtmfIyNiqp7DbnS7P7XK\nR8RjKD3Gf5CZX6lbmYjYISL+uOX4Qyi9z/u0FZ14LU4WOtt9h/I/MfEzcbmXaV8rVWhuV3edaV87\nmfmz6nCCPYAnZOaxlOvX3Vhjf2Za96ncBOxRBdOtuV3pEezJ05yLiKcDSzPz76D0KkTEuyjDik+j\nXNOq03FO7W6gDJG9mEcOLf0q3Q0DLwE+Sbn2VuvQ7IFUB0pn5sqIuJUyDNPa8/hqyjDYxAfxAZSh\nmwn7U0Ig8PDxcUcDh2bmf3RRxwmd9vk/KT0YL6IETCJiD+BzwCktxxhO58e0nYFM6cX7YWb+tNrm\nY6vnfHtEvDw3XwdwpsO1N1KCxb6U4/yg/O1WZeZU12Obdp2IuGeK5bdQLpR7R+vGMvPGiPgPHn3g\n/kx0uz91y58FfHKi9zsi3pZtF+yutB+XtxT4A+Dv2fw//mTKF5lWT66mkw3XP0IVTNZMMr/Ta2Wy\nbXVcp85rJyLeAKyZ+D+vLjdyBGXfO5pJ3aNcoP3/UYbqx1oWPQv4UWY+CHS9XakuQ55my3QhbT/g\n8xHxDsplBB4H/C6l52mi9+tnwLMi4pmUu2RM1Rs3AJCZd0TEZ4APRMRdlED2G5Qr97+2i3r/AyVk\nfjIiTqaEsqMplxA5tqXc+4C/iIh/p/RivJ3yzfwN1XN/FxiutvEjyofL6ymXbpm4tMmfAhcA/xPl\nwqcTNmbmT+ig0z5n5p3V8vdHxC2UMzA/QOnZaO9lnMo/UUJiq5fyyGGm4yg9YWsi4jcolx+ZqGPX\nw7WZuTEiPg38OptDzq9TwiLw8Ik6SzPzXXXWmWb5R6v6nhERv5yZd1TbXwJcP3HMWgfTfiHpdn9q\nln8bpYf1cVGurwZwSM263QicN3F8aUTsSDlD+3fbyr0IuKMtrMzEdK+ViTtsRGa+oc46Xbx2jgP2\nj3IZpvsol5f5MfCpicJRrrn35sx8/kzqPkn976AcunB5RLyT8iXv16q6vLvL7R5C6U2dGKpfWp1U\nRftxvdKEWiGvOl7qbMo33I3A72Xm1RHxREoX+YGUM5euAk7PzPFq6OBsygcZlDen4zPz7q28D5r/\nxpnmrL7MvKY67uk0ygHJ91Pe6F7dclmEj1D+175FCUj/VuN53gqcC/w15c3xZuC3uhnKqj5gXwX8\nGeUYnu0pt0xanuXaYxPlRqJc0PhsSk/XD4DXZOYagIj4tWobn6cMtd1Kua3RZdUmnkMZJvz96qfV\nGKUXp45O+3wC5WLGV1Fe/9+u6ln34PO/A34nIp6amy+j8jLgF1Fuy3Q/cD3wj9XjmR5T2e504KPV\nNnelBK6PtSx/Jo++dV6ndaZcHhHHAe+NiDsoh7U8RPn/fISqZ/J8Hvle+mRgp+p9c8I48Ie5+ezw\nbvdnurouoQScbXlkMGsNL0dTvty8vnr8SeBLmXll9T9+WUScTTkecS/K/2b77fReDXy5/W/QrU6v\nlWreYN11qmMg67x23ko5xvAayt/qWuAVbf/7T2DzYRgzqfsj6p+Z90e5Q8yH2XznnFson4Wf6nK7\n51MCI5T/p3dVP+NA6yWQpIcNjI9Pf/eT6jiNW4DjMvNLEfFSyhv9Ysq33h9n5snVt79vUYYLPh6b\nr0J+WGaui4i/AJ6Yme3XKJPURyLiB8DXMvO0iHgSpbfiSdP0rqrPRblY+dXAkqwunD1JmVuBkcz8\n01mt3FYWEd/JzOfOdT1mIsp1ONdQjkt81KWOtPDUOfHiVym30/kSQJZrRa0A/i/lsgnnVfPvpxz0\nOzGEdRxwYW6+/MP5wNEx8wtGSpoffg84vjqW8qXADQa85opyWZL3ARdMFfAqA5RLx+xZHZfZdyLi\nNczSLQS3tuoLV/v1ErXA1Ql545TbwbS6j3Lbn/G2F/0qytAtQFCGtSasqZ5v/5lVVdJ8kJn/QPnS\ndgXluK/PzG2N1GMTPXPvnLZU+ax4J6Vn96U9rVGPZObVmXnyXNdjhn5AOYxl+uE5LSh1jsn7Z2D7\niDguM/8qIl5GOX7oespxKq3WAYuq3xfRcpXuzNwUEetblkvqU5l5FuVsTjVcZp5Zs9zTel0XTS0z\nn9y5lBaajj151Sn6R1Fui3Qz5bZIX6dcSmC7tuKL2HwrlrWUK7UDD99qZruW5ZIkSeqRWmfXZuZ1\nwAsnHkfETZQrwB8eEYszc+JijkvZfGHJift8XjexGiUY1rkK+wM8OkBKkiQtNN1eJ/ZhHUNelNvk\n3EC56fn3IuJNlEtAfIZyKYszgeVRrnp/InBOteoocEqU+wXeC5wBXN5ySYzpDDL1PSlnwyDlNPsj\nqHfTds0Pg9hu/WYQ26wfDWK79ZtBbLMFp2PIy8z7IuI9wN9WZ0zdSbl+z7rqwq6fqC6supES4i6t\n1rs4IvalHLs3QLnu2Uk163UnNa6qPgvGeOTJI+oPY9hu/WYM26wfjWG79ZsxbLMFo+N18hao/SnD\nyu1nCGt+s936j23Wn2y3/mObLUB1LqEiSZKkPmPIkyRJaiBDniRJUgMZ8iRJkhrIkCdJktRAhjxJ\nkqQGMuRJkiQ1kCFPkiSpgQx5kiRJDWTIkyRJaiBDniRJUgMZ8iRJkhrIkCdJktRAhjxJkqQGMuRJ\nkiQ1kCFPkiSpgQx5kiRJDWTIkyRJaiBDniRJUgMZ8iRJkhrIkCdJktRAhjxJkqQGMuRJkiQ1kCFP\nkiSpgQx5kiRJDWTIkyRJaiBDniRJUgMZ8iRJkhrIkCdJktRAhjxJkqQGMuRJkiQ1kCFPkiSpgQx5\nkiRJDWTIkyRJaiBDniRJUgNtW6dQRBwGnA3sAmwALs7Mj0bEE4FLgAOBTcBVwOmZOR4Rj6nWeX21\nmRXA8Zl591beB0mSJLXp2JMXETsCXwTem5lLgVcAfxgRRwAXArdn5n7AIcDhwAnVqicBhwEHZ+Zi\n4A7ggq2/C90bGBjYcWBg4NlT/SxfvvyAG264geXLlx9QzdtxrussSZLUjTo9eXsDuwLXAGTmjyPi\nRuC5wFHAkmr+/RFxEbAc+DhwHHBhZq6rtnM+cFNE7NAyb64sOeTI07678+57Tbpw9UNw6nnfBA66\n8pAjT+P7Xzn/OcANs1lBSZKkLVEn5K0CVgLHAiMR8XTgIOBdwFmZubqt7IHV71GtN2ENpedwf+DG\nLaz3Ftt5973YdY+nz3U1JEmSeqJjyMvMjRGxHPhSRPwZ8HjgLGAR8GBb8XXVfKrpupbtbIqI9S3L\np7Mn5fi/nli2bNneqx/qrjywtlf10VYz2DbV/DfYNlV/GGybav4bbJuqf6zsXGRyHUNeRDwZ+BLw\n25l5bUQ8Abia0iu3XVvxRWwOQ2uBHVq2s01Vvk5YGptk21vN0NBQNRxbu/yVvaqLeuKaua6Aumab\n9Sfbrf/YZv1nYKYr1hmufRHw88y8FiAz746IL1FOqtgQEYszc1VVdimbh2JXUI7Xu656HJQzc7PG\ncw7Sw5684eHhA+CgWsFt44YHOfHEE995wAEHrKm7/RNOOGHN85///AdmXkPN0CDlDewIyhcFzX+D\n2Gb9aBDbrd8MYpstOHVC3k3AL0fEr2Tm9dXZtq8EvgX8BDgTWB4RuwEnAudU640Cp0TEFcC9wBnA\n5Zm5vsZz3ln99MTo6OhOh77p3Fpl191zF+NPeNG5qx+a/CSNdvf+9HZe8IIXPGd8fHzG3avaYmNs\nQfe25sQYtlk/GsN26zdj2GYLRp1j8m6KiOOBSyJiO0q34T8AHwC2Bz4REbcAGykh7tJqvYsjYl/g\n+mqd71Auq9J3PElDkiT1m1oXQ87MvwH+ZpJFDwDHTLPeGZQePEmSJM0ib2smSZLUQIY8SZKkBjLk\nSZIkNZAhT5IkqYEMeZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIayJAnSZLUQIY8SZKkBjLkSZIkNZAh\nT5IkqYEMeZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIayJAnSZLUQIY8SZKkBjLkSZIkNZAhT5IkqYEM\neZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIayJAnSZLUQIY8SZKkBjLkSZIkNZAhT5IkqYEMeZIkSQ1k\nyJMkSWogQ54kSVIDGfIkSZIayJAnSZLUQIY8SZKkBtq2U4GIeDFwcdvsJwFfAN4FfBI4ENgEXAWc\nnpnjEfEY4Gzg9dU6K4DjM/PurVR3SZIkTaFjT15m/lNmLp34AQ4BfgJ8HLgIuD0z96vmHw6cUK16\nEnAYcHBmLgbuAC7owT5IkiSpzUyGa/8I+DqQwFHAeQCZeT8l9B1blTsOuDAz11WPzweOjogdtqjG\nkiRJ6qjjcG2riNgDeDtleHZ/gMxc3VJkVbUMIICVLcvWUELl/sCNM6yvJEmSaugq5AGnA5/KzLsi\nIoAH25avAxZVvy+qHgOQmZsiYn3L8unsCezSZd1qW7Zs2d6rH+rV1sv2gbW9ewZNYbBtqvlvsG2q\n/jDYNtX8N9g2Vf9Y2bnI5GqHvIjYBngzcEQ1ay2wXVuxRWwON2uBh4dmq/W3o174GZtk21vN0NAQ\np573zV5tnqGhoSt7tnHVcc1cV0Bds836k+3Wf2yz/jMw0xW76ck7HFifmd+vHq8ENkbE4sxcVc1b\nyuah2BXAEuC66nEAGyjH8nUySA978oaHhw+Ag3oWxIaHh48eGRm5qVfb15QGKW9gR1C+KGj+G8Q2\n60eD2G79ZhDbbMHpJuS9CHg4uGTmfRHxWeBMYHlE7AacCJxTFRkFTomIK4B7gTOAyzNzfY3nurP6\n6YnR0dGdDn3Tub3aPKOjo7eNjIzMuHtVW2yMLeje1pwYwzbrR2PYbv1mDNtswejm7NpfBn7UNu9k\nYOeIuAX4N+BzmXkpQGZeDFwNXE/5h9oGeMcW11iSJEkd1e7Jy8wTJpn3c+CYadY5g9KDJ0mSpFnk\nbc0kSZIayJAnSZLUQIY8SZKkBjLkSZIkNZAhT5IkqYEMeZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIa\nyJAnSZLUQIY8SZKkBjLkSZIkNZAhT5IkqYEMeZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIayJAnSZLU\nQIY8SZKkBjLkSZIkNZAhT5IkqYEMeZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIayJAnSZLUQIY8SZKk\nBjLkSZIkNZAhT5IkqYEMeZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIayJAnSZLUQNvWKRQRuwMXAc8H\nHgJGM/O9EfFE4BLgQGATcBVwemaOR8RjgLOB11ebWQEcn5l3b+V9kCRJUpu6PXkjwJ2ZuTcl6L0i\nIhYDFwK3Z+Z+wCHA4cAJ1TonAYcBB2fmYuAO4IKtWXlJkiRNrmPIi4inAEcC7wHIzP/NzMOBO4Gj\ngPOq+fdTevuOrVY9DrgwM9dVj88Hjo6IHbbmDkiSJOnR6gzXHgLcBbw1It5MGZa9EPh3gMxc3VJ2\nFWXoFiCAlS3L1lBC5f7AjVtWbUmSJE2nznDt44FfAh7IzIOBNwMfAl4DPNhWdh2wqPp9UfUYgMzc\nBKxvWS5JkqQeqdOT93NgHPgYQGb+R0R8GXgZsF1b2UXA2ur3tcDDQ7MRsU1Vfi2d7QnsUqPcjCxb\ntmzv1Q/1autl+9TbT21dg21TzX+DbVP1h8G2qea/wbap+sfKzkUmVyfk3QI8FtgJuLdl/vXAiyJi\ncWauquYtZfNQ7ApgCXBd9TiADUDWeM4xHh0gt5qhoSFOPe+bvdo8Q0NDV/Zs46rjmrmugLpmm/Un\n263/2Gb9Z2CmK3YMeZmZEfFt4EzgjIgYpJyIcRTwy9X85RGxG3AicE616ihwSkRcQQmHZwCXZ+b6\nGvUapIc9ecPDwwfAQT0LYsPDw0ePjIzc1Kvta0qDlDewIyhfFDT/DWKb9aNBbLd+M4httuDUuk4e\n5Ti8SyJiDLgPeHdmXhcR/wF8IiJuATZSQtylAJl5cUTsS+nxGwC+Q7msSh13Vj89MTo6utOhbzq3\nV5tndHT0tpGRkRl3r2qLjbEF3duaE2PYZv1oDNut34xhmy0YtUJeZo4BL59k/s+BY6ZZ7wxKD54k\nSZJmkbc1kyRJaiBDniRJUgMZ8iRJkhrIkCdJktRAhjxJkqQGMuRJkiQ1kCFPkiSpgQx5kiRJDWTI\nkyRJaiBDniRJUgMZ8iRJkhrIkCdJktRAhjxJkqQGMuRJkiQ1kCFPkiSpgQx5kiRJDWTIkyRJaiBD\nniRJUgMZ8iRJkhrIkCdJktRAhjxJkqQGMuRJkiQ1kCFPkiSpgQx5kiRJDWTIkyRJaiBDniRJUgMZ\n8iRJkhrIkCdJktRAhjxJkqQGMuRJkiQ1kCFPkiSpgQx5kiRJDWTIkyRJaiBDniRJUgMZ8iRJkhpo\n2+kWRsQgsAbItkUvogTES4ADgU3AVcDpmTkeEY8BzgZeX5VfARyfmXdvvapLkiRpKtOGvAmZubR9\nXkR8Frg9M4+KiB2BbwEnAB8HTgIOAw7OzHUR8RfABcBvbrWaS5IkaUozGq6NiJ2Bo4DzADLzfuAi\n4NiqyHHAhZm5rnp8PnB0ROywZdWVJElSHbV68iLir4BnAQ8AHwFuAsjM1S3FVlGGbgECWNmybA0l\nUO4P3LhlVZYkSVInnULevZTj7oYz8wcR8SLgWuBI4MG2suuARdXvi6rHAGTmpohY37K8kz2BXWqW\n7dqyZcv2Xv1Qr7Zetg+s7d0zaAqDbVPNf4NtU/WHwbap5r/Btqn6x8rORSY3bcirTpT4nZbH346I\nq4CzgO3aii9ic7BZCzw8NBsR21Tl6wafsUm2v9UMDQ1x6nnf7NXmGRoaurJnG1cd18x1BdQ126w/\n2W79xzbrPwMzXbHT2bWPB56YmataZm9DGXJ9cUQsblm2lM1DsSuAJcB1E5sCNvDos3SnMkgPe/KG\nh4cPgIN6FsSGh4ePHhkZualX29eUBilvYEdQviho/hvENutHg9hu/WYQ22zB6TRc+0LgkxHx3My8\nLSKeAbwaeDmwB3AmsDwidgNOBM6p1hsFTomIKyhDvmcAl2fm+pr1urP66YnR0dGdDn3Tub3aPKOj\no7eNjIzMuHtVW2yMLeje1pwYwzbrR2PYbv1mDNtswZj27NrM/DLwfuDaiPgv4FPA2zLzO8DJwM4R\ncQvwb8DnMvPSar2LgauB6yn/TNsA7+jZXkiSJOkROp5dm5kfBT46yfyfA8dMs94ZlB48SZIkzTJv\nayZJktRAhjxJkqQGMuRJkiQ1kCFPkiSpgQx5kiRJDVTr3rWqb+OGBwGWDAx0dYHqm8fHx+/vTY0k\nSdJCZMjbytbdcxeHHHnaZTvvvlet8vf+9Ha+/5XznwPc0NuaSZKkhcSQ1wM7774Xu+7x9LmuhiRJ\nWsA8Jk+SJKmBDHmSJEkNZMiTJElqIEOeJElSAxnyJEmSGsiQJ0mS1ECNuITKwMDAjsCSLlbppqwk\nSVLfaUTIA5YccuRp3617AeIf3/rdHldHkiRpbjUl5HV1AeK1P729x7WRJEmaWx6TJ0mS1ECGPEmS\npAYy5EmSJDWQIU+SJKmBDHmSJEkNZMiTJElqIEOeJElSAxnyJEmSGsiQJ0mS1ECGPEmSpAYy5EmS\nJDWQIU9LTZUBAAAUvUlEQVSSJKmBDHmSJEkNZMiTJElqIEOeJElSAxnyJEmSGsiQJ0mS1EDb1i0Y\nEbsBK4BrM3N5RDwRuAQ4ENgEXAWcnpnjEfEY4Gzg9dXqK4DjM/PurVp7SZIkTaqbnryPAOuA8erx\nhcDtmbkfcAhwOHBCtewk4DDg4MxcDNwBXLBVaixJkqSOaoW8iHgt8DTgMmAgInYCjgLOA8jM+4GL\ngGOrVY4DLszMddXj84GjI2KHrVh3SZIkTaFjyIuIx1NC2nI29+LtD5CZq1uKrqIM3QIEsLJl2Zrq\nufbfwvpKkiSphjrH5H0E+Fhmro6IiZC3I/BgW7l1wKLq90XVYwAyc1NErG9Z3smewC41y7Js2bK9\nVz9Ut/T8s2zZsr2BtXNdjwYYbJtq/htsm6o/DLZNNf8Ntk3VP1Z2LjK5aUNeRLwO2Ad4SzVroJre\nB2zXVnwRm4PKWuDhodmI2KYqXzfIjE2y/SkNDQ1x6nnfrFt83hkaGrpyruvQMNfMdQXUNdusP9lu\n/cc26z8DnYtMrlNP3m8A+wFrIgJgt2qdZwIbImJxZq6qyi4Fbqx+XwEsAa6rHgewAcia9Rqki568\n4eHhA+Cgvg1Kw8PDR4+MjNw01/VogEHKG9gRlC8Kmv8Gsc360SC2W78ZxDZbcKYNeZn55tbHEXEW\nsE9mvjUiLgPOBJZXl1c5ETinKjoKnBIRVwD3AmcAl2fm+pr1urP6qWV0dHSnQ990bt3i887o6Oht\nIyMjM+6O1aOMsQXd25oTY9hm/WgM263fjGGbLRhbcjHkk4GdI+IW4N+Az2XmpQCZeTFwNXA95Z9p\nG+AdW1hXSZIk1VT7YsgAmfknLb//HDhmmrJnUHrwJEmSNMu8rZkkSVIDGfIkSZIayJAnSZLUQIY8\nSZKkBjLkSZIkNZAhT5IkqYEMeZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIayJAnSZLUQIY8SZKkBjLk\nSZIkNZAhT5IkqYEMeZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIayJAnSZLUQIY8SZKkBjLkSZIkNZAh\nT5IkqYEMeZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIayJAnSZLUQIY8SZKkBjLkSZIkNZAhT5IkqYEM\neZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIaaNtOBSLi1cB7gZ2AceDCzPxoRDwRuAQ4ENgEXAWcnpnj\nEfEY4Gzg9dVmVgDHZ+bdPdgHSZIktZm2Jy8i9gQ+A7wjM5cCvwa8NyJeDFwI3J6Z+wGHAIcDJ1Sr\nngQcBhycmYuBO4ALerMLkiRJatdpuHYT8NuZ+S8AmXkrsIoS6o4Czqvm3w9cBBxbrXccpcdvXfX4\nfODoiNhh61ZfkiRJk5l2uDYz7wK+NPE4Il4G7A38c7V8dUvxVZShW4AAVrYsW0MJlPsDN25xrSVJ\nkjStjsfkAUTEayjDs4uAE6vpg23F1lXzqaYTvXhk5qaIWN+yXJIkST1UK+Rl5tXA3hGxhNKzdymw\nXVuxRcDa6ve1wMNDsxGxTVV+LfXsCexSsyzLli3be/VDdUvPP8uWLdub+n8bTW2wbar5b7Btqv4w\n2DbV/DfYNlX/WNm5yOSmDXkRsT+wODO/DJCZN0fEVcCzgY0RsTgzV1XFl7J5KHYFsAS4bmJTwAYg\na9ZrjEeHyCkNDQ1x6nnfrFt83hkaGrpyruvQMNfMdQXUNdusP9lu/cc26z8DM12xU0/e7sDlEfGi\nzPyPiNgNeAWlJ28dcCawvJp/InBOtd4ocEpEXAHcC5wBXJ6Z62vWa5AuevKGh4cPgIP6NigNDw8f\nPTIyctNc16MBBilvYEdQviho/hvENutHg9hu/WYQ22zB6XTixb9GxMnAZ6oh1wHgSuDPKSHsExFx\nC7CREuIurda7OCL2Ba6v1vkO5bIqdd1Z/dQyOjq606FvOreLzc8vo6Ojt42MjMy4O1aPMsYWdG9r\nToxhm/WjMWy3fjOGbbZgdDwmLzM/BXxqkkU/B46ZZr0zKD14kiRJmmXe1kySJKmBDHmSJEkNZMiT\nJElqIEOeJElSAxnyJEmSGsiQJ0mS1ECGPEmSpAYy5EmSJDWQIU+SJKmBDHmSJEkNZMiTJElqIEOe\nJElSAxnyJEmSGsiQJ0mS1ECGPEmSpAYy5EmSJDXQtnNdgYVu44YHAZYMDAzUXeXm8fHx+3tXI0mS\n1ASGvDm27p67OOTI0y7befe9Opa996e38/2vnP8c4Ibe10ySJPUzQ948sPPue7HrHk+f62pIkqQG\n8Zg8SZKkBjLkSZIkNZAhT5IkqYEMeZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIayJAnSZLUQIY8SZKk\nBjLkSZIkNZAhT5IkqYEMeZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIayJAnSZLUQNvWKRQRLwfeD+wK\nbANckJl/HhFPBC4BDgQ2AVcBp2fmeEQ8BjgbeH21mRXA8Zl591beB0mSJLXp2JMXEXsCXwDOyMyl\nwKuBP42IFwAXArdn5n7AIcDhwAnVqicBhwEHZ+Zi4A7ggq2/C5IkSWpXZ7h2A3BsZn4DIDPXADcB\nzwOOAs6r5t8PXAQcW613HHBhZq6rHp8PHB0RO2y96kuSJGkyHYdrM/N/gS9OPI6IpwPPAL5XLV/d\nUnwVZegWIICVLcvWUELl/sCNW1RrSZIkTavWMXkTImIv4EvAh6tZD7YVWQcsqn5fVD0GIDM3RcT6\nluXT2RPYpW69li1btvfqh+qW7m/Lli3bG1g71/WYpwbbppr/Btum6g+DbVPNf4NtU/WPlZ2LTK52\nyIuIZ1OOzRvOzLMj4lnAdm3FFrE5gKwFdmhZf5uqfJ2AMjbJtqc0NDTEqed9s27xvjY0NHTlXNeh\nD1wz1xVQ12yz/mS79R/brP8MzHTFumfXPhv4MnBSZk6EjJXAxohYnJmrqnlL2TwUuwJYAlw3sRnK\n8X1Z4ykH6aInb3h4+AA4aEGEn+Hh4aNHRkZumut6zFODlDewIyhfFDT/DWKb9aNBbLd+M4httuB0\nDHkRsT3wGR4Z8MjM+yLis8CZwPKI2A04ETinKjIKnBIRVwD3AmcAl2fm+hr1urP6qWV0dHSnQ990\nbt3ifW10dPS2kZGRGXfdLhBjbEH3tubEGLZZPxrDdus3Y9hmC0adnryjgX2AD0TEB1rmXw6cDHwi\nIm4BNlJC3KUAmXlxROwLXE/pavwO5bIqkiRJ6rE6Z9deTgl0UzlmmnXPoPTgSZIkaRZ5WzNJkqQG\nMuRJkiQ1kCFPkiSpgQx5kiRJDWTIkyRJaiBDniRJUgMZ8iRJkhrIkCdJktRAhjxJkqQGMuRJkiQ1\nkCFPkiSpgQx5kiRJDWTIkyRJaiBDniRJUgMZ8iRJkhrIkCdJktRAhjxJkqQGMuRJkiQ1kCFPkiSp\ngQx5kiRJDWTIkyRJaiBDniRJUgMZ8iRJkhrIkCdJktRAhjxJkqQGMuRJkiQ1kCFPkiSpgbad6wqo\nvo0bHgRYMjAw0M1qN4+Pj9/fmxpJkqT5ypDXR9bdcxeHHHnaZTvvvlet8vf+9Ha+/5XznwPc0Nua\nSZKk+caQ12d23n0vdt3j6XNdDUmSNM95TJ4kSVIDGfIkSZIayJAnSZLUQIY8SZKkBqp94kVEnACc\nC/xxZp5bzXsicAlwILAJuAo4PTPHI+IxwNnA66tNrACOz8y7t2L9JUmSNIlaPXkRcQHwQkpQG29Z\ndCFwe2buBxwCHA6cUC07CTgMODgzFwN3ABdspXpLkiRpGnWHaz+RmccB903MiIidgaOA8wAy837g\nIuDYqshxwIWZua56fD5wdETssDUqLkmSpKnVCnmZOdnFdBdXy1a3zFtFGboFCGBly7I11fPt3301\nJUmS1I0tuRjyIuDBtnnrqvkTyyd68cjMTRGxvmX5dPYEdqlbkWXLlu29+qG6pReWZcuW7Q2snet6\nzJLBtqnmv8G2qfrDYNtU899g21T9Y2XnIpPbkpC3Ftiubd4iNgeKtcDDQ7MRsU1Vvk7gGJtk21Ma\nGhri1PO+Wbf4gjI0NHTlXNdhDlwz1xVQ12yz/mS79R/brP90dcP6VlsS8lYCGyNicWauquYtBW6s\nfl8BLAGuqx4HsAHIGtsepIuevOHh4QPgoIUYZjoaHh4+emRk5Ka5rscsGaS8gR1B+aKg+W8Q26wf\nDWK79ZtBbLMFp9uQN1D9kJn3RcRngTOB5RGxG3AicE5VdhQ4JSKuAO4FzgAuz8z1NZ7nzuqnltHR\n0Z0OfdO5tXdiIRkdHb1tZGRkxl29fWqMLeje1pwYwzbrR2PYbv1mDNtswegY8qph1vsol055HPDC\niHgf8FfAycAnIuIWYCMlxF0KkJkXR8S+wPWUYPgdymVVJEmS1GMdQ15mbgS2n6bIMdOsewalB0+S\nJEmzyNuaSZIkNZAhT5IkqYEMeZIkSQ1kyJMkSWogQ54kSVIDGfIkSZIaaEvueNFTT3jqM07bbc/9\nX12n7JP3f/HOva6PJElSP5m3Ie9x2+/8tAMOe8ur6pT9xY9X97o6kiRJfcXhWkmSpAYy5EmSJDWQ\nIU+SJKmBDHmSJEkNZMiTJElqIEOeJElSAxnyJEmSGsiQJ0mS1ECGPEmSpAYy5EmSJDWQIU+SJKmB\nDHmSJEkNtO1cV0C9s3HDgwBLBgYG6q5y8/j4+P29q5EkSZothrwGW3fPXRxy5GmX7bz7Xh3L3vvT\n2/n+V85/DnBD72smSZJ6zZDXcDvvvhe77vH0ua6GJEmaZR6TJ0mS1ECGPEmSpAZyuFbAjE7SAE/U\nkCRp3jLkCejuJA3wRA1JkuY7Q54e5kkakiQ1h8fkSZIkNZAhT5IkqYEMeZIkSQ1kyJMkSWogQ54k\nSVIDGfIkSZIaqKeXUImI5wLDwBOAh4APZuanevmckiRJ6mFPXkRsB1wJnJeZi4HXAR+NiGf06jkl\nSZJU9LIn7+XAeGZ+GiAzV0fEl4HfAv5fD59Xs8DboEmSNL/1MuQtAVa1zVsJPLuHz6lZ0u1t0H7x\nk1v5wbUfe9PAwMDNNYpvX00f6KJKN4+Pj3dRvJ6BgYEdKf/L3agVZnu5bUmSehnyFgHr2uY9UM1X\nA3RzG7S1P729dij88a3fZcdd96DbALl8+fL7h4aGGB4ePmB0dHSnaVbpJigtOeTI077bozC7xPsF\nS2oqv8hOrtu/y/j4+Izf83sZ8u4FdmibtwhYW2PdPfd4wk7b3va9L9T5oOS+X9y1/c57xGDdit33\nix9Tt8+nm7K9Lt+v254ov+Oue3SxRn0PrP0pi5//65fdcMcilr/7k8CiKw9+5cmTll13z108fvyH\n71y+fPmaOtt+3vOet++DM6jLDrv8UseyP/uf7GLLD9fnJcuXL9+76xXnqYh4yqte9SquvfbaV2Tm\nAXNdH9Vju/WfuWiz5z3vefv+bGCfc+u8H0L378/9qtu/C9DVcVGPWLEXQ1wAEfFKYCQz92qZ92ng\npsx8T0+eVJIkSUBvr5P3DWBDRCwDiIhnAq8E/rqHzylJkiR62JMHDwe7C4AnUY7HOyszr+zZE0qS\nJAnocciTJEnS3PC2ZpIkSQ1kyJMkSWogQ54kSVIDGfIkSZIayJAnSZLUQL2848W8FxHPBYaBJwAP\nAR/MzE9NUu444N3AY4G7gVMy8/rZrKuKLtpsB+Ac4ETgVzLTW4HNoS7a7R3A/0d5b7of+IPM/IfZ\nrKuKLtrs94C3Ua7KvxZ4d2Z+bTbrqqJum7WUfwHwbeCtmXnp7NRS7eq0W3XN4QuAH7bMXp2Zr51u\n2wu2Jy8itgOuBM7LzMXA64CPRsQz2sodDHwEeF1V7jzg8xHx2Nmu80JXt80q/wrcOpv10+S6eK29\nDngX8KrMXAJ8EPhsRDxutuu80HXRZv8HGAIOz8ylwIeBz1VfsjSLunx/JCK2Bz4B/Dd0dZdKbUXd\nfq5l5tKWn2kDHizgkAe8HBjPzE8DZOZq4MvAb7WVOxb4u2o5VfkB4CWzV1VV6rYZwPLMPGc2K6cp\n1W23W4Bfz8wfVY//DtgF2Ge2KqqHddNmv5WZP6keX0Nps6fOVkX1sG7eHwHeB3yR8mV4xvdG1Rbr\npt26bqeFPFy7BFjVNm8l8Oy2eQG0D82uAg4E/r43VdMU6rYZDs/OK7XaLTP/q63MG4DbgUbfrHye\nqttm/znxe0RsA5wM/IAS/jS7ar8/RsQLKeHi+ZRgbk/e3KndbsBTI+JqYF9KD+yZmfmd6Ta+kHvy\nFgHr2uY9UM3vVG4dsGOP6qWp1W0zzS9dt1tEvIRymMTyzNzYu6ppCl21WUS8B/gx8GbguMzc1NPa\naTK12qwaSv9L4PjMfHCW6qap1X2trQK+ALwFWEoZ6bg6InabbuMLOeTdC7QfN7KIcuBwq7U8OtBN\nVk69V7fNNL901W7ViU5XAL/hAfxzpqs2y8z3ZOYTgdOBb0bEfj2unx6tbpu9D/hC22iHw7Vzp1a7\nZea3M/P3M/MnmTmemR8BNgAvnG7jCznkrQD2b5u3FLhxknIx8SAiBijdqz/oae00mbptpvmldrtF\nxPHAWZQD+b8+C3XT5Gq1WUQcHhEPDytl5tWUY7xe2vMaql3d19kbgDdHxK0RcSvwAuCciDh3Fuqo\nR6v7Wts7IvZsKzdAORt3Sgs55H0D2FCdlkxEPBN4JfDXbeX+GnhNy5kub6Mk73+cpXpqs7ptRrV8\n4tup31LnVq12i4gDgA8BL8/Mm2e7knqEuq+15wGfnBgyqt4n9we+N3tVVaVWm2Xm0zJzn2r6NMqV\nCN6Zme+c7QoLqP9aGwIunzhzPSKWAxuBf5lu4wPj4wv3eMvqj3kB8CTKGPhZmXllRHwAuC8z31+V\neyPwh8DjgB8BJ2XmTXNU7QWtTptFxEuBq6tVHkf5pjMOvC0zL5uLei90HdptbWZ+ICIuAt5IeY21\nOi0zvzq7NVbN19o2wPsp7baeMnx0dmaOzlG1F7S6n2lt63wDGMnMv5rd2mpCzdfadpTjlF9B+Uz7\nH+D3MvP70217QYc8SZKkplrIw7WSJEmNZciTJElqIEOeJElSAxnyJEmSGsiQJ0mS1ECGPEmSpAYy\n5EmSJDWQIU+SJKmBDHmSJEkN9P8DOcM9ZmGg48cAAAAASUVORK5CYII=\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde39e9e810>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "loc_hierf.shape",
"execution_count": 587,
"outputs": [
{
"execution_count": 587,
"output_type": "execute_result",
"data": {
"text/plain": "(388, 3089)"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "trait = loc_hierf.apply(get_phenotype, axis=1)",
"execution_count": 588,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "trait_loc_hierf = trait.join(loc_hierf, how=\"inner\")",
"execution_count": 589,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "trait_complete = trait_loc_hierf.drop(trait_loc_hierf[np.isnan(trait_loc_hierf[trait_name])].index)",
"execution_count": 590,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "trait_complete[:5]",
"execution_count": 591,
"outputs": [
{
"execution_count": 591,
"output_type": "execute_result",
"data": {
"text/plain": " Longitude Latitude Clone_id sucrose county state lat \\\n8 -78.70453 34.33010 153B 5.578561 COLUMBUS NC 34.33010 \n12 -79.30539 33.36318 90C 5.718644 GEORGETOWN SC 33.36318 \n13 -77.05205 35.55349 382A 5.591146 BEAUFORT NC 35.55349 \n15 -77.06917 35.10917 383C 5.492224 CRAVEN NC 35.10917 \n18 -77.05205 35.55349 382A 5.591146 BEAUFORT NC 35.55349 \n\n long countyid 0-10037-01-257 0-10040-02-394 0-10044-01-392 \\\n8 -78.70453 11 NA 22 11 \n12 -79.30539 14 NA 12 NA \n13 -77.05205 2 11 NA 12 \n15 -77.06917 12 12 12 12 \n18 -77.05205 2 11 11 22 \n\n 0-10048-01-60 0-10051-02-166 0-10054-01-402 ... UMN-CL307Contig1-04-143 \\\n8 11 11 11 ... 12 \n12 NA 11 12 ... 12 \n13 12 11 22 ... 11 \n15 12 11 12 ... 11 \n18 11 12 12 ... 11 \n\n UMN-CL319Contig1-03-131 UMN-CL326Contig1-05-421 UMN-CL339Contig1-05-39 \\\n8 11 11 11 \n12 NA 12 11 \n13 11 11 11 \n15 11 11 11 \n18 11 11 12 \n\n UMN-CL34Contig1-03-89 UMN-CL353Contig1-04-64 UMN-CL362Contig1-07-133 \\\n8 11 11 NA \n12 NA 11 12 \n13 11 11 12 \n15 12 11 12 \n18 11 11 NA \n\n UMN-CL363Contig1-01-233 UMN-CL379Contig1-12-117 UMN-CL424Contig1-03-94 \\\n8 11 11 12 \n12 11 11 11 \n13 11 11 22 \n15 12 11 11 \n18 11 11 12 \n\n UMN-CL54Contig1-07-88 UMN-CL91Contig1-02-246 UMN-CL97Contig county_state \\\n8 11 12 22 COLUMBUS_NC \n12 NA 11 NA GEORGETOWN_SC \n13 11 12 11 BEAUFORT_NC \n15 12 11 11 CRAVEN_NC \n18 11 11 11 BEAUFORT_NC \n\n usable \n8 True \n12 True \n13 True \n15 True \n18 True \n\n[5 rows x 3093 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Longitude</th>\n <th>Latitude</th>\n <th>Clone_id</th>\n <th>sucrose</th>\n <th>county</th>\n <th>state</th>\n <th>lat</th>\n <th>long</th>\n <th>countyid</th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>...</th>\n <th>UMN-CL307Contig1-04-143</th>\n <th>UMN-CL319Contig1-03-131</th>\n <th>UMN-CL326Contig1-05-421</th>\n <th>UMN-CL339Contig1-05-39</th>\n <th>UMN-CL34Contig1-03-89</th>\n <th>UMN-CL353Contig1-04-64</th>\n <th>UMN-CL362Contig1-07-133</th>\n <th>UMN-CL363Contig1-01-233</th>\n <th>UMN-CL379Contig1-12-117</th>\n <th>UMN-CL424Contig1-03-94</th>\n <th>UMN-CL54Contig1-07-88</th>\n <th>UMN-CL91Contig1-02-246</th>\n <th>UMN-CL97Contig</th>\n <th>county_state</th>\n <th>usable</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>8 </th>\n <td>-78.70453</td>\n <td> 34.33010</td>\n <td> 153B</td>\n <td> 5.578561</td>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> NA</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> COLUMBUS_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>12</th>\n <td>-79.30539</td>\n <td> 33.36318</td>\n <td> 90C</td>\n <td> 5.718644</td>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> 14</td>\n <td> NA</td>\n <td> 12</td>\n <td> NA</td>\n <td> NA</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> NA</td>\n <td> 12</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> NA</td>\n <td> GEORGETOWN_SC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>13</th>\n <td>-77.05205</td>\n <td> 35.55349</td>\n <td> 382A</td>\n <td> 5.591146</td>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> 2</td>\n <td> 11</td>\n <td> NA</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>15</th>\n <td>-77.06917</td>\n <td> 35.10917</td>\n <td> 383C</td>\n <td> 5.492224</td>\n <td> CRAVEN</td>\n <td> NC</td>\n <td> 35.10917</td>\n <td>-77.06917</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> CRAVEN_NC</td>\n <td> True</td>\n </tr>\n <tr>\n <th>18</th>\n <td>-77.05205</td>\n <td> 35.55349</td>\n <td> 382A</td>\n <td> 5.591146</td>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> 2</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> BEAUFORT_NC</td>\n <td> True</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 3093 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "trait_complete.shape",
"execution_count": 592,
"outputs": [
{
"execution_count": 592,
"output_type": "execute_result",
"data": {
"text/plain": "(330, 3093)"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "def convert_to_snpassoc(col):\n if \"-\" in col.name:\n freqs = af[col.name]\n trans = {11: \"%s/%s\" % (freqs[\"A\"], freqs[\"A\"]),\n 12: \"%s/%s\" % (freqs[\"A\"], freqs[\"a\"]),\n 22: \"%s/%s\" % (freqs[\"a\"], freqs[\"a\"]),\n \"NA\":\"NA\"}\n return col.apply(lambda x: trans[x])\n return col\ntrait_snpassoc = trait_complete.apply(convert_to_snpassoc)",
"execution_count": 593,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "pca_cov = x_drop.ix[:,0:14]",
"execution_count": 594,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "trait_snpassoc_pca = trait_snpassoc.join(pca_cov, how=\"inner\")",
"execution_count": 595,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "trait_snpassoc_pca = trait_snpassoc_pca.drop(['county_state',\n 'usable',\n 'Longitude',\n 'Latitude',\n 'Clone_id',\n 'county',\n 'state',\n 'lat',\n 'long',\n 'countyid'], axis=1)",
"execution_count": 596,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "trait_snpassoc_pca[0:10]",
"execution_count": 597,
"outputs": [
{
"execution_count": 597,
"output_type": "execute_result",
"data": {
"text/plain": " sucrose 0-10037-01-257 0-10040-02-394 0-10044-01-392 0-10048-01-60 \\\n8 5.578561 NA A/A C/C G/G \n12 5.718644 NA C/A NA NA \n13 5.591146 A/A NA C/G G/A \n15 5.492224 A/G C/A C/G G/A \n18 5.591146 A/A C/C G/G G/G \n20 5.492224 A/A C/A C/G A/A \n21 5.492224 A/A C/A C/C G/A \n24 5.492224 A/A A/A C/C G/G \n25 5.591146 A/A C/A NA G/G \n26 5.591146 A/A C/C C/C G/G \n\n 0-10051-02-166 0-10054-01-402 0-10067-03-111 0-10079-02-168 0-10112-01-169 \\\n8 G/G G/G A/A G/G A/A \n12 G/G G/A A/A G/G A/C \n13 G/G A/A A/A G/G A/A \n15 G/G G/A A/A G/G A/A \n18 G/A G/A A/A G/G A/A \n20 G/G A/A A/A G/A A/A \n21 G/G G/A A/A G/G A/A \n24 G/G G/A A/A G/G A/A \n25 G/G A/A A/A G/G A/C \n26 G/G G/A A/A G/G A/A \n\n 0-10113-01-119 0-10116-01-165 0-10151-01-86 0-10162-01-255 0-10207-01-280 \\\n8 A/G NA A/A A/G A/C \n12 A/G A/C A/A A/A A/A \n13 A/G A/A A/A A/A C/C \n15 G/G A/C A/T A/A C/C \n18 A/G A/A A/A A/A A/A \n20 A/A A/A A/A A/A A/C \n21 A/G A/A A/A A/A A/C \n24 A/A A/A A/A A/A A/A \n25 A/G A/A A/T A/A C/C \n26 A/G A/A A/A A/A A/A \n\n ... UMN-CL97Contig PC1 PC2 PC3 PC4 PC5 \\\n8 ... A/A -3.639308 1.929420 1.193841 -3.447265 0.971588 \n12 ... NA 2.329722 1.624366 0.335046 -0.417052 -1.013743 \n13 ... G/G -2.708652 3.668354 4.708462 0.815316 5.354841 \n15 ... G/G -3.152409 2.664518 2.302811 -0.078610 0.237071 \n18 ... G/G -3.806482 2.723616 -5.248239 -2.665990 4.428649 \n20 ... G/G -3.674586 5.344520 -3.761804 -0.478603 1.534471 \n21 ... G/G -3.751640 1.047446 2.527706 0.383311 1.258178 \n24 ... G/G -4.243603 2.818623 -0.340036 -2.954661 1.515424 \n25 ... G/G -3.540567 1.402466 5.500744 -3.573384 1.453907 \n26 ... G/A 3.738074 -7.598378 -2.400551 1.107317 2.126793 \n\n PC6 PC7 PC8 PC9 PC10 PC11 PC12 \\\n8 1.904022 -2.019537 4.332102 -2.889919 1.682956 -6.441526 4.149832 \n12 -0.138149 1.068138 0.402887 -0.010373 0.559439 2.445590 0.335334 \n13 5.688271 6.544227 1.869980 -0.408042 2.274323 0.627999 -6.249547 \n15 -3.257392 -2.636748 3.809404 -0.443443 7.257342 -0.466697 1.824831 \n18 -2.327034 -2.104905 5.450938 -3.403810 -0.727319 4.328464 -1.099518 \n20 -8.286508 0.466899 -0.567112 0.364850 -1.035324 -3.491548 -1.579615 \n21 -1.602399 -1.049422 -0.513667 0.813623 -3.173031 3.134579 -1.376190 \n24 -3.745098 -0.131087 -1.287536 1.850114 -4.802101 2.334467 1.679421 \n25 -2.465346 -1.806674 -1.587390 -0.767331 0.265662 -1.329243 -1.248258 \n26 -3.917600 -1.719408 4.265561 -0.418051 -0.352412 0.283295 -1.652070 \n\n PC13 PC14 \n8 -0.223308 -0.780265 \n12 -0.047097 -1.344021 \n13 -8.086907 8.983447 \n15 -0.198020 -1.268526 \n18 0.683061 0.534313 \n20 3.806241 -2.126386 \n21 -3.413124 0.899154 \n24 -2.270278 -0.127229 \n25 0.659197 2.035803 \n26 2.133209 -2.821890 \n\n[10 rows x 3097 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>sucrose</th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>0-10067-03-111</th>\n <th>0-10079-02-168</th>\n <th>0-10112-01-169</th>\n <th>0-10113-01-119</th>\n <th>0-10116-01-165</th>\n <th>0-10151-01-86</th>\n <th>0-10162-01-255</th>\n <th>0-10207-01-280</th>\n <th>...</th>\n <th>UMN-CL97Contig</th>\n <th>PC1</th>\n <th>PC2</th>\n <th>PC3</th>\n <th>PC4</th>\n <th>PC5</th>\n <th>PC6</th>\n <th>PC7</th>\n <th>PC8</th>\n <th>PC9</th>\n <th>PC10</th>\n <th>PC11</th>\n <th>PC12</th>\n <th>PC13</th>\n <th>PC14</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>8 </th>\n <td> 5.578561</td>\n <td> NA</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> NA</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/C</td>\n <td>...</td>\n <td> A/A</td>\n <td>-3.639308</td>\n <td> 1.929420</td>\n <td> 1.193841</td>\n <td>-3.447265</td>\n <td> 0.971588</td>\n <td> 1.904022</td>\n <td>-2.019537</td>\n <td> 4.332102</td>\n <td>-2.889919</td>\n <td> 1.682956</td>\n <td>-6.441526</td>\n <td> 4.149832</td>\n <td>-0.223308</td>\n <td>-0.780265</td>\n </tr>\n <tr>\n <th>12</th>\n <td> 5.718644</td>\n <td> NA</td>\n <td> C/A</td>\n <td> NA</td>\n <td> NA</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/G</td>\n <td> A/C</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> NA</td>\n <td> 2.329722</td>\n <td> 1.624366</td>\n <td> 0.335046</td>\n <td>-0.417052</td>\n <td>-1.013743</td>\n <td>-0.138149</td>\n <td> 1.068138</td>\n <td> 0.402887</td>\n <td>-0.010373</td>\n <td> 0.559439</td>\n <td> 2.445590</td>\n <td> 0.335334</td>\n <td>-0.047097</td>\n <td>-1.344021</td>\n </tr>\n <tr>\n <th>13</th>\n <td> 5.591146</td>\n <td> A/A</td>\n <td> NA</td>\n <td> C/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td>...</td>\n <td> G/G</td>\n <td>-2.708652</td>\n <td> 3.668354</td>\n <td> 4.708462</td>\n <td> 0.815316</td>\n <td> 5.354841</td>\n <td> 5.688271</td>\n <td> 6.544227</td>\n <td> 1.869980</td>\n <td>-0.408042</td>\n <td> 2.274323</td>\n <td> 0.627999</td>\n <td>-6.249547</td>\n <td>-8.086907</td>\n <td> 8.983447</td>\n </tr>\n <tr>\n <th>15</th>\n <td> 5.492224</td>\n <td> A/G</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/T</td>\n <td> A/A</td>\n <td> C/C</td>\n <td>...</td>\n <td> G/G</td>\n <td>-3.152409</td>\n <td> 2.664518</td>\n <td> 2.302811</td>\n <td>-0.078610</td>\n <td> 0.237071</td>\n <td>-3.257392</td>\n <td>-2.636748</td>\n <td> 3.809404</td>\n <td>-0.443443</td>\n <td> 7.257342</td>\n <td>-0.466697</td>\n <td> 1.824831</td>\n <td>-0.198020</td>\n <td>-1.268526</td>\n </tr>\n <tr>\n <th>18</th>\n <td> 5.591146</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> G/G</td>\n <td>-3.806482</td>\n <td> 2.723616</td>\n <td>-5.248239</td>\n <td>-2.665990</td>\n <td> 4.428649</td>\n <td>-2.327034</td>\n <td>-2.104905</td>\n <td> 5.450938</td>\n <td>-3.403810</td>\n <td>-0.727319</td>\n <td> 4.328464</td>\n <td>-1.099518</td>\n <td> 0.683061</td>\n <td> 0.534313</td>\n </tr>\n <tr>\n <th>20</th>\n <td> 5.492224</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/C</td>\n <td>...</td>\n <td> G/G</td>\n <td>-3.674586</td>\n <td> 5.344520</td>\n <td>-3.761804</td>\n <td>-0.478603</td>\n <td> 1.534471</td>\n <td>-8.286508</td>\n <td> 0.466899</td>\n <td>-0.567112</td>\n <td> 0.364850</td>\n <td>-1.035324</td>\n <td>-3.491548</td>\n <td>-1.579615</td>\n <td> 3.806241</td>\n <td>-2.126386</td>\n </tr>\n <tr>\n <th>21</th>\n <td> 5.492224</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/C</td>\n <td>...</td>\n <td> G/G</td>\n <td>-3.751640</td>\n <td> 1.047446</td>\n <td> 2.527706</td>\n <td> 0.383311</td>\n <td> 1.258178</td>\n <td>-1.602399</td>\n <td>-1.049422</td>\n <td>-0.513667</td>\n <td> 0.813623</td>\n <td>-3.173031</td>\n <td> 3.134579</td>\n <td>-1.376190</td>\n <td>-3.413124</td>\n <td> 0.899154</td>\n </tr>\n <tr>\n <th>24</th>\n <td> 5.492224</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> G/G</td>\n <td>-4.243603</td>\n <td> 2.818623</td>\n <td>-0.340036</td>\n <td>-2.954661</td>\n <td> 1.515424</td>\n <td>-3.745098</td>\n <td>-0.131087</td>\n <td>-1.287536</td>\n <td> 1.850114</td>\n <td>-4.802101</td>\n <td> 2.334467</td>\n <td> 1.679421</td>\n <td>-2.270278</td>\n <td>-0.127229</td>\n </tr>\n <tr>\n <th>25</th>\n <td> 5.591146</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> NA</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/T</td>\n <td> A/A</td>\n <td> C/C</td>\n <td>...</td>\n <td> G/G</td>\n <td>-3.540567</td>\n <td> 1.402466</td>\n <td> 5.500744</td>\n <td>-3.573384</td>\n <td> 1.453907</td>\n <td>-2.465346</td>\n <td>-1.806674</td>\n <td>-1.587390</td>\n <td>-0.767331</td>\n <td> 0.265662</td>\n <td>-1.329243</td>\n <td>-1.248258</td>\n <td> 0.659197</td>\n <td> 2.035803</td>\n </tr>\n <tr>\n <th>26</th>\n <td> 5.591146</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> G/A</td>\n <td> 3.738074</td>\n <td>-7.598378</td>\n <td>-2.400551</td>\n <td> 1.107317</td>\n <td> 2.126793</td>\n <td>-3.917600</td>\n <td>-1.719408</td>\n <td> 4.265561</td>\n <td>-0.418051</td>\n <td>-0.352412</td>\n <td> 0.283295</td>\n <td>-1.652070</td>\n <td> 2.133209</td>\n <td>-2.821890</td>\n </tr>\n </tbody>\n</table>\n<p>10 rows × 3097 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "trait_snpassoc.shape",
"execution_count": 598,
"outputs": [
{
"execution_count": 598,
"output_type": "execute_result",
"data": {
"text/plain": "(330, 3093)"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "trait_snpassoc_pca.to_csv(\"snpassoc.txt\",\n header=True,\n index=True,\n sep=\"\\t\")",
"execution_count": 599,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "def write_snpassoc_file(df, input_file, num_pca_axes):\n pheno = df.columns[0:1]\n out_files = []\n for p in pheno:\n with open(\"snpassoc_%s.R\" % p.lower(), \"w\") as o:\n print \"writing %s\" % o.name\n out_files.append(o.name)\n text = '''\nlibrary(SNPassoc)\n\nd = read.table('%s', sep=\"\\\\t\", row.names=1, header=T)\n\n#subtract b/c those are the PCA axes\nsnp_cols = 2:(ncol(d)-%d)\nsnp_data = setupSNP(d, colSNPs=snp_cols, sep=\"/\")\npca_cols = (ncol(d)-%d):ncol(d)\npca_data = d[,pca_cols]\n\nwg = WGassociation(%s~1+pca_data$PC1+pca_data$PC2+pca_data$PC3+pca_data$PC4+\npca_data$PC5+pca_data$PC6+pca_data$PC7+pca_data$PC8+pca_data$PC9+pca_data$PC10+\n+pca_data$PC11+pca_data$PC12+pca_data$PC13+pca_data$PC14, \ndata=snp_data, \nmodel=\"co\", \ngenotypingRate=5)\n\nsaveRDS(wg, \"wg_%s_co.rds\")\nstats = WGstats(wg)\nsaveRDS(stats, \"wgstats_%s.rds\")\n''' % (input_file, \n num_pca_axes,\n num_pca_axes-1,\n p, \n p.lower(), \n p.lower())\n \n o.write(text)\n return out_files",
"execution_count": 600,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "write_snpassoc_file(trait_snpassoc_pca, \"snpassoc.txt\", 14)",
"execution_count": 601,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "writing snpassoc_sucrose.R\n"
},
{
"execution_count": 601,
"output_type": "execute_result",
"data": {
"text/plain": "[u'snpassoc_sucrose.R']"
},
"metadata": {}
}
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "##Run this in R\n```R\nsource(\"snpassoc_<trait>.R\")\n```"
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "%%R\nwg_trait_co.rds = readRDS('wg_sucrose_co.rds')\nwgstats_trait.rds = readRDS('wgstats_sucrose.rds')",
"execution_count": 602,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "wgstats_trait = r['wgstats_trait.rds']\nwgstats_trait_labels = r('labels(wg_trait_co.rds)')",
"execution_count": 603,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "wgstats = {trait_name:[wgstats_trait, wgstats_trait_labels.rx2(1)]}\nfor key, datalist in wgstats.items():\n print \"converting %s\" % key\n wgstats[key] = [com.convert_robj(x) for x in datalist]",
"execution_count": 604,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "converting sucrose\n"
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "def get_alleles(data):\n a = set()\n for x in data.index:\n for elem in x.split(\"/\"):\n a.add(elem)\n return list(a) \n\ndef get_allele_freqs_wg(data, AA, Aa, aa):\n total = np.sum(data['n'])*2\n A = data.ix[AA, \"n\"]*2 + data.ix[Aa, \"n\"]\n a = data.ix[aa, \"n\"]*2 + data.ix[Aa, \"n\"]\n return A/total, a/total\n\ndef get_genotypes(data, alleles):\n homos = [\"%s/%s\" % (x,x) for x in alleles]\n Aa = \"%s/%s\" % (alleles[0], alleles[1])\n if Aa not in data.index:\n Aa = Aa[::-1] #reverse it\n AA, aa = homos\n if data.ix[AA, \"n\"] < data.ix[aa, \"n\"]:\n AA, aa = homos[::-1] #reverse it so that major is first\n return AA, Aa, aa\n\ndef get_genotypic_values(data, alleles):\n AA, Aa, aa = get_genotypes(data, alleles)\n G_AA = float(data.ix[AA, 'me'])\n G_aa = float(data.ix[aa, 'me'])\n additive = (G_AA-G_aa)/2\n G_Aa = float(data.ix[Aa, 'me'])\n dominance = G_Aa - ((G_AA+G_aa)/2)\n return additive, dominance, AA, Aa, aa\n \ndef get_alpha(data):\n alleles = get_alleles(data)\n additive, dominance, AA, Aa, aa = get_genotypic_values(data, alleles)\n p, q = get_allele_freqs_wg(data, AA, Aa, aa)\n alpha = additive + (dominance*(q-p))\n return alpha, AA, aa, p, q",
"execution_count": 605,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "alpha_vals = {}\nfor p in wgstats:\n print \"running %s\" % p\n df = pd.DataFrame(index=[\"alpha\", \"p-value\", \"AA\", \"aa\", \"p\", \"q\"])\n alpha_vals[p] = df\n d = wgstats[p][0]\n labels = wgstats[p][1]\n for i, locus in enumerate(d):\n try:\n data = pd.DataFrame(d[locus])\n snp = labels[i]\n genotypes = [g for g in data.index if \"/\" in g]\n data = data.ix[genotypes,:]\n pvalue = data['p-value'].dropna()[0]\n if len(genotypes) == 3:\n alpha, AA, aa, p, q = get_alpha(data)\n df[snp] = [alpha, pvalue, AA, aa, p, q]\n except Exception as e: \n pass",
"execution_count": 606,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "running sucrose\n"
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "alpha_vals[trait_name].ix[:,0:10]",
"execution_count": 607,
"outputs": [
{
"execution_count": 607,
"output_type": "execute_result",
"data": {
"text/plain": " X0.10037.01.257 X0.10040.02.394 X0.10044.01.392 X0.10048.01.60 \\\nalpha -0.004097739 -0.00181165 -0.0002803176 0.0279112 \np-value 0.8362344 0.9471765 0.6266669 0.07377968 \nAA G/G T/T G/G A/A \naa A/A A/A A/A C/C \np 0.7299383 0.6554878 0.9542683 0.8953846 \nq 0.2700617 0.3445122 0.04573171 0.1046154 \n\n X0.10051.02.166 X0.10054.01.402 X0.10079.02.168 X0.10112.01.169 \\\nalpha -0.003872464 0.02172985 0.04191577 -0.003347441 \np-value 0.7658862 0.9580188 0.422769 0.3233936 \nAA A/A G/G A/A A/A \naa G/G A/A G/G G/G \np 0.8611111 0.9832827 0.9542587 0.9557927 \nq 0.1388889 0.01671733 0.04574132 0.04420732 \n\n X0.10113.01.119 X0.10116.01.165 \nalpha 0.003736298 0.02158743 \np-value 0.6388786 0.2011802 \nAA C/C G/G \naa G/G C/C \np 0.781155 0.859375 \nq 0.218845 0.140625 ",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>X0.10037.01.257</th>\n <th>X0.10040.02.394</th>\n <th>X0.10044.01.392</th>\n <th>X0.10048.01.60</th>\n <th>X0.10051.02.166</th>\n <th>X0.10054.01.402</th>\n <th>X0.10079.02.168</th>\n <th>X0.10112.01.169</th>\n <th>X0.10113.01.119</th>\n <th>X0.10116.01.165</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>alpha</th>\n <td>-0.004097739</td>\n <td>-0.00181165</td>\n <td>-0.0002803176</td>\n <td> 0.0279112</td>\n <td>-0.003872464</td>\n <td> 0.02172985</td>\n <td> 0.04191577</td>\n <td>-0.003347441</td>\n <td> 0.003736298</td>\n <td> 0.02158743</td>\n </tr>\n <tr>\n <th>p-value</th>\n <td> 0.8362344</td>\n <td> 0.9471765</td>\n <td> 0.6266669</td>\n <td> 0.07377968</td>\n <td> 0.7658862</td>\n <td> 0.9580188</td>\n <td> 0.422769</td>\n <td> 0.3233936</td>\n <td> 0.6388786</td>\n <td> 0.2011802</td>\n </tr>\n <tr>\n <th>AA</th>\n <td> G/G</td>\n <td> T/T</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n </tr>\n <tr>\n <th>aa</th>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> C/C</td>\n </tr>\n <tr>\n <th>p</th>\n <td> 0.7299383</td>\n <td> 0.6554878</td>\n <td> 0.9542683</td>\n <td> 0.8953846</td>\n <td> 0.8611111</td>\n <td> 0.9832827</td>\n <td> 0.9542587</td>\n <td> 0.9557927</td>\n <td> 0.781155</td>\n <td> 0.859375</td>\n </tr>\n <tr>\n <th>q</th>\n <td> 0.2700617</td>\n <td> 0.3445122</td>\n <td> 0.04573171</td>\n <td> 0.1046154</td>\n <td> 0.1388889</td>\n <td> 0.01671733</td>\n <td> 0.04574132</td>\n <td> 0.04420732</td>\n <td> 0.218845</td>\n <td> 0.140625</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "plt.hist(alpha_vals[trait_name].ix['p-value',:], bins=30)\nplt.title(\"p-values\")\nplt.show()",
"execution_count": 1209,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAngAAAHDCAYAAAC3cmcRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4pFV9J/DvVRCkwQVNzKgPtgscFolIoriMkhFtl4ky\nGmMSRQMxT4SgMcZxEp0xJlExeRRcWrCNOrQLYYwYFKPGjolGoyPGfYOfrIktI7iztTbd9PxR1XK9\n9lL3Vt17657+fJ6nn9t16rznPbdPVfHlnPc9NbNt27YAANCPWy13BwAAmCwBDwCgMwIeAEBnBDwA\ngM4IeAAAnRHwAAA6I+AB7ERr7c9aa99f7n4AzJeAB7BrNgsFVhwBD2DXZpa7AwDztddydwBgFK21\nm5P8QZJfTvKkJDcnOTfJs6tq6w7qX5jk36vqKXPKL03yj1V1Smvt/kn+KsmDM5ip+3KSF1TVJ3fR\nh+dV1WtnlX0hyeer6qTh49VJzhi2uX+Sf03ynKq6dPj8zyV5TZJHJLl9kiuTnF5Vb1nAPwvADpnB\nA1aSP07y+SRHJfnDJM9M8vyd1P3bJI9prd1me0Fr7X5J7pXk3NbarZP8fZIfZxAaj0ry1STvba3t\nv4s+zF2y3ba9rLW2b5IPJ7lrkuOTPDSDz9l/HD6XJK9NcliS/5qkJVmb5K9baw/d3S8PMCoBD1hJ\nvlZVr62qy6tqfZL3J/n1ndQ9L4MZtEfMKntSkm9W1ccymAF8cJITauDyDGbe7pTk/gvs369lECCf\nWlWfrqovJXl6BoHvScM6RyT5ZFV9rqq+UVVvSHJMkq8t8JwAP0PAA1aSuUunX0xy0I4qVtW/J/l0\nBjNp2z0xybuGz2/LIHi9o7W2sbV2bZLPDOvdcYH9+6Uk3xiGxe39uCbJxbklNH4wye+11l7fWntU\na23fqvpMVblbF5gY1+ABK8kP5zy+PskdWmtvSHLCrPLHVNUnMghzf5TklNbafZLcN8nvJklr7Z5J\nPpLkY0l+K8lVSe6W5KPz7NPsmzBul+RurbXr5tTZN4MwmiQvSvIfSU5KckqSG1prr0vy4mHoBBib\ngAesJKvmPD4gyfeTvDjJK2eVXzX8eV6SV7bWHpDkV5JcUVWfHj73+CR7J3lKVf0wSVprdxqhD3Pv\nqp19vd4Pk2zMTy8Lb3d9klTVzUnOSnJWa+0XMgicf5bkG0neOML5AXZLwANWkocnefmsx/dPcnFV\nfSfJd+ZWrqp/b619OoMbGo5L8s5ZT98myU3bw93QU4c/d7Y1yrVJDtz+oLV2l/z0EvG/JTk1yXVV\n9e1Z9VqSbw9vtPhvST5QVddW1beSvKy19mtJDt/5rw0wPwIesJIc1lp7fpILkjwsyWOSPHs3x7wr\nye9kcMfqqbPKP51kn9ba85K8J4Nl2ttlcPPFg1prH9lBW59L8tTW2gVJbsogbF6VWwLhezKYiTu3\ntfbCJN/N4MaLl2cQTj+TwbYsv9Zae1mS7yX5z0kOTfLSEf8NAHZrpIDXWjs5yelJ/rSqTh+W3SvJ\n65LcO4Nljo9ksB/Vj1trt8pgueQJwya+muSZVfXdCfcf2LO8PskhGYSzJHlDkjft5ph3ZfB5dNHw\nrtYkSVV9rLV2WpIXZrDEe14G18RtTvLcDMLZT7ZAGXpOkv+d5OMZBLk/SfKsWW3+qLV2XJJXJ/nH\nDK69+1KSJ1XVp5KktfaYDD5PP5pknySXJXl+Vf3dPP4dAHZpZtu2XV/T21o7K4NrTA5N8n+q6oxh\n+WeTvK+q/qy1tl8GH1Z/V1V/2Vp7dpLfTvLwqtrUWjszyZ2r6jcW8XcBOjbcZPgPq+p1y90XgGk3\nyjYpb66qZyS5YXtBa20myWlJXpUkVXVjBjN4Rw6rPCPJuqraNHz86iRPbK3ddlIdBwBgx3a7RFtV\nn9tB2bYk797+uLW2T5LHJTlze1GSr8865PIMwuQhuWWrAAAAFsHYN1kMw905Sb6Z5K+HxauSbJ+9\nS1Xd3Fr7cX52iwOAkVSVjdkBRjTWB2Zr7c4ZfO/izUmeMNzfKRns93TbWfVuncHFxNePcz4AAHZv\nwTN4rbU7JvmnJO+vqhfNefqrGdyU8fHt1ZNsSVIjNm83dwBgT7ezPTl3az4Bb2bOic5M8i87CHdJ\nsj7Js1tr70xyXQbbEJxbVT+ex/keneTKedRnOq1O8qEYz16sjvHsyeoYz56sjvHsyepxDt7lNinD\npdUbMphRu02SrcM/b8/g63WuTDI7tF1WVb86PPYVGWzwOZPB7u7Pqqq538+4M9vyszdqsDIdksHM\nrfHsg/Hsi/Hsi/HsyyEZYxx3OYNXVVsz2KhzR35vN8e+MIOZOwAAlpC70gAAOiPgAQB0RsADAOiM\ngAcA0BkBDwCgMwIeAEBnBDwAgM4IeAAAnRHwAAA6I+ABAHRGwAMA6IyABwDQGQEPAKAzAh4AQGcE\nPACAzgh4AACdEfAAADoj4AEAdEbAAwDojIAHANAZAQ8AoDMCHgBAZwQ8AIDOCHgAAJ0R8AAAOrPX\ncndgR17w4ldmwz//619853vfv3acdm7eumWv737jyy/fvOm6yybVNwCAaTeVAe/iGw/JQQ865DcO\nGrOd6777jXzqvJe8PYmABwDsMSzRAgB0RsADAOiMgAcA0BkBDwCgMwIeAEBnBDwAgM4IeAAAnRHw\nAAA6I+ABAHRGwAMA6IyABwDQGQEPAKAzAh4AQGcEPACAzgh4AACdEfAAADoj4AEAdEbAAwDojIAH\nANAZAQ8AoDMCHgBAZwQ8AIDOCHgAAJ0R8AAAOiPgAQB0RsADAOiMgAcA0BkBDwCgMwIeAEBnBDwA\ngM7sNUql1trJSU5P8qdVdfqw7M5J3pLkiCQ3J7kgyQuqaltr7VZJXpnkCcMmvprkmVX13Qn3HwCA\nOXY7g9daOyvJQzIIadtmPbUuycaquk+So5Icm+Tk4XO/n+ThSX6xqg5O8s0kZ02w3wAA7MQoS7Rv\nrqpnJLlhe0Fr7YAkxyc5I0mq6sYkb0xywrDKM5Ksq6pNw8evTvLE1tptJ9VxAAB2bLcBr6o+t4Pi\ng4fPXTar7JIMlmuTpCX5+qznLh+e65CFdRMAgFGNdA3eDqxKsnlO2aZh+fbnt8/epapubq39eNbz\nS+axj1lz9wiWy2n1nJ+sbKvn/GRlWz3nJyvb6jk/WdlW56cny+ZloQHv+iT7zClbNSzf/vxPlmNb\na7ce1r8+S+wPnnPK25b6nOzQh5a7A0yU8eyL8eyL8ezHzEIPXGjA+3qSra21g6vqkmHZYUm+OPz7\nV5McmuTjw8ctyZYktdCOLtTr1r7hGf/l2IdfuNTn5SdWZ/Bh8+gkVy5rT5iE1TGePVkd49mT1TGe\nPVk9zsHzCXgzwz+pqhtaa+cleVGSk1prd0hySpJXDeuuT/Ls1to7k1yX5IVJzq2qH4/T2YX44D9s\n2JgxpjiZmCtjHHpyZYxnT66M8ezJlTGee7xdBrzh0uoNGWyPcpskD2mtvSzJ25KcmuTNrbVLk2zN\nIMC9NUmq6k2ttXsl+UwGofDfMtg6BQCARbbLgFdVW5Psu4sqT97FsS/MYOYOAIAl5KvKAAA6I+AB\nAHRGwAMA6IyABwDQmYXugwesADMzM/tlsCflRJx44okHnXnmmdlvv/0m1SQAi0DAg74detRjn/fZ\nAw68+0Qa+8LVG3PxxRfn6KOPnkh7ACwOAQ86d8CBd8/t73Lv5e4GAEvINXgAAJ0R8AAAOiPgAQB0\nRsADAOiMmyz4KbbVAICVT8BjLttqAMAKJ+DxM2yrAQArm4C3TCa9FJrk4m3btt04wfYAgBVKwFs+\nE1sKve57G/OFD776l5J8bvxuAQArnYC3jCyFAgCLwTYpAACdEfAAADoj4AEAdEbAAwDojJssABib\nrZ9gugh4AEyCrZ9gigh4AEyErZ9gergGDwCgMwIeAEBnBDwAgM4IeAAAnRHwAAA6I+ABAHRGwAMA\n6Ix98FhUW7dszkUXXZS1a9cevn79+v0n0OREdrdfhF33EzvvAzAlBDwW1aZrr8mrzrkmBxx45PkP\ne9rpY7U14d3tJ7brfmLnfQCmi4DHopvW3e2ntV8AMC7X4AEAdEbAAwDojIAHANAZ1+ABrBCTvvv7\nxBNPPOjMM8/MfvvtN6km4WfYtWB5CHgAK8dE7/7+wtUbc/HFF+foo4+eSHuwE3YtWAYCHsAK4u5v\nViKv26XnGjwAgM6YwQMAGNOkrzX81Kc+teWYY45Z8PECHgDA+CZ2reF139uYdevWPfGYY4750kLb\nEPAAACZgstcafn+sowW8ES3Cbd6TvmUcACCJgDcfE73N++orPjuRdgAA5hLw5mGSU6/Xf2/jRNoB\nAJhLwGPF2Lplc5IcOjMzM4nmJrpEPuG+JXZpB+bpwgsv3HfvvffO2rVrD1+/fv3+Yza37/Dnj8bt\nV1yStCwEPFaMTddek6Me+7xzJrFMPukl8kn2zS7twEKsW7fuXl+4+o454MAjz3/Y004fq62rr/hs\n9rv9XTKNn7eMRsBjRZnUMvliLJHbqR1YbpP8jNx/ij9v2T3fZAEA0BkzeAAwokXYMsv1tiwKAQ8A\nRjfRbytwvS2LRcADgHlwvS0rgYDXgWnePgQAWHoCXgemefsQAGDpjRXwWmsPT/LKJLdLsiXJm6rq\nda21Oyd5S5Ijktyc5IIkL6iqbWP2l52Y5u1DAIClteBtUlpr+yV5b5KXVtVhSR6Z5H+11h6dZF2S\njVV1nyRHJTk2yckT6C8AALsxzj54ByW5fZIPJUlVXZ3ki0kekOT4JGcMy29M8sYkJ4zVUwAARjJO\nwLskydczDG6ttXsnOTLJB5Kkqi6bU/eIMc4FAMCIFhzwqmprkpOSvLK19u0klWRtklVJNs+pvmlY\nDgDAIlvwTRattf+U5H1JnlpVG1prd8pg9u5WSfaZU31VkusX3MsF2rplcw495F4PPemkk24/blsP\nfOAD7zWJPsEoTjzxxIMygffMiSeeeNBlN02gQz9r9bgNXHjhhfuuW7duYu+rk08++fJjjjnmR5Nq\nbxpN83hOum+Teg9M2jT/nq21u172lUm0NP2m8fUx6ddGa+2u4xw/zl20D03yg6rakCRV9d3W2vuS\nPDzJltbawVV1ybDuYRlcn7ekbvzh1Zn5hYe99LKbxt8+5Ad7bc5dJtAnGMVznvOc8yfUTv7wjI9O\noqm5PjRuA3vvvXe+cPUdM6lvBNh7773HbmfaTfN4Trpvk3oPTNo0/55r1qzJB77y0Uk1N9Wm8fUx\n6dfGmjVrzkxy1kKPHyfgfS3J3Vprv1xVnxneVfuoJP+S5NtJXpTkpNbaHZKckuRVY5xrwWwfwkq0\ndu3aJ5599tlfm0A7hydHLsYH4aOTXDlOA2vXrj38gAOPPH9S3wgwqX+zaTbt4znJvk3reE7z77lh\nw4ZHJrc5cxJtTbtpfH1M+rWxYcOGU48++ugFH7/ggFdVX2utPTPJW1pr+ySZSfLhJKcl2TfJm1tr\nlybZmuTcqnrrgnsJe5j169f/x9lnn/31CbSz/8OedvokujTXlRncZLVgk+7bpP7NppnxXH7T/HtW\n1eGDex37N42vj0m/NqrqqnGOH2uj46r6myR/s4OnfpTkyeO0DQDAwoyzTQoAAFPId9EC7KG2btmc\niy66KGvXrj18/fr1+4/Z3KET6RQwEQIewB5q07XX5FXnXJMDDjzy/HGvHbr6is9OqFfAJAh4AHsw\nOw1An1yDBwDQGTN4AHPMzMzsl8leU3bxtm3bbpxgewC7JOAB/KxDj3rs8z47qW/Z+MIHX/1LST43\nfrcARiPgAezApK5NA1gOAh4AXZvwkrvtYFgRBDwAejexJXfbwbBSCHgAdM92MOxpBDyARbR1y+Yk\nOXRmZmYSzVkehAnqeflewANYRJuuvSZHPfZ551gehKnU7fK9gAewyCwPwvTq9f3pmywAADpjBg+m\nzDRfs7V1y+ZcdNFFWbt27eHr16/ff8zmpup6FabHhN8DidcaeyABD6bMNF+ztenaa/Kqc67JAQce\nef7Dnnb6WG1N2/UqTI9JvgcSrzX2TAIeTKFpviZkmvtGPyb5TSJea+yJBDxgxbOkB3uOab6MZZoI\neMCKZ0kP9hzTfBnLNBHwgC5Y0oM9h0tFds82KQAAnRHwAAA6I+ABAHRGwAMA6IyABwDQGQEPAKAz\nAh4AQGcEPACAzgh4AACdEfAAADoj4AEAdEbAAwDojIAHANAZAQ8AoDMCHgBAZwQ8AIDOCHgAAJ0R\n8AAAOiPgAQB0RsADAOiMgAcA0BkBDwCgMwIeAEBnBDwAgM4IeAAAnRHwAAA6I+ABAHRGwAMA6IyA\nBwDQGQEPAKAzAh4AQGcEPACAzgh4AACdEfAAADqz13J3AAD2RFu3bE6SQ2dmZibS3gMf+MB77XPw\nkRNpi5VPwAOAZbDp2mty1GOfd84BB959Iu1dfcVnc5eJtEQPxgp4rbUDk7wxyTFJbkqyvqpe2lq7\nc5K3JDkiyc1JLkjygqraNmZ/AaAbBxx499z+LveeSFvXf2/jRNqhD+Neg3d2km9V1UEZhLxHttYO\nTrIuycaquk+So5Icm+TkMc8FAMAIFhzwWmt3TfLYJH+WJFX1nao6Nsm3khyf5Ixh+Y0ZzPKdMG5n\nAQDYvXGWaI9Kck2S32mtPT2Dpdh1ST6dJFV12ay6l2SwXAsAwCIbZ4n2jkl+PsmPquoXkzw9yV8m\neVySzXPqbkqyaoxzAQDsMYYrpQs2TsD7QZJtSV6fJFX15STvT/KIJPvMqbsqyfVjnAsAYI+xZs2a\nM8c5fpyAd2mSvZPsP6f8M0m2Dm+22O6wJF8c41wAAHuMDRs2nDrO8QsOeFVVST6R5EVJ0lpbncFN\nF+9Lct6s8jskOSWDO24BANiNqrpqnOPH3Sbl6Uke2Fq7MoPl2T+pqo8nOTXJAa21S5NcmOTdVfXW\nMc8FAMAIxtrouKquTHLcDsp/kOTJ47QNAMDCjDuDBwDAlBHwAAA6I+ABAHRGwAMA6IyABwDQGQEP\nAKAzAh4AQGcEPACAzgh4AACdEfAAADoj4AEAdEbAAwDojIAHANAZAQ8AoDMCHgBAZwQ8AIDOCHgA\nAJ0R8AAAOiPgAQB0RsADAOiMgAcA0BkBDwCgMwIeAEBnBDwAgM4IeAAAnRHwAAA6I+ABAHRGwAMA\n6IyABwDQGQEPAKAzAh4AQGcEPACAzgh4AACdEfAAADoj4AEAdEbAAwDojIAHANAZAQ8AoDMCHgBA\nZwQ8AIDOCHgAAJ0R8AAAOiPgAQB0RsADAOiMgAcA0BkBDwCgMwIeAEBnBDwAgM4IeAAAnRHwAAA6\nI+ABAHRGwAMA6IyABwDQGQEPAKAzAh4AQGcEPACAzuw1iUZaa3dI8tUkG6rqpNbanZO8JckRSW5O\nckGSF1TVtkmcDwCAnZvUDN5rk2xKsj3ArUuysaruk+SoJMcmOXlC5wIAYBfGDnittV9Ncs8k5ySZ\naa3tn+T4JGckSVXdmOSNSU4Y91wAAOzeWAGvtXbHJK9OclJumb07JEmq6rJZVS/JYLkWAIBFNu4M\n3muTvH4Y5rYHvP2SbJ5Tb1OSVWOeCwCAESz4JovW2uOT3CPJbw+LZoY/b0iyz5zqq5Jcv9BzAQDs\nSVprdx3n+HFm8J6S5D5JLm+tXZHkuUmenMHds1taawfPqntYki+OcS4AgD3GmjVrzhzn+AUHvKp6\nelXdraruWVX3TPKaJO+qqqOTvDvJi5KfbKFySpKzx+koAMCeYsOGDaeOc/xibXR8apIDWmuXJrkw\nybur6q2LdC4AgK5U1VXjHD+RjY6HHfnzWX//QQbLtQAALDFfVQYA0BkBDwCgMwIeAEBnBDwAgM4I\neAAAnRHwAAA6I+ABAHRGwAMA6IyABwDQGQEPAKAzAh4AQGcEPACAzgh4AACdEfAAADoj4AEAdEbA\nAwDojIAHANAZAQ8AoDMCHgBAZwQ8AIDOCHgAAJ0R8AAAOiPgAQB0RsADAOiMgAcA0BkBDwCgMwIe\nAEBnBDwAgM4IeAAAnRHwAAA6I+ABAHRGwAMA6IyABwDQGQEPAKAzAh4AQGcEPACAzgh4AACdEfAA\nADoj4AEAdEbAAwDojIAHANAZAQ8AoDMCHgBAZwQ8AIDOCHgAAJ0R8AAAOiPgAQB0RsADAOiMgAcA\n0BkBDwCgMwIeAEBnBDwAgM4IeAAAnRHwAAA6I+ABAHRGwAMA6IyABwDQmb3GObi1dlySlye5fZJb\nJzmrql7TWrtzkrckOSLJzUkuSPKCqto2Zn8BANiNBc/gtdZ+Icl7krywqg5L8pgkf9Fae1CSdUk2\nVtV9khyV5NgkJ0+gvwAA7MY4S7RbkpxQVR9Jkqq6PMnXkjwwyfFJzhiW35jkjUlOGK+rAACMYsFL\ntFX1nSTv3f64tXbvJPdN8vnh85fNqn5JBsu1AAAssoncZNFau3uS9yX5q2HR5jlVNiVZNYlzAQD0\nrrV213GOHzvgtdaOTvLJJGdX1UuTXJ9knznVVg3LAQDYjTVr1pw5zvFjBbxhuHt/kudW1SuHxV9P\nsrW1dvCsqocl+eI45wIA2FNs2LDh1HGOH+cu2n2TvCvJ71fV+dvLq+qGJOcledGw3h2SnJLk7HE6\nCgCwp6iqq8Y5fpx98J6Y5B5JTmutnTar/NwkpyZ5c2vt0iRbk5xbVW8d41wAAIxonLtoz80gzO3M\nkxfaNgAAC+erygAAOiPgAQB0RsADAOiMgAcA0BkBDwCgMwIeAEBnBDwAgM4IeAAAnRHwAAA6I+AB\nAHRGwAMA6IyABwDQGQEPAKAzAh4AQGcEPACAzgh4AACdEfAAADoj4AEAdEbAAwDojIAHANAZAQ8A\noDMCHgBAZwQ8AIDOCHgAAJ0R8AAAOiPgAQB0RsADAOiMgAcA0BkBDwCgMwIeAEBnBDwAgM4IeAAA\nnRHwAAA6I+ABAHRGwAMA6IyABwDQGQEPAKAzAh4AQGcEPACAzgh4AACdEfAAADoj4AEAdEbAAwDo\njIAHANAZAQ8AoDMCHgBAZwQ8AIDOCHgAAJ0R8AAAOiPgAQB0RsADAOiMgAcA0BkBDwCgMwIeAEBn\nBDwAgM4IeAAAndlrsRpurT0gydokd0pyU5JXVNXbF+t8AAAMLMoMXmttnyTnJzmjqg5O8vgkr2ut\n3XcxzgcAwC0Wa4n2uCTbqupvk6SqLkvy/iS/tUjnAwBgaLEC3qFJLplT9vUkRyzS+QAAGFqsgLcq\nyaY5ZT8algMAsIgW6yaL65Lcdk7ZqiTXj3Lwrb5zYb75re9cftNNN20epxPfv/qK/W++x9F3H6eN\n7W744dXZNomGFqG9aW1r0u1Na1uTbm9a25p0e9Pa1qTbm9a2Jt3etLY16famta1JtzetbU26vWlt\n67rvbUx7eLvrOG0sVsD7apL/PqfssCRfHOXg9771tJmJ9wgAYA+xWEu0H0mypbV2YpK01u6X5FFJ\n3rFI5wMAYGhm27ZJTpzeYhjqzkrycxlcf/eSqjp/UU4GAMBPLFrAAwBgefiqMgCAzgh4AACdEfAA\nADoj4AEAdEbAAwDozGJtdLxLrbUHJFmb5E5Jbkryiqp6+w7qPSPJnyTZO8l3kzy7qj6zlH1l9+Yx\nnn+Q5PcyeN3dmOR/VNWHl7Kv7N6o4zmr/oOSfCLJ71TVW5eml4xqHu/Po5Ksyy1bW72wqi5Yyr6y\ne/MYz2cleU4GEznXJvmfVfVPS9lXRtdaOznJ6Un+tKpO30mdeWWiJZ/Ba63tk+T8JGdU1cFJHp/k\nda21+86p94tJXpvk8cN6ZyT5u9ba3kvdZ3ZuHuP5+CR/nGRNVR2a5BVJzmut3Wap+8zOjTqes+rv\nm+TNSb6RTPTbiJiAebw/VyX5QJJXVdW9kzwryXNba1Z5psg8xvPBGXzGPqaqDk/yoiTvaa3dcan7\nzO611s5K8pAMvgVsh5+jC8lEy/HmPS7Jtqr62ySpqsuSvD/Jb82pd0KSvx8+n2H9mSS/snRdZQSj\njuelSX69qq4aPv77JLdLco+l6igjGXU8t3tZkvcmuSKD9yfTZdTxfEKSq6vqvGG9f62q46rq5iXt\nLbsz6njeL8nFVbVxWO+fk+yT5J5L2FdG9+aqekaSG3ZRZ96ZaDkC3qFJLplT9vUkR8wpa8Py2S7Z\nQT2W10jjWVUXVdUnZxU9KcnGJJcvbveYp1Hfn2mtPSSD/+D8+bDIDN70GXU875/kytbam1tr1Vr7\nWGvtYUvSQ+Zj1PH8pySHbJ/Za60dn+T/JfnKoveQeauqz41Qbd6ZaDkC3qokm+aU/WhYvrt6m5Ls\nt0j9YmFGHc+faK39SgZTzSdV1dbF6xoLMNJ4ttZum+SvkzyzqjYvUd+Yv1Hfn3dM8ogkb6qqlsGy\n+wWttTstfheZh5HGs6ouSfLiJJ9vrV2T5G1JnuW9uqLNOxMtR8C7Lslt55StSnL9nLLr87Md31E9\nlteo45nkJxeJvjPJU1zwO5VGHc+XJXnPnP/ztEQ7fUYdzx8k+XRVXZgkVfW2DG6EevCi95D5GGk8\nW2uPy+Ca54Or6ueTPDTJ24c30rAyzTsTLUfA+2qSQ+aUHZbkizuo17Y/aK3NZDA9/aVF7R3zNep4\nprX2zCQvSXLs8JoQps+o4/mkJE9vrV3RWrsiyYOSvKq1tsO7v1g2o47nJRnM4s22LcmWReoXCzPq\neD4uyYer6sokqaqvDOs8YrE7yKKZdyZajoD3kSRbWmsnJklr7X5JHpXkHXPqvSPJ42bdHfS7Gfzf\ny8eWqJ+MZqTxbK0dnuQvkxxXVRcvdScZ2UjjWVX3rKp7DH/eM8mnkjy/qp6/1B1ml0b9vH1nBtds\nPXpY7/gk+yb5v0vXVUYw6nh+Ocmx25fYW2sHJTkqyReWrqsswEx2vhIy70w0s23b0l8XPXxRnpVb\n9lt6SVWd31o7LckNVfXyYb3fTPK/ktwmyVVJfr+qvrbkHWaXdjOe11fVaa21Nyb5zQzGcbbnVdU/\nLG2P2ZVR359zjvlIkrOHS3tMkXl83j4yyWsyCHbfTfJHVfWJZeo2OzHKeA5nd16W5MlJbs5gNvYN\nVbV2ufpZ91CfAAAAU0lEQVTNjrXWbp3B3bPbMsg6W4d/3p7kOxkjEy1LwAMAYPHYxBIAoDMCHgBA\nZwQ8AIDOCHgAAJ0R8AAAOiPgAQB0RsADAOiMgAcA0BkBDwCgM/8f9QUbEAswowQAAAAASUVORK5C\nYII=\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde39e2cf10>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "plt.hist(alpha_vals[trait_name].ix['alpha',:], bins=30)\nplt.title(\"alpha values $\\mu %.4f \\pm %.4f \\ [%.4f, %.4f]$\" % (np.mean(alpha_vals[trait_name].ix['alpha',:]),\n np.std(alpha_vals[trait_name].ix['alpha',:]),\n np.min(alpha_vals[trait_name].ix['alpha',:]),\n np.max(alpha_vals[trait_name].ix['alpha',:])))\nplt.show()",
"execution_count": 1208,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAHFCAYAAABowCR2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucXVV99/HPAIohRCBFaWsaRzD8EhWMoraVAt5aoK3y\noo/2Ikongi23sdCWVmwfbUu9PdwqYxFfIDNeEG8tivWCfaxaqtUKCNpQfoSEiNE+UkGFkBBymeeP\nvQ+cHCYz5zY5k5XP+/XK68zZe+21157Z2ed79lp776HJyUkkSZJUrj0G3QBJkiTNLgOfJElS4Qx8\nkiRJhTPwSZIkFc7AJ0mSVDgDnyRJUuEMfJIkSYUz8EmSJBXOwKddRkRsi4g/6qD82oh4y2y2qVud\nbovUbxHx8xHx+Yi4KiKGBt0e7VhEvD4iro6IPxx0W7Tr2mvQDZA61MmjYSY7LL+zzeW2dSUingC8\nA/gesB9AZr652/J9mP9zwCjVl9sjgM9n5kVtbMcvAU/NzI/uzO2tywwBrwF+KTPPbJoewO8Cm4GD\ngVsy8909bOvjgH/PzL+ebhunMwt/7/3rbdgM7A1sysx3TFHPzwOXZuYrW6ZP+bubS+2PiKXAHwFr\n6zL/lJk3TzcvM6+IiC8AIzNtk7QjnuGT1E9vBe7PzIvqD8JDZziTOVP5rufXH/5/C/xNZr4R+G3g\n3Ij48za2Y2/gCTt7eyPi1cAFVKFhXsuyHwa+kplvA84BLoyI1/ZhW3vR77/3m4ELM/MddRB9MCJO\nmaKeC4CFzRNm+N3NifZHxNOo/o5/kZnvBJ5cLzPtPKkfDHyaMyLiaRHxjxHx44h4MCK+FREvn6b8\ntog4KyImIuL+iPhJRLwnIvZsKrZHRJwfEfdExIaI+EhE7NvDOr8RER+bYvqdEfGeHrbjj1qm3RIR\n403v50XEu+r1bIiImyLiuKb5v1q37f56vZ+PiGU7WudsqM9+vB74RNPkf2QHZyVmKt/rfODpwC8C\nSwEy88fA9cCMZ37a0e/trdv44cz8U2Al0NrNug04rC73APBj4JfrebO6rVOZje0Hfg3Y1PT+i8Bz\nW+o5iiqQb/f7meF3N1fa/05gIjPvq99/CHh7G/Oknhn4NJd8FHgKcDTwDOBTwMcjYniaZf4c+Baw\nHDgbOAX4k3reEPBaqg/KF1J19ZxYl5tpnU/bwfo+BhwXEY9vTIiIZ1N1sV3TZZ3w2O7d1u7oK4Df\nqbftcOD/Ap+KiGdHxAHAJ4Gv1POOAh6q17szHQ7sC9zVNO27wOF1V1en5Xud/zBwEHBI0/x7gZ/p\nfNOm1O/tbfaYwJKZz8/MMYCImE91BujGevZsb+tUZmP79wA+ERGNdv8WTQGr/jJ3HPDpadrV7njE\nndr++v/piVT/TwHIzK9n5jemm9fmtkgzcgyf5pITqca8/AggIt5B1aVxFNWYlqnclpnvqn9eExEn\nAK8C/k897QeZ2bhw486I+Abw/DbW+Stsf2Bv+ARVt9FLgM/X034L+H5m/muXdU4rIhYBvwecmpmN\nEPfnEXEscBZwGVUX1scyc229zAhwSEQMZeYOxwpGxK8A/zszj63f7011hmR5Zq7vsKm/UL8+2DTt\nAaoP4J8FftJh+Z7mZ+btwJNa1vl8mj5Up9FOaOj39jaXn2l856nA5zLzKoDM/C7db2u3ZmP7R6m+\nqNwWEVcDX8/MLzWVHwGuojom7Ei7Y2N3dvtfAOxJ9f/yecDPUQ0bePN08zJzW5vbI03LwKe55InA\nmyPil6nG5zQ+dA+YZpmvtby/lepsXsONLfN/TPUtvat1ZuZ3I+I/gBN4NPCdCHy8x+2YznPrOr7c\nMv0rVNt6G3A38LGIGAP+OTP/E7ipjbpPAFY1vf9FYK8uwh5UoXNrywdUo3vriV2U73X+dqK6EOO5\nPLaL8AlUIb75ePjzwIJ6mYZJ4K8y854229+q0/KPERGHU33Z+DWqcLGjclNua5/NxvbfALyfqt1n\nA5+MiM9n5v0RcSDwxMxcXXfr7lLtBw6sy0Rmvh0gIq4C/obq//CO5v1ll9snbcfApzkhIp5IFWi+\nRzVOZi1VV+yqHS8FwE9b3q+nvnqutrFl/iR1AOthnR8H/hg4PSKeDjyL6oxLL3VOp/Fh8u2IaJ7+\nOOCezNxUn6l7I3AucFFEJHBmZv7LDHW/iOqqw4ZjeGywbFfrGRF4NFw/1EX5Xuc/ou4CfTfwyszM\n5nmZ+RAt4SkijgGGM/P9U6yj3fb3Wv4xMvPbVPvBOPCtiDg/M8eby0y3rX02G9v/YeCtmfmtiDid\nat+coDqL/gfAxV23trv2dFp+uvbfX5f5YtPyNwFvA06aZp6BT31h4NNc8SKqLqmX1meniIgnt7Hc\n/Jb3C6jO4s3mOj8BXBARz6/ruCsz/6PHOlu7EBc0/dwItccC/6+l3FaAzFxH1b17VkS8ADgfuC4i\nfqEewP8Y9bijZwPNXWZHU31oNcqsqKdNZ2VmXgj8ANgzIuZlZiNoN7bje1MsN1P5vXqc39iGPYD3\nAn/WRgDuRL+3t22Z+dOI+AxwaUR8ODM3QW/b2uHfGvq8/fWXlocz81v1Nr4nIr4GfD0inks1fKOt\nYNymndn+J1KN9wP4UVOdG+s6frqjeRFxYGN4iNQLA5/misZFEPc2TXt1/TrdeKqjqW6V0PAcoHFW\nY6axPF2ts6lb9zeAl1JdpNFLnffTdIuJiDgIWNw0/yaqbTkwM7/WVG4YuCciDgGWZeY/1e37j6hu\nx3EzMMyOA/CLgO82rgqMiMdRXfX5hxHx0sz8Yn32aHwHy7e6leosyMFU4wABDgVW7SB0Tls+Iu7v\nZX7Tet4CXNUIQBFxamZe2eY2Taev2ztF+Uf234g4kurCnNdlZuOChYeAfaj2uUbXYtfb2uHfupvt\nmenv/WTg+y1tujUivgP8JjAvIn6xnvU84OCIeBswnpmtZ9DbGce3M9u/BfgOcA/VxTZr6iL71nX+\n+zTz7kPqA6/S1VxxE1XX559EdVuT1wMvpvpW/bymq95aLYuIP4mIJRHxOqor+BpnqHYUsBrTb55h\nnQt3sDxU3bqvogpIH+lgO6aq82bg1RFxRD1G68q6/BBAZv6A6grgSyPiuIgYjoj/BfwH1Vm9Q4B/\njIjT6nUG1c1b/4dHxwZN5cVsHwZPpjpDsYbtL2xpS2ZupbqK+VVNk18FjDXeRMRIRLyznfK9zq/X\ndypVl/jj69/dcVRXdM9kxos2Zlp/87a2296W9Te3YT1VwPufuu4hqrF8H6lv0dLLtnZlFrb/i8CL\nIuIpjZlR3Yj4xsz8m8w8r/EP+CqwJjPfNEXYa/3dNer6/U7a0+f2b6gvnrqSasxvw4uBsczcMs08\nL9pQX7R1hq/+kHov1YDuzVT3Cjq/HkT7PuCZVB9y1wHnZuZk3bVwAfCKupqVwCmZee9jVqDdXmbe\nFRFvAN5ENVbneuD3qe4j9iaqb7pTfWt/N9W37EaX6nuobmHCDso/cruTzFwzzTr/gioMvWEHTf44\n1f79X/W4qna2Y0d1jlJdeXgDVVfSG4HWRyidSnVPrquoBn9/D7ggMy8AqMcLnUM1xmkD8E3guEZX\n3w68BPhpRLyxXuZG4F/r9912fZ5LFUzfSDWW8sZsehoEVRfy0R2U73p+/WF7GdVxrvk+hx9sbnBU\nF21cwvbHw58D9q276Romgb9sumhjpva1buuM2xMRJ1KdzXpF/f4q4NOZeW3jy0NE/DrVGeB/pjqj\n1/a2zoK+bX/dTX0ycH5EfJ/qhMRmqv0aeCToXko1vOFJEXE51Y2O75zud1cvvhw4OSL+OjM3DKL9\nwF9RDQd5O9W9BG/JR590Mt08qWdDk5Mzn/mOiE8Bd2fmaB3y/oFHP4B+mJlnRsQ+VFcNXlWPXTiL\n6oPu6MzcGBF/T9Ul9TuztjXarUTENuDszLx00G3Z1UTEk6i6n56Uma0Xvmg3EBFPBUZ2p1AR1W2b\nvpTVVbO7lN3x76X+mrFLN6pnFh5P9e2DzPxRZh5DNXj8BOqrpupvTO+lurktVN1DlzcNbr0EODEi\n2n3kjaTZ82LgZsOedjOLdsWwJ/VDO126y6kGk74uquc2bgMup+5Cy8zVTWVXUXXvAgRwR9O8NVQB\n81Cqwa+SBmcZ2987UCpa3T3fzr0p56p2nyAiTamdwHcA1ZVDD2Xm4RFxGNVYowupHufTbCOP3iZj\nPk33QMvMbRGxicfeRkPqSmZ60VGX7BYS1fH7l+qxbqfkNE9kKUFm/tug29Ctevzmi5jdJ6eocO0E\nvsZg+cbA1O9Edf+nl1ANLG02n+pqMurXR7pvo3oG4t5N8yVJA5KZ/001XEdzXGZewaMXo0ldaSfw\n3Ul1R/99qZ4b2HAjcGRELGm6LH4Zj3bXrgSWUp0NhKqLdwuP3iNtOkV/05QkSWpTX7rzZwx8mZkR\n8VWq20ycV9/s9XiqCzaeUk9fEdVd+0+n6uqF6nEyZ0XER6mC4nnANTPcJqLZsVSPpZI6NUx1OxT3\nIXVrGPch9WYY9yH1brhfFbX7pI3XAu+LiLXAg8AbM/OG+g7iV0bEnVSPeLom62dPZuYVEXEw1ZnA\nIar7gp3RQdvWsv1FH1Kn1uI+pN6sxX1IvVmL+5DmgLbuwzcAkzz2Kl+pXYdSDR1wH1K33IfUK/ch\n9cOh9Gn/8SpHSZKkwhn4JEmSCmfgkyRJKpyBT5IkqXAGPkmSpMIZ+CRJkgpn4JMkSSqcgU+SJKlw\nBj5JkqTCGfgkSZIKZ+CTJEkqnIFPkiSpcAY+SZKkwhn4JEmSCmfgkyRJKpyBT5IkqXAGPkmSpMIZ\n+CRJkgpn4JMkSSqcgU+SJKlwBj5JkqTCGfgkSZIKZ+CTJEkqnIFPkiSpcAY+SZKkwhn4JEmSCmfg\nkyRJKpyBT5IkqXAGPkmSpMIZ+CRJkgpn4JMkSSqcgU+SJKlwBj5JkqTCGfgkSZIKZ+CTJEkqnIFP\nkiSpcAY+SZKkwhn4JEmSCmfgkyRJKpyBT5IkqXAGPkmSpMIZ+CRJkgpn4JMkSSqcgU+SJKlwBj5J\nkqTCGfgkSZIKZ+CTJEkqnIFPkiSpcAY+SZKkwhn4JEmSCmfgkyRJKpyBT5IkqXAGPkmSpMIZ+CRJ\nkgpn4JMkSSqcgU+SJKlwBj5JkqTC7TXdzIgYBtYA2TLrSKqw+D7gmcA24Drg3MycjIg9gAuAV9Tl\nVwKnZOa9/Wu6JLVnaGhoH2Bpu+VHRkYWj46OMjY29oyJiYl968m3T05ObpidFkrS7Jo28DVk5rLW\naRHxCWBdZp4QEfsAXwFOA94DnAEcDRyemRsj4u+By4Df6VvLJal9S5cff85NCxYuaqvw6s1w9sVf\nBg679qiTLuKB+9Zxy+cuOQK4eTYbKUmzpa3A1yoiFgAnUH9jzswNEfFeYAVV4DsZuDwzN9aLXALc\nFhHzmqZJ0k6zYOEi9jvokEE3Q5IGoq3AFxEfAJ4DPAS8C7gNIDNXNxVbRdW9CxDAHU3z1lB1AR8K\n3NpbkyVJktSJmQLfA1Tj9MYy89sRcSTwBeB44OGWshuB+fXP8+v3AGTmtojY1DS/HcMdlJWaDbe8\najc3MjKyePXm3usA1velQdodDLe8St0YZvsTaF2bNvDVF1m8vun9VyPiOuAtwN4txefz6MFwPTCv\nMSMi9qzLd3KwvL6DstJU3IcEwOjoaD0mr6c6ru1Pa7Sb8TikXg31o5KZrtI9ADgwM1c1Td6Tqlv2\nVyJiSdO8ZTzaXbuSanzfDY2qgC089mrf6RwLrO2gvNQwTHWQdR8SAGNjY8+Aw3oKbGNjYyeOj4/f\n1q82qXjDeBxS74b7VdFMXbovBK6KiOdn5t0R8SzgOOClwEHAm4AVEbE/cDpwYb3cBHBWRHyUqlv4\nPOCazNzUQdvW0qfTmNptrcV9SMDExMS+R510Ua913D0+Pu7+pE6txeOQ5oBpb7ycmZ8B3gp8ISL+\nC/ggcGpmfhM4E1gQEXcC3wD+ITPfXy93BfBZ4EaqHX1P4A2zthWSJEnaoRmv0s3MS4FLp5j+E+CV\n0yx3HtWZPUmSJA2Qj1aTJEkqnIFPkiSpcAY+SZKkwhn4JEmSCmfgkyRJKpyBT5IkqXAz3pZFknZ3\nW7c8DLB0aKjnJxzdPjk5uaH3FklSZwx8kjSDjfffw/Ljz7l6wcJFXdfxwH3ruOVzlxwB3Ny/lklS\newx8ktSGBQsXsd9Bhwy6GZLUFcfwSZIkFc7AJ0mSVDgDnyRJUuEMfJIkSYUz8EmSJBXOwCdJklQ4\nA58kSVLhDHySJEmFM/BJkiQVzsAnSZJUOAOfJElS4Qx8kiRJhTPwSZIkFc7AJ0mSVDgDnyRJUuEM\nfJIkSYUz8EmSJBXOwCdJklQ4A58kSVLhDHySJEmFM/BJkiQVzsAnSZJUOAOfJElS4Qx8kiRJhTPw\nSZIkFc7AJ0mSVDgDnyRJUuEMfJIkSYUz8EmSJBXOwCdJklQ4A58kSVLhDHySJEmFM/BJkiQVzsAn\nSZJUOAOfJElS4Qx8kiRJhTPwSZIkFc7AJ0mSVDgDnyRJUuEMfJIkSYUz8EmSJBXOwCdJklQ4A58k\nSVLhDHySJEmFM/BJkiQVzsAnSZJUOAOfJElS4fZqt2BE7A+sBL6QmSsi4kDgfcAzgW3AdcC5mTkZ\nEXsAFwCvqBdfCZySmff2tfWSJEmaUSdn+N4FbAQm6/eXA+sy8+nAcuAY4LR63hnA0cDhmbkE+D5w\nWV9aLEmSpI60Ffgi4jeBpwFXA0MRsS9wAnAxQGZuAN4LvKZe5GTg8szcWL+/BDgxIub1se2SJElq\nw4yBLyIOoApsK3j07N6hAJm5uqnoKqruXYAA7miat6Ze16E9tleSJEkdaucM37uAd9fhrhH49gEe\nbim3EZhf/zy/fg9AZm4DNjXNlyRJ0k4y7UUbEfFy4KnA79eThurXB4G9W4rPB9bXP68HHum+jYg9\n6/Lrad9wB2WlZsMtr9rNjYyMLF69edCtqNpBZ8dB7bqGW16lbgyzfY9p12a6Sve3gacDayICYP96\nmWcDWyJiSWauqssuA26tf14JLAVuqN8HsAXIDtp2fQdlpam4DwmA0dFRzr74y4NuBqOjo9cOug3a\n6TwOqVdDMxeZ2bSBLzNf2/w+It4CPDUzXxcRVwNvAlbUt2w5HbiwLjoBnBURHwUeAM4DrsnMTR20\n7VhgbQflpYZhqoOs+5AAGBsbewYcNvCwNTY2duL4+Phtg26HdophPA6pd8P9qqjt+/BN4Uzgyoi4\nE9hKFejeD5CZV0TEwcCNVMn0m1S3aunEWvp0GlO7rbW4DwmYmJjY96iTLhp0M5iYmLh7fHzcfXL3\nshaPQ5oDOgp8mfnXTT//BHjlNGXPozqzJ0mSpAHy0WqSJEmFM/BJkiQVzsAnSZJUOAOfJElS4Qx8\nkiRJhTPwSZIkFa6X+/BJ0qwbGhrah+rJPb3odXlJ2qUZ+CTNdUuXH3/OTQsWLuq6gh/edVMfmyNJ\nux4Dn6Q5b8HCRex30CFdL7/+vnV9bI0k7XocwydJklQ4A58kSVLhDHySJEmFM/BJkiQVzsAnSZJU\nOAOfJElS4Qx8kiRJhTPwSZIkFc7AJ0mSVDgDnyRJUuEMfJIkSYUz8EmSJBXOwCdJklQ4A58kSVLh\nDHySJEmFM/BJkiQVzsAnSZJUOAOfJElS4Qx8kiRJhTPwSZIkFc7AJ0mSVDgDnyRJUuEMfJIkSYUz\n8EmSJBXOwCdJklQ4A58kSVLhDHySJEmFM/BJkiQVzsAnSZJUOAOfJElS4Qx8kiRJhTPwSZIkFc7A\nJ0mSVDgDnyRJUuEMfJIkSYUz8EmSJBXOwCdJklQ4A58kSVLhDHySJEmFM/BJkiQVzsAnSZJUOAOf\nJElS4Qx8kiRJhTPwSZIkFc7AJ0mSVDgDnyRJUuEMfJIkSYXba6YCEXEccD6wLzAJXJ6Zl0bEgcD7\ngGcC24DrgHMzczIi9gAuAF5RV7MSOCUz752FbZAkSdI0pj3DFxE/C3wceENmLgN+Azg/In4FuBxY\nl5lPB5YDxwCn1YueARwNHJ6ZS4DvA5fNziZIkiRpOjOd4dsGvDoz/x0gM++KiFVUAe8EYGk9fUNE\nvBdYAbwHOJnqTODGup5LgNsiYl7TNEnabWzd8jDA0qGhoV6quX1ycnJDf1okaXcybeDLzHuATzfe\nR8RLgMXA1+r5q5uKr6Lq3gUI4I6meWuoziYeCtzac6slaRez8f57WH78OVcvWLioq+UfuG8dt3zu\nkiOAm/vbMkm7gxnH8AFExK9TdeHOB06vXx9uKbaxnk79+siZvMzcFhGbmuZL0m5nwcJF7HfQIYNu\nhqTdUFuBLzM/CyyOiKVUZ/zeD+zdUmw+sL7+eT0wrzEjIvasy6+nfcMdlJWaDbe8ahc2MjKyePXm\nQbdibhgZGVlMZ8dRDc5wy6vUjWG27zHt2rSBLyIOBZZk5mcAMvP2iLgOeC6wNSKWZOaquvgyHu2u\nXUk1vu+GRlXAFiA7aNv1HZSVpuI+VIDR0VHOvvjLg27GnDA6OnrtoNugjnkcUq96GvjbMNMZvoXA\nNRFxZGZ+JyL2B15GdYZvI/AmYEU9/XTgwnq5CeCsiPgo8ABwHnBNZm7qoG3HAms7KC81DFMdZN2H\nCjA2NvYMOMygA4yNjZ04Pj5+26DbobYM43FIvRvuV0UzXbTx9Yg4E/h43S07BFwL/B3wRODKiLgT\n2EoV6N5fL3dFRBwM3Fgv802qW7V0Yi19Oo2p3dZa3Id2eRMTE/seddJFg27GnDAxMXH3+Pi4+/Su\nZS0ehzQHzDiGLzM/CHxwilk/AV45zXLnUZ3ZkyRJ0gD5aDVJkqTCGfgkSZIKZ+CTJEkqnIFPkiSp\ncAY+SZKkwhn4JEmSCmfgkyRJKpyBT5IkqXAGPkmSpMIZ+CRJkgpn4JMkSSqcgU+SJKlwBj5JkqTC\nGfgkSZIKZ+CTJEkqnIFPkiSpcAY+SZKkwhn4JEmSCmfgkyRJKpyBT5IkqXAGPkmSpMIZ+CRJkgpn\n4JMkSSqcgU+SJKlwBj5JkqTCGfgkSZIKZ+CTJEkqnIFPkiSpcAY+SZKkwhn4JEmSCmfgkyRJKtxe\ng26ApLINDQ3tAyztoYpelpUkYeCTNPuWLj/+nJsWLFzU1cI/vOumPjdHknY/Bj5Js27BwkXsd9Ah\nXS27/r51fW6NJO1+HMMnSZJUOAOfJElS4Qx8kiRJhTPwSZIkFc7AJ0mSVDgDnyRJUuEMfJIkSYUz\n8EmSJBXOwCdJklQ4A58kSVLhDHySJEmFM/BJkiQVzsAnSZJUOAOfJElS4Qx8kiRJhTPwSZIkFc7A\nJ0mSVDgDnyRJUuEMfJIkSYUz8EmSJBXOwCdJklQ4A58kSVLhDHySJEmF26udQhHxUuCtwH7AnsBl\nmfl3EXEg8D7gmcA24Drg3MycjIg9gAuAV9TVrAROycx7+7wNkiRJmsaMZ/gi4meBTwLnZeYy4Djg\nbyLil4DLgXWZ+XRgOXAMcFq96BnA0cDhmbkE+D5wWf83QZIkSdNpp0t3C/CazPwSQGauAW4DXgCc\nAFxcT98AvBd4Tb3cycDlmbmxfn8JcGJEzOtf8yVJkjSTGbt0M/NHwKca7yPiEOBZwLfq+aubiq+i\n6t4FCOCOpnlrqALmocCtPbVakiRJbevooo2IWAR8GnhnPenhliIbgfn1z/Pr9wBk5jZgU9N8SZIk\n7QRtXbQBEBHPpRrLN5aZF0TEc4C9W4rNB9bXP68H5jUtv2ddfj3tGW63bVKL4ZZXDdDIyMji1ZsH\n3YoyjIyMLKb9Y6gGa7jlVerGMNv3lnat3at0nwt8BjgjM6+tJ98BbI2IJZm5qp62jEe7a1cCS4Eb\nGtVQjQfMNtt2fZvlpB1xH5oDRkdHOfviLw+6GUUYHR29duZSmmM8DqlXQ/2oZMbAFxFPAD7O9mGP\nzHwwIj4BvAlYERH7A6cDF9ZFJoCzIuKjwAPAecA1mbmpzbYdC6xts6zUbJjqIOs+NAeMjY09Aw4z\nqPTB2NjYiePj47cNuh1qyzAeh9S74X5V1M4ZvhOBpwJvi4i3NU2/BjgTuDIi7gS2UgW69wNk5hUR\ncTBwI1U6/SbVrVratZY+ncbUbmst7kMDNzExse9RJ1006GYUYWJi4u7x8XH36V3LWjwOaQ5o5yrd\na6jC3Y68cpplz6M6sydJkqQB8dFqkiRJhTPwSZIkFc7AJ0mSVDgDnyRJUuEMfJIkSYUz8EmSJBXO\nwCdJklQ4A58kSVLhDHySJEmFM/BJkiQVzsAnSZJUOAOfJElS4Qx8kiRJhdtr0A2QJM1s65aHAZYO\nDQ31WtXtk5OTG3pvkaRdiYFPknYBG++/h+XHn3P1goWLuq7jgfvWccvnLjkCuLl/LZO0KzDwSdIu\nYsHCRex30CGDboakXZBj+CRJkgpn4JMkSSqcgU+SJKlwBj5JkqTCGfgkSZIKZ+CTJEkqnIFPkiSp\ncAY+SZKkwhn4JEmSCmfgkyRJKpyBT5IkqXAGPkmSpMIZ+CRJkgpn4JMkSSqcgU+SJKlwBj5JkqTC\nGfgkSZIKZ+CTJEkqnIFPkiSpcAY+SZKkwhn4JEmSCmfgkyRJKpyBT5IkqXAGPkmSpMIZ+CRJkgpn\n4JMkSSqcgU+SJKlwBj5JkqTCGfgkSZIKt9egGyBp7hoaGtoHWNpjNb0uL0nqkYFP0nSWLj/+nJsW\nLFzUdQU/vOumPjZHktQNA5+kaS1YuIj9Djqk6+XX37euj62RJHXDMXySJEmFM/BJkiQVzsAnSZJU\nOAOfJElS4Qx8kiRJhTPwSZIkFc7AJ0mSVDgDnyRJUuHavvFyRJwGXAS8OTMvqqcdCLwPeCawDbgO\nODczJyNiD+AC4BV1FSuBUzLz3j62X5IkSTNo6wxfRFwGvJAqtE02zbocWJeZTweWA8cAp9XzzgCO\nBg7PzCXA94HL+tRuSZIktandLt0rM/Nk4MHGhIhYAJwAXAyQmRuA9wKvqYucDFyemRvr95cAJ0bE\nvH40XJIkSe1pK/Bl5s1TTF5Sz1vdNG0VVfcuQAB3NM1bU6/v0M6bKUmSpG71ctHGfODhlmkb6+mN\n+Y2ze2Qk6k6yAAAKwElEQVTmNmBT03xJkiTtBG1ftDGF9cDeLdPm19Mb8x/pvo2IPevy62nPcA9t\n0+5tuOVVXRoZGVm8evOgW6F+GhkZWUz7x2F1b7jlVerGMNv3lnatl8B3B7A1IpZk5qp62jLg1vrn\nlcBS4Ib6fQBbgGyz/ut7aJsE7kM9Gx0d5eyLvzzoZqiPRkdHrx10G3YzHofUq6F+VNJp4BtqrDgz\nH4yITwBvAlZExP7A6cCFddkJ4KyI+CjwAHAecE1mbmpzXccCaztsnwTVN6LrcR/q2djY2DPgMANC\nQcbGxk4cHx+/bdDt2A0M43FIvRvuV0UzBr66K/ZBqtuxPB54YUT8LfAB4Ezgyoi4E9hKFejeD5CZ\nV0TEwcCNVCHxm1S3amnXWvp0GlO7rbW4D/VkYmJi36NOumjQzVAfTUxM3D0+Pu7/i51nLR6HNAfM\nGPgycyvwhGmKvHKaZc+jOrMnSZKkAfHRapIkSYUz8EmSJBXOwCdJklQ4A58kSVLherkPnyRpF7J1\ny8MAS4eGerqt1+2Tk5Mb+tMiSTuLgU+SdhMb77+H5cefc/WChYu6Wv6B+9Zxy+cuOQKY6vnqkuYw\nA58k7UYWLFzEfgcdMuhmSNrJHMMnSZJUOAOfJElS4Qx8kiRJhTPwSZIkFc7AJ0mSVDgDnyRJUuEM\nfJIkSYUz8EmSJBXOwCdJklQ4A58kSVLhDHySJEmFM/BJkiQVzsAnSZJUOAOfJElS4Qx8kiRJhTPw\nSZIkFc7AJ0mSVDgDnyRJUuEMfJIkSYUz8EmSJBXOwCdJklQ4A58kSVLhDHySJEmF22vQDZA0e4aG\nhvYBlvZQRS/LSpLmCAOfVLaly48/56YFCxd1tfAP77qpz82RJA2CgU8q3IKFi9jvoEO6Wnb9fev6\n3BpJ0iA4hk+SJKlwBj5JkqTCGfgkSZIKZ+CTJEkqnIFPkiSpcF6lK0lqy9YtDwMsHRoa6rWq2ycn\nJzf03iJJ7TLwSZLasvH+e1h+/DlXd3tfR4AH7lvHLZ+75Ajg5v61TNJMDHySpLb1cl9HSYPjGD5J\nkqTCeYZPmqP68Bxc+rC8JKkABj5p7urpObjgs3AlSRUDnzSH9TpeymfhSpLAMXySJEnFM/BJkiQV\nzsAnSZJUOAOfJElS4bxoQ5K00/Tp8Ww+mk3qkIFPkrTT9Pp4Nh/NJnXHwCdJ2ql8PJu08zmGT5Ik\nqXCe4ZNmSR8ejeZj0SRJfWHgk2ZPT49G87FokqR+MfBJs6iXsUo+Fk2S1C8GPmkKfeiOpQ/LS5LU\nF7Ma+CLi+cAY8DPAZuDtmfnB2Vyn1Cc9dceCXbKSpLlj1gJfROwNXAv8cWZ+LCIOAW6MiG9l5n/O\n1nqlfun11hF2yUqS5orZPMP3UmAyMz8GkJmrI+IzwO8BfzGL65XYsGEDZ5555jMmJib27bIKu2Ol\nQvVpyIZP+9AuZTYD31JgVcu0O4DnzuI6d2t9OojBgA9kvW7HyMjI4pe97GXc8sMDrj3qpIu6qsPu\nWGlu6tOj2Zb28rSPn/7PXXz7C+8+aWho6PYdlRkZGVk8OjrK2NjYdF88uz7WzoXj/Vxog9o3m4Fv\nPrCxZdpD9fQiDQ0NLab37VszOTm5qctlex53NkceW9TTdqzeDF+77LMc9LQjvEJWKkyvj2aD6gtd\nr1fQz9SG1Zvh7Iu/DBw25RfPdkLjDHoKrdCX433Pnzl9+D08oX59qOtGVIoPnbMZ+B4A5rVMmw+s\nb3P54b62Zif4hSXPuWIrjzu42+U3b9qw19KnHvC3K1as+H43y7/gBS84+OFuV759PS9asWLF4j5U\n1e36+7IdD/QQ2h786Q+Z7HH9vdZhG2yDbZh6+X32O6jHVvR+fOi1DQ+tv48lv/iqq+c98cldLf/j\n/86e1t/Qy/G+H8fqfvwenjD/ALpdHqovEUcum38icFvXlcyeYare0Z7NZuBbCfxpy7RlwK1tLNvT\nufpBufuOm48ZdBuAiwfdgD4pZTskqWQeq2dXX8IezO6zdL8EbImIEYCIeDbwq8CHZnGdkiRJajE0\nOdnrCfodq0PeZcCTqPrX35KZ187aCiVJkvQYsxr4JEmSNHiz2aUrSZKkOcDAJ0mSVDgDnyRJUuEM\nfJIkSYUz8EmSJBVuNm+8vEMR8WfAKVSB827g9Zm5ZgdlnwVcDeyRmYd1W4/K0+7fPyLmAZcDRwKT\nwFeB0zLzoYj4K+Ac4AdNi/xrZv7hLDdfAxARzwfGgJ8BNgNvz8wPTlHuZOCNwOOAe4GzMvPGTupQ\nmXrdhyJiGFgDtD4q48jMvG822665oYN9aB5wIXA68LzMvLnTOprt9DN8EfGbwJlUO/cS4Hrgmh2U\nPQb4MPCVXupReTr8+58P7A8E1YO+DwD+up43CfxDZi5r+mfYK1BE7A1cC1xc7zMvBy6tv1Q2lzsc\neBfw8rrcxcA/RsRe7dahMvVjH2qUaTnmLDPs7R46PIZ8HbirxzoeMYgu3ZOBD2Tmj+r37waeExFP\nn6LsfwO/zNQPdu6kHpWnk7//a4FLM3NrZm6l+lb0mnreELvoo/zUsZcCk5n5MYDMXA18Bvi9lnKv\nAf6pnk9dfgh4cQd1qEy97kMv2nlN1RzVyTFkRWZe2GMdjxhE4Auang2XmRuAdcAzWwtm5h2Z+WCv\n9ahIbf39I2Ih1ZNemp9HuAr4uYjYv37/7Ij4l4jIiPhkRCyZ3aZrQJZS/e2b3cFjjxnb7Vu1VXW5\naLMOlakf+9AkQER8ICK+ExHfjIjXoN1Fu/sQzV243dbRbFbG8EXE71KdRWn10/p1Y8v0jcD8Dlcz\nv0/1aI7q0340f4qyjZ/3Ab5F9c37wnr6O4BPR8Qz67OBKsdUx4yHmHqf2dG+NdRmHSpTP/ah9cBV\nVL0O346II4EvRMR3M/OGWWiz5pZ296G+1zErgS8zPwJ8ZKp5EXELMK9lcuM/QSfW96kezVF92o8a\n7+e1lANYn5mfAj7VVO//Bs6m+oZ+W3ct1xz1AO3vM/vsoNxQm3WoTD3vQ5l5L3BqY2JmfjUirgNe\nARj4ytfuPtT3OgbRpbuS6nQkABGxAHgK8J0B1aNdU1t//8z8MdVY0KVNk5cB38vM+yNiSUQc0DRv\nD6oP9c2z1XANzErg0JZpy4BbpygXjTcRMUS1/9zaQR0qU6/70Lcj4oApho3sCTzc57ZqburHMaSr\nOgYR+CaA34+Ip9Tv3wj8W2Y+5kqUnVSPdk0TtP/3nwDOjYjH1Vc3/SlVlwrA24B3R8Se9fs/A/4T\nuHO2Gq6B+RKwJSJGACLi2cCvAh9qKfch4Nebrng7leob9b8CX26zDpWpH/vQC4F/i4jFdR3PAo4D\nPjnrrddc0O4+RD2/cVFh88WFHdXRMDQ5OdlLw7sSEWcDp1EFzjuAP8jMH9Tz/gv4rcz8r4i4iuqq\nkz3rspuprkzZZ6Z6VL4O9qPHA39PdYXcJPAF4OzM3BIRP1PPex6wpa7nj/ziUKb6wHgZ1YU8DwFv\nycxrI+JtwIOZ+da63O8Cfwk8nuoejWdk5m3T1bHTN0YD0ad96A3AGVTHo4eo7qH2sZ2+MRqIdvah\niHgx8Nl6kcdT5x/g1My8upvj0EACnyRJknYeH60mSZJUOAOfJElS4Qx8kiRJhTPwSZIkFc7AJ0mS\nVDgDnyRJUuEMfJIkSYUz8EmSJBXOwCdJklS4/w+wfM0mYtRmAwAAAABJRU5ErkJggg==\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde43f8fad0>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "trait_snpassoc_pca_county = pd.concat([loc_hierf.countyid, trait_snpassoc_pca], axis=1)\ntrait_snpassoc_pca_county = trait_snpassoc_pca_county.drop(trait_snpassoc_pca_county[np.isnan(trait_snpassoc_pca_county[trait_name])].index)\ntrait_snpassoc_pca_county[0:5]\nsnpassoc_af = trait_snpassoc_pca_county.ix[:,2:-14].apply(get_allele_freqs)",
"execution_count": 610,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "pop_allele_freqs = {}\nfor pop,data in trait_snpassoc_pca_county.groupby(\"countyid\"):\n print \"getting allele freqs for pop % d\" % pop\n pop_allele_freqs[pop] = data.ix[:,2:-14].apply(get_allele_freqs)",
"execution_count": 611,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "getting allele freqs for pop 1\ngetting allele freqs for pop 2\ngetting allele freqs for pop 3\ngetting allele freqs for pop 5\ngetting allele freqs for pop 6\ngetting allele freqs for pop 7\ngetting allele freqs for pop 8\ngetting allele freqs for pop 9\ngetting allele freqs for pop 11\ngetting allele freqs for pop 12\ngetting allele freqs for pop 13\ngetting allele freqs for pop 14\ngetting allele freqs for pop 16\ngetting allele freqs for pop 17\ngetting allele freqs for pop 18\ngetting allele freqs for pop 19\ngetting allele freqs for pop 20\ngetting allele freqs for pop 21\ngetting allele freqs for pop 23\ngetting allele freqs for pop 24\ngetting allele freqs for pop 25\ngetting allele freqs for pop 26\ngetting allele freqs for pop 27\ngetting allele freqs for pop 28\ngetting allele freqs for pop 29\ngetting allele freqs for pop 30\ngetting allele freqs for pop 31\ngetting allele freqs for pop 32\ngetting allele freqs for pop 33\ngetting allele freqs for pop 34\n"
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "def write_gwas_data_file(df, pheno, outdir):\n out = \"%s_gwas_data_file.txt\" % pheno\n out = os.path.join(outdir, out)\n df = df.sort_index()\n df[['A1', 'A2', 'EFF', 'FRQ']].to_csv(out,\n header=True, \n index=True,\n sep=\"\\t\")\n print out\n return out\n\ndef write_freqs_file(df, pheno, pop_freqs, outdir):\n out = \"%s_freqs_file.txt\" % pheno\n out = os.path.join(outdir, out)\n print out\n with open(out, \"w\") as o:\n o.write(\"SNP\\tCLST\\tA1\\tA2\\tFRQ\\n\")\n for pop, data in pop_freqs.items():\n m = data.T.merge(df, how=\"inner\", left_index=True, right_index=True)\n m['population'] = pop\n m.index.name = 'SNP'\n m = m.sort_index()\n o.write(m[['population','A1','A2','p']].to_csv(header=False, \n index=True,\n sep=\"\\t\"))\ndef write_match_pop_file(df, pheno, pop_freqs, pop, outdir):\n out = \"%s_match_pop_file.txt\" % pheno\n out = os.path.join(outdir, out)\n print out\n with open(out, \"w\") as o:\n o.write(\"SNP\\tCLST\\tA1\\tA2\\tFRQ\\n\")\n for key, data in pop_freqs.items():\n if key == pop:\n m = data.T.merge(df, how=\"inner\", left_index=True, right_index=True)\n m['population'] = pop\n m.index.name = 'SNP'\n m = m.sort_index()\n o.write(m[['population','A1','A2','p']].to_csv(header=False, \n index=True,\n sep=\"\\t\"))\n break\n \ndef write_full_dataset_file(df, pheno, pop_freqs, outdir):\n out = \"%s_full_dataset_file.txt\" % pheno\n out = os.path.join(outdir, out)\n print out\n with open(out, \"w\") as o:\n o.write(\"SNP\\tCLST\\tA1\\tA2\\tFRQ\\n\")\n for pop, data in pop_freqs.items():\n m = data.T.merge(df, how=\"inner\", left_index=True, right_index=True)\n m['population'] = pop\n m.index.name = 'SNP'\n m = m.sort_index()\n o.write(m[['population','A1','A2','p']].to_csv(header=False, \n index=True,\n sep=\"\\t\")) \ndef write_env_var_data_file(pheno, pop_freqs, outdir):\n out = \"%s_env_var_data_file.txt\" % pheno\n out = os.path.join(outdir, out)\n print out\n with open(out, \"w\") as o:\n o.write(\"CLST\\tENV\\tREG\\n\")\n pop_id = 0\n for pop in pop_freqs:\n pop_id += 1\n o.write(\"%s\\t%f\\t%d\\n\" % (pop, np.random.randn(), pop_id))",
"execution_count": 616,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "pwd",
"execution_count": 617,
"outputs": [
{
"execution_count": 617,
"output_type": "execute_result",
"data": {
"text/plain": "u'/gdc_home4/cfried/ipython'"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "squat_outdir = \"squat_cfried\" #change for your username\nif not os.path.exists(squat_outdir):\n os.mkdir(squat_outdir)\n\nfor p in alpha_vals:\n full = alpha_vals[p].T\n full.index = [x.replace(\".\", \"-\") for x in full.index]\n full.index = [x[1:] if x.startswith(\"X\") else x for x in full.index]\n full.index.name = \"SNP\"\n full.AA = full.AA.apply(lambda x: x[0])\n full.aa = full.aa.apply(lambda x: x[0])\n full = full.rename(columns={'alpha':'EFF',\n 'AA':'A1',\n 'aa':'A2',\n 'p': 'FRQ'})\n candidates = full[full['p-value']<0.001]\n write_gwas_data_file(candidates, p, squat_outdir)\n write_freqs_file(candidates, p, pop_allele_freqs, squat_outdir)\n write_match_pop_file(full, p, pop_allele_freqs, 2, squat_outdir)\n write_full_dataset_file(full, p, pop_allele_freqs, squat_outdir)\n write_env_var_data_file(p, pop_allele_freqs, squat_outdir)",
"execution_count": 618,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "squat_cfried/sucrose_gwas_data_file.txt\nsquat_cfried/sucrose_freqs_file.txt\nsquat_cfried/sucrose_match_pop_file.txt\nsquat_cfried/sucrose_full_dataset_file.txt\nsquat_cfried/sucrose_env_var_data_file.txt\n"
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "pwd",
"execution_count": 619,
"outputs": [
{
"execution_count": 619,
"output_type": "execute_result",
"data": {
"text/plain": "u'/gdc_home4/cfried/ipython'"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "squat_scripts_dir = \"/gdc_home4/cfried/src/PolygenicAdaptationCode/Scripts\"\n!rm {squat_outdir}/Scripts && ln -s {squat_scripts_dir} {squat_outdir}/Scripts\ndef get_squat_vars(pheno):\n d = {\"gwas.data.file\":\"'%s_gwas_data_file.txt'\" % pheno,\n \"freqs.file\":\"'%s_freqs_file.txt'\" % pheno,\n \"env.var.data.files\":\"list('%s_env_var_data_file.txt')\" % pheno,\n \"match.pop.file\":\"'%s_match_pop_file.txt'\" % pheno,\n \"full.dataset.file\":\"'%s_full_dataset_file.txt'\" % pheno,\n \"path\":\"'%s'\" % pheno,\n \"match.categories\":\"c('MAF')\",\n \"match.bins\":\"list(seq(0,0.5,0.02), c(2), seq(0,1000,100))\",\n \"cov.SNPs.per.cycle\":5000,\n \"cov.cycles\":1,\n \"null.phenos.per.cycle\":1000,\n \"null.cycles\":1,\n \"load.cov.mat\":\"F\",\n \"sim.null\":\"T\",\n \"check.allele.orientation\":\"F\"}\n return ',\\n'.join(\"%s=%s\" % (key,val) for (key,val) in d.items())\n\ndef create_squat_run_file(pheno):\n squat_file = os.path.join(squat_outdir, \"squat_%s.r\" % pheno)\n with open(squat_file, \"w\") as o:\n o.write('system(\"rm -rf %s\")\\n'% pheno)\n o.write(\"source('%s')\\n\" % os.path.join(squat_scripts_dir, \"CreateTraitFile.R\"))\n o.write(\"source('%s')\\n\" % os.path.join(squat_scripts_dir, \"functions.R\"))\n o.write(\"PolygenicAdaptationFunction(%s)\\n\" % get_squat_vars(pheno))\n return squat_file\n\nfor pheno in alpha_vals:\n squat_file = create_squat_run_file(pheno)\n print squat_file\n !cat $squat_file\n print \"\"",
"execution_count": 620,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "squat_cfried/squat_sucrose.r\nsystem(\"rm -rf sucrose\")\nsource('/gdc_home4/cfried/src/PolygenicAdaptationCode/Scripts/CreateTraitFile.R')\nsource('/gdc_home4/cfried/src/PolygenicAdaptationCode/Scripts/functions.R')\nPolygenicAdaptationFunction(sim.null=T,\ncov.SNPs.per.cycle=5000,\nnull.cycles=1,\nmatch.bins=list(seq(0,0.5,0.02), c(2), seq(0,1000,100)),\nload.cov.mat=F,\npath='sucrose',\ncov.cycles=1,\nmatch.pop.file='sucrose_match_pop_file.txt',\nfreqs.file='sucrose_freqs_file.txt',\nenv.var.data.files=list('sucrose_env_var_data_file.txt'),\ngwas.data.file='sucrose_gwas_data_file.txt',\nfull.dataset.file='sucrose_full_dataset_file.txt',\nmatch.categories=c('MAF'),\ncheck.allele.orientation=F,\nnull.phenos.per.cycle=1000)\n\n"
}
]
},
{
"metadata": {
"scrolled": true,
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "def run_squat(p):\n print \"running %s\" % p\n output = \"%s/%s\" % (squat_outdir, p)\n if os.path.exists(output):\n !rm -rf {output}\n cmds = [\"setwd('%s')\" % squat_outdir,\n 'source(\"squat_%s.r\")' % (p),\n \"setwd('../')\"]\n for cmd in cmds:\n print cmd\n r(cmd)\n \nrun_squat(trait_name)",
"execution_count": 621,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "running sucrose\nsetwd('squat_cfried')\nsource(\"squat_sucrose.r\")\nsetwd('../')\n"
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "rfiles = !find {squat_outdir} | grep Robj | grep Output | grep {trait_name}\nbc = {}\nfor f in rfiles:\n d = f.split(\"/\")\n if not d[1] in bc:\n bc[d[1]] = []\n bc[d[1]].append(f)\nbc",
"execution_count": 622,
"outputs": [
{
"execution_count": 622,
"output_type": "execute_result",
"data": {
"text/plain": "{'sucrose': ['squat_cfried/sucrose/Output/genetic.values.Robj',\n 'squat_cfried/sucrose/Output/theStats.Robj',\n 'squat_cfried/sucrose/Output/asymptotic.pVals.Robj',\n 'squat_cfried/sucrose/Output/pVals.Robj',\n 'squat_cfried/sucrose/Output/nullStats.Robj']}"
},
"metadata": {}
}
]
},
{
"metadata": {
"scrolled": false,
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "for pheno in bc:\n print pheno\n for obj in bc[pheno]:\n r('load(\"%s\")' % obj)\n print r(\"the.stats\")\n print(\"------------------\")\n print r(\"p.vals\")",
"execution_count": 623,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "sucrose\n$Qx\n[1] 31.34068\n\n$Fst.comp\n[1] 36.00321\n\n$LD.component\n[1] -4.66253\n\n$betas\n$betas[[1]]\n[1] -0.0004502027\n\n\n$pearson.rs\n$pearson.rs[[1]]\n[1] -0.04663192\n\n\n$spearman.rhos\n$spearman.rhos[[1]]\n [,1]\n[1,] -0.07635468\n\n\n$reg.Z\n Env File 1\nRegion 1 -0.38473504\nRegion 2 0.13799305\nRegion 3 -1.56939196\nRegion 4 -0.87265487\nRegion 5 0.18913812\nRegion 6 1.48832317\nRegion 7 -1.39472707\nRegion 8 2.32689339\nRegion 9 0.31990463\nRegion 10 -0.65852595\nRegion 11 -0.54544812\nRegion 12 -0.47055792\nRegion 13 1.05163363\nRegion 14 0.67712369\nRegion 15 0.31234583\nRegion 16 0.16537951\nRegion 17 0.84293436\nRegion 18 -0.87072851\nRegion 19 2.14058635\nRegion 20 0.11556705\nRegion 21 -0.36336549\nRegion 22 0.26142682\nRegion 23 0.06634565\nRegion 24 -2.15547018\nRegion 25 -0.84694448\nRegion 26 -1.30809803\nRegion 27 1.20997437\nRegion 28 0.04058527\nRegion 29 1.91141560\nRegion 30 -0.23137908\n\n$ind.Z\n 1 2 3 5 6 7 \n-0.38473504 0.13799305 -1.56939196 -0.87265487 0.18913812 1.48832317 \n 8 9 11 12 13 14 \n-1.39472707 2.32689339 0.31990463 -0.65852595 -0.54544812 -0.47055792 \n 16 17 18 19 20 21 \n 1.05163363 0.67712369 0.31234583 0.16537951 0.84293436 -0.87072851 \n 23 24 25 26 27 28 \n 2.14058635 0.11556705 -0.36336549 0.26142682 0.06634565 -2.15547018 \n 29 30 31 32 33 34 \n-0.84694448 -1.30809803 1.20997437 0.04058527 1.91141560 -0.23137908 \n\n\n------------------\n$Qx\n[1] 0.275\n\n$Fst.comp\n[1] 0.083\n\n$LD.comp\n[1] 0.797\n\n$betas\n[1] 0.756\n\n$pearson.rs\n[1] 0.798\n\n$spearman.rhos\n[1] 0.75\n\n$reg.Z\n Env File 1\nRegion 1 0.734\nRegion 2 0.946\nRegion 3 0.104\nRegion 4 0.414\nRegion 5 0.850\nRegion 6 0.148\nRegion 7 0.174\nRegion 8 0.022\nRegion 9 0.884\nRegion 10 0.456\nRegion 11 0.640\nRegion 12 0.556\nRegion 13 0.304\nRegion 14 0.510\nRegion 15 0.992\nRegion 16 0.912\nRegion 17 0.410\nRegion 18 0.372\nRegion 19 0.000\nRegion 20 0.994\nRegion 21 0.584\nRegion 22 0.874\nRegion 23 0.960\nRegion 24 0.032\nRegion 25 0.446\nRegion 26 0.176\nRegion 27 0.184\nRegion 28 0.840\nRegion 29 0.026\nRegion 30 0.994\n\n$ind.Z\n 1 2 3 5 6 7 8 9 11 12 13 14 16 \n0.734 0.946 0.104 0.414 0.850 0.148 0.174 0.022 0.884 0.456 0.640 0.556 0.304 \n 17 18 19 20 21 23 24 25 26 27 28 29 30 \n0.510 0.992 0.912 0.410 0.372 0.000 0.994 0.584 0.874 0.960 0.032 0.446 0.176 \n 31 32 33 34 \n0.184 0.840 0.026 0.994 \n\n\n"
}
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "#Bayenv\n\n##Setup Bayenv input files"
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "bayenv_df['county_state'] = bayenv_df.apply(lambda row: \"%s_%s\" % (row.county, row.state), axis=1)\nbayenv_df = bayenv_df.drop(drop.index)\nbayenv_df['countyid'] = bayenv_df.apply(lambda row: county_id[row.county_state], axis=1)",
"execution_count": 638,
"outputs": []
},
{
"metadata": {
"scrolled": true,
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "bayenv_df[:5]",
"execution_count": 640,
"outputs": [
{
"execution_count": 640,
"output_type": "execute_result",
"data": {
"text/plain": " county state lat long countyid 0-10037-01-257 \\\n8 COLUMBUS NC 34.33010 -78.70453 11 NA \n10 ONSLOW NC 34.75963 -77.40977 26 11 \n11 ONSLOW NC 34.75963 -77.40977 26 11 \n12 GEORGETOWN SC 33.36318 -79.30539 14 NA \n13 BEAUFORT NC 35.55349 -77.05205 2 11 \n\n 0-10040-02-394 0-10044-01-392 0-10048-01-60 0-10051-02-166 0-10054-01-402 \\\n8 22 11 11 11 11 \n10 22 12 11 11 12 \n11 12 NA 12 11 12 \n12 12 NA NA 11 12 \n13 NA 12 12 11 22 \n\n 0-10067-03-111 0-10079-02-168 0-10112-01-169 0-10113-01-119 ... \\\n8 11 11 11 12 ... \n10 11 11 11 11 ... \n11 11 11 11 12 ... \n12 11 11 12 12 ... \n13 11 11 11 12 ... \n\n UMN-CL306Contig1-04-261 UMN-CL307Contig1-04-143 UMN-CL319Contig1-03-131 \\\n8 NA 12 11 \n10 11 11 11 \n11 11 11 12 \n12 11 12 NA \n13 12 11 11 \n\n UMN-CL326Contig1-05-421 UMN-CL339Contig1-05-39 UMN-CL34Contig1-03-89 \\\n8 11 11 11 \n10 12 11 12 \n11 NA 11 11 \n12 12 11 NA \n13 11 11 11 \n\n UMN-CL353Contig1-04-64 UMN-CL362Contig1-07-133 UMN-CL363Contig1-01-233 \\\n8 11 NA 11 \n10 11 12 11 \n11 11 11 11 \n12 11 12 11 \n13 11 12 11 \n\n UMN-CL379Contig1-12-117 UMN-CL424Contig1-03-94 UMN-CL54Contig1-07-88 \\\n8 11 12 11 \n10 11 11 12 \n11 11 11 12 \n12 11 11 NA \n13 11 22 11 \n\n UMN-CL91Contig1-02-246 UMN-CL97Contig county_state \n8 12 22 COLUMBUS_NC \n10 11 11 ONSLOW_NC \n11 11 12 ONSLOW_NC \n12 11 NA GEORGETOWN_SC \n13 12 11 BEAUFORT_NC \n\n[5 rows x 3088 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>county</th>\n <th>state</th>\n <th>lat</th>\n <th>long</th>\n <th>countyid</th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>0-10067-03-111</th>\n <th>0-10079-02-168</th>\n <th>0-10112-01-169</th>\n <th>0-10113-01-119</th>\n <th>...</th>\n <th>UMN-CL306Contig1-04-261</th>\n <th>UMN-CL307Contig1-04-143</th>\n <th>UMN-CL319Contig1-03-131</th>\n <th>UMN-CL326Contig1-05-421</th>\n <th>UMN-CL339Contig1-05-39</th>\n <th>UMN-CL34Contig1-03-89</th>\n <th>UMN-CL353Contig1-04-64</th>\n <th>UMN-CL362Contig1-07-133</th>\n <th>UMN-CL363Contig1-01-233</th>\n <th>UMN-CL379Contig1-12-117</th>\n <th>UMN-CL424Contig1-03-94</th>\n <th>UMN-CL54Contig1-07-88</th>\n <th>UMN-CL91Contig1-02-246</th>\n <th>UMN-CL97Contig</th>\n <th>county_state</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>8 </th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> NA</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> NA</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> COLUMBUS_NC</td>\n </tr>\n <tr>\n <th>10</th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n </tr>\n <tr>\n <th>11</th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> 11</td>\n <td> 12</td>\n <td> NA</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> ONSLOW_NC</td>\n </tr>\n <tr>\n <th>12</th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> 14</td>\n <td> NA</td>\n <td> 12</td>\n <td> NA</td>\n <td> NA</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> NA</td>\n <td> 12</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> NA</td>\n <td> GEORGETOWN_SC</td>\n </tr>\n <tr>\n <th>13</th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> 2</td>\n <td> 11</td>\n <td> NA</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> BEAUFORT_NC</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 3088 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "bayenv_dir = \"bayenv\"\nsnp_names = [x for x in bayenv_df.columns if \"-\" in x]\npopids = sorted(trait_snpassoc.countyid.unique())\n\nif not os.path.exists(bayenv_dir):\n os.mkdir(bayenv_dir)",
"execution_count": 641,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "def get_bayenv_snp(snp_name, popids):\n P = []\n Q = []\n for popid in popids:\n P.append(pop_allele_freqs[popid].ix[\"P\",name])\n Q.append(pop_allele_freqs[popid].ix[\"Q\",name])\n return P, Q\n\ndef write_bayenv_snp(fh_snp, fh_names, name, P, Q):\n if sum(Q) > 0: #exclude monomorphic loci\n if fh_names:\n fh_names.write(\"%s\\n\" % name)\n P = [str(x) for x in P]\n Q = [str(x) for x in Q]\n fh_snp.write(\"%s\\t\\n\" % \"\\t\".join(Q))\n fh_snp.write(\"%s\\t\\n\" % \"\\t\".join(P))\n\n",
"execution_count": 642,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "with open(\"bayenv.txt\", \"w\") as o:\n with open(\"bayenv_names.txt\", \"w\") as n:\n for name in snp_names:\n P,Q = get_bayenv_snp(name, popids)\n write_bayenv_snp(o, n, name, P, Q)",
"execution_count": 651,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "!cp bayenv.txt {bayenv_dir}",
"execution_count": 652,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "!head bayenv.txt",
"execution_count": 653,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "4\t23\t3\t5\t5\t4\t6\t3\t3\t14\t4\t4\t4\t5\t2\t5\t3\t7\t7\t7\t7\t3\t3\t4\t3\t1\t3\t37\t3\t5\t\r\n14\t45\t11\t17\t11\t6\t20\t9\t7\t28\t12\t14\t8\t15\t10\t17\t9\t19\t9\t7\t15\t3\t5\t14\t7\t13\t7\t89\t11\t9\t\r\n7\t29\t6\t9\t7\t4\t12\t6\t4\t21\t3\t5\t3\t8\t1\t11\t4\t12\t5\t6\t8\t2\t2\t9\t4\t6\t2\t61\t5\t7\t\r\n11\t33\t8\t9\t9\t6\t14\t6\t8\t23\t13\t15\t9\t12\t11\t11\t8\t14\t11\t8\t14\t4\t6\t9\t6\t8\t8\t65\t9\t7\t\r\n8\t28\t5\t10\t6\t4\t9\t5\t4\t17\t6\t9\t4\t4\t3\t11\t6\t10\t8\t1\t9\t1\t3\t8\t1\t5\t1\t59\t7\t3\t\r\n10\t28\t9\t12\t10\t4\t15\t7\t8\t23\t10\t9\t4\t12\t7\t11\t6\t16\t8\t13\t11\t5\t5\t10\t7\t9\t9\t63\t7\t9\t\r\n5\t23\t4\t7\t6\t3\t8\t3\t1\t21\t4\t5\t1\t4\t5\t6\t5\t9\t4\t5\t5\t3\t1\t4\t1\t2\t1\t32\t2\t6\t\r\n13\t45\t10\t13\t10\t7\t18\t9\t11\t21\t12\t13\t11\t16\t5\t16\t7\t17\t12\t9\t17\t3\t7\t14\t9\t12\t9\t94\t12\t8\t\r\n0\t2\t1\t3\t2\t1\t1\t0\t2\t3\t2\t1\t2\t3\t0\t1\t0\t1\t5\t0\t2\t0\t1\t2\t3\t1\t1\t5\t0\t0\t\r\n18\t64\t13\t17\t14\t9\t25\t12\t10\t41\t14\t19\t10\t17\t12\t21\t12\t25\t11\t14\t20\t6\t7\t16\t7\t13\t9\t121\t14\t14\t\r\n"
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "!head bayenv_names.txt",
"execution_count": 647,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "0-10037-01-257\r\n0-10040-02-394\r\n0-10044-01-392\r\n0-10048-01-60\r\n0-10051-02-166\r\n0-10054-01-402\r\n0-10067-03-111\r\n0-10079-02-168\r\n0-10112-01-169\r\n0-10113-01-119\r\n"
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "len(popids)",
"execution_count": 658,
"outputs": [
{
"execution_count": 658,
"output_type": "execute_result",
"data": {
"text/plain": "30"
},
"metadata": {}
}
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "##Run Bayenv to create variance-covariance matrix\n\n```bash\n cd bayenv && /gdc_home4/cfried/src/bayenv2/bayenv2 -i bayenv.txt -p 30 -k 100000 -r 63479 > matrix.out\n```\n\n* -p number of populations (`len(popids)`)\n* -k mcmc generations\n* -r random seed"
},
{
"metadata": {},
"cell_type": "markdown",
"source": "##Run Bayenv mcmc"
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "data_ai['county_state'] = data_ai.apply(lambda row: \"%s_%s\" % (row.County, row.State), axis=1)",
"execution_count": 677,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "bayenv_df_ai = bayenv_df.merge(data_ai, on='county_state')",
"execution_count": 678,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "bayenv_df_ai[0:10]",
"execution_count": 679,
"outputs": [
{
"execution_count": 679,
"output_type": "execute_result",
"data": {
"text/plain": " county state lat long countyid 0-10037-01-257 0-10040-02-394 \\\n0 COLUMBUS NC 34.33010 -78.70453 11 NA 22 \n1 COLUMBUS NC 34.33010 -78.70453 11 12 11 \n2 COLUMBUS NC 34.33010 -78.70453 11 12 11 \n3 COLUMBUS NC 34.33010 -78.70453 11 11 12 \n4 COLUMBUS NC 34.33010 -78.70453 11 12 12 \n5 COLUMBUS NC 34.33010 -78.70453 11 11 11 \n6 ONSLOW NC 34.75963 -77.40977 26 11 22 \n7 ONSLOW NC 34.75963 -77.40977 26 11 12 \n8 ONSLOW NC 34.75963 -77.40977 26 11 11 \n9 ONSLOW NC 34.75963 -77.40977 26 11 22 \n\n 0-10044-01-392 0-10048-01-60 0-10051-02-166 0-10054-01-402 0-10067-03-111 \\\n0 11 11 11 11 11 \n1 11 12 11 12 11 \n2 22 11 12 12 11 \n3 12 11 12 11 11 \n4 12 11 11 11 11 \n5 11 11 11 22 11 \n6 12 11 11 12 11 \n7 NA 12 11 12 11 \n8 11 11 11 22 12 \n9 11 11 11 12 11 \n\n 0-10079-02-168 0-10112-01-169 0-10113-01-119 ... \\\n0 11 11 12 ... \n1 11 11 11 ... \n2 11 11 12 ... \n3 12 11 12 ... \n4 11 11 11 ... \n5 11 11 12 ... \n6 11 11 11 ... \n7 11 11 12 ... \n8 11 12 11 ... \n9 11 11 12 ... \n\n UMN-CL353Contig1-04-64 UMN-CL362Contig1-07-133 UMN-CL363Contig1-01-233 \\\n0 11 NA 11 \n1 11 12 11 \n2 11 11 12 \n3 11 11 11 \n4 11 11 11 \n5 11 11 11 \n6 11 12 11 \n7 11 11 11 \n8 11 12 11 \n9 11 12 11 \n\n UMN-CL379Contig1-12-117 UMN-CL424Contig1-03-94 UMN-CL54Contig1-07-88 \\\n0 11 12 11 \n1 11 12 12 \n2 11 11 11 \n3 11 11 11 \n4 11 12 22 \n5 11 12 12 \n6 11 11 12 \n7 11 11 12 \n8 11 11 11 \n9 11 12 11 \n\n UMN-CL91Contig1-02-246 UMN-CL97Contig county_state County State \\\n0 12 22 COLUMBUS_NC COLUMBUS NC \n1 11 12 COLUMBUS_NC COLUMBUS NC \n2 11 11 COLUMBUS_NC COLUMBUS NC \n3 11 12 COLUMBUS_NC COLUMBUS NC \n4 11 12 COLUMBUS_NC COLUMBUS NC \n5 11 12 COLUMBUS_NC COLUMBUS NC \n6 11 11 ONSLOW_NC ONSLOW NC \n7 11 12 ONSLOW_NC ONSLOW NC \n8 11 11 ONSLOW_NC ONSLOW NC \n9 11 11 ONSLOW_NC ONSLOW NC \n\n AI_Q1 AI_Q2 AI_Q3 AI_Q4 \n0 6.737349 1.031164 1.017138 2.443279 \n1 6.737349 1.031164 1.017138 2.443279 \n2 6.737349 1.031164 1.017138 2.443279 \n3 6.737349 1.031164 1.017138 2.443279 \n4 6.737349 1.031164 1.017138 2.443279 \n5 6.737349 1.031164 1.017138 2.443279 \n6 6.094570 1.059794 1.153282 2.515655 \n7 6.094570 1.059794 1.153282 2.515655 \n8 6.094570 1.059794 1.153282 2.515655 \n9 6.094570 1.059794 1.153282 2.515655 \n\n[10 rows x 3094 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>county</th>\n <th>state</th>\n <th>lat</th>\n <th>long</th>\n <th>countyid</th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>0-10067-03-111</th>\n <th>0-10079-02-168</th>\n <th>0-10112-01-169</th>\n <th>0-10113-01-119</th>\n <th>...</th>\n <th>UMN-CL353Contig1-04-64</th>\n <th>UMN-CL362Contig1-07-133</th>\n <th>UMN-CL363Contig1-01-233</th>\n <th>UMN-CL379Contig1-12-117</th>\n <th>UMN-CL424Contig1-03-94</th>\n <th>UMN-CL54Contig1-07-88</th>\n <th>UMN-CL91Contig1-02-246</th>\n <th>UMN-CL97Contig</th>\n <th>county_state</th>\n <th>County</th>\n <th>State</th>\n <th>AI_Q1</th>\n <th>AI_Q2</th>\n <th>AI_Q3</th>\n <th>AI_Q4</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> NA</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> NA</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> COLUMBUS_NC</td>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 6.737349</td>\n <td> 1.031164</td>\n <td> 1.017138</td>\n <td> 2.443279</td>\n </tr>\n <tr>\n <th>1</th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> COLUMBUS_NC</td>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 6.737349</td>\n <td> 1.031164</td>\n <td> 1.017138</td>\n <td> 2.443279</td>\n </tr>\n <tr>\n <th>2</th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> COLUMBUS_NC</td>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 6.737349</td>\n <td> 1.031164</td>\n <td> 1.017138</td>\n <td> 2.443279</td>\n </tr>\n <tr>\n <th>3</th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> COLUMBUS_NC</td>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 6.737349</td>\n <td> 1.031164</td>\n <td> 1.017138</td>\n <td> 2.443279</td>\n </tr>\n <tr>\n <th>4</th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 22</td>\n <td> 11</td>\n <td> 12</td>\n <td> COLUMBUS_NC</td>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 6.737349</td>\n <td> 1.031164</td>\n <td> 1.017138</td>\n <td> 2.443279</td>\n </tr>\n <tr>\n <th>5</th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> COLUMBUS_NC</td>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 6.737349</td>\n <td> 1.031164</td>\n <td> 1.017138</td>\n <td> 2.443279</td>\n </tr>\n <tr>\n <th>6</th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>7</th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> 11</td>\n <td> 12</td>\n <td> NA</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>8</th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 22</td>\n <td> 12</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>9</th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> 11</td>\n <td> 22</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td>...</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 12</td>\n <td> 11</td>\n <td> 11</td>\n <td> 11</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n </tbody>\n</table>\n<p>10 rows × 3094 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "bayenv_df_ai.shape",
"execution_count": 673,
"outputs": [
{
"execution_count": 673,
"output_type": "execute_result",
"data": {
"text/plain": "(388, 3094)"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "def get_bayenv_env(data):\n E = pd.Series()\n for col in data.columns[:-1]:\n E[col] = data[col].values[0]\n return E\n\nai_cols = [x for x in bayenv_df_ai if 'AI_' in x]\nai_cols.append('countyid')\nbayenv_df_ai_groups = bayenv_df_ai.ix[:,ai_cols].groupby(\"countyid\")\nenv_ai = []\nfor popid in popids:\n env_ai.append(get_bayenv_env(bayenv_df_ai_groups.get_group(popid))) \nenv_ai_df = pd.DataFrame(env_ai).T\nenv_ai_df",
"execution_count": 680,
"outputs": [
{
"execution_count": 680,
"output_type": "execute_result",
"data": {
"text/plain": " 0 1 2 3 4 5 6 \\\nAI_Q1 5.763893 6.241730 6.181043 5.910243 6.139059 5.708096 9.495094 \nAI_Q2 0.889168 1.048126 1.048869 0.999777 0.909382 0.862454 1.175420 \nAI_Q3 0.818064 0.994917 1.042944 1.187256 0.752952 0.748589 0.797054 \nAI_Q4 2.488546 2.433338 2.354930 2.514009 2.650772 2.603981 3.467764 \n\n 7 8 9 10 11 12 13 \\\nAI_Q1 8.009286 6.737349 5.976190 4.915650 6.051620 5.674788 5.531475 \nAI_Q2 1.172265 1.031164 1.052110 0.865492 1.024486 0.920890 0.955357 \nAI_Q3 0.829200 1.017138 1.094621 0.753428 1.129748 0.798284 0.863209 \nAI_Q4 3.155869 2.443279 2.492955 2.493957 2.631683 2.431289 2.364550 \n\n 14 15 16 17 18 19 20 \\\nAI_Q1 8.609783 5.380024 7.684877 5.305689 5.839441 4.561122 6.346381 \nAI_Q2 1.172684 1.061354 1.049691 1.175078 0.899897 1.154652 0.919565 \nAI_Q3 0.779626 1.345191 0.718964 1.292199 0.711595 0.620383 0.777438 \nAI_Q4 3.493251 1.839989 3.077337 2.028077 2.700255 2.997242 2.494796 \n\n 21 22 23 24 25 26 27 \\\nAI_Q1 6.094570 8.852098 5.456879 5.494060 9.031872 5.273974 9.496544 \nAI_Q2 1.059794 1.147775 0.868314 0.888762 1.127415 0.890081 1.186712 \nAI_Q3 1.153282 0.767467 0.781805 0.709162 0.757448 0.777549 0.759514 \nAI_Q4 2.515655 3.414992 2.583106 2.838240 3.381259 2.400160 3.395808 \n\n 28 29 \nAI_Q1 4.820668 9.683140 \nAI_Q2 0.876340 1.140042 \nAI_Q3 0.738630 0.806234 \nAI_Q4 2.248372 3.265560 ",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>0</th>\n <th>1</th>\n <th>2</th>\n <th>3</th>\n <th>4</th>\n <th>5</th>\n <th>6</th>\n <th>7</th>\n <th>8</th>\n <th>9</th>\n <th>10</th>\n <th>11</th>\n <th>12</th>\n <th>13</th>\n <th>14</th>\n <th>15</th>\n <th>16</th>\n <th>17</th>\n <th>18</th>\n <th>19</th>\n <th>20</th>\n <th>21</th>\n <th>22</th>\n <th>23</th>\n <th>24</th>\n <th>25</th>\n <th>26</th>\n <th>27</th>\n <th>28</th>\n <th>29</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>AI_Q1</th>\n <td> 5.763893</td>\n <td> 6.241730</td>\n <td> 6.181043</td>\n <td> 5.910243</td>\n <td> 6.139059</td>\n <td> 5.708096</td>\n <td> 9.495094</td>\n <td> 8.009286</td>\n <td> 6.737349</td>\n <td> 5.976190</td>\n <td> 4.915650</td>\n <td> 6.051620</td>\n <td> 5.674788</td>\n <td> 5.531475</td>\n <td> 8.609783</td>\n <td> 5.380024</td>\n <td> 7.684877</td>\n <td> 5.305689</td>\n <td> 5.839441</td>\n <td> 4.561122</td>\n <td> 6.346381</td>\n <td> 6.094570</td>\n <td> 8.852098</td>\n <td> 5.456879</td>\n <td> 5.494060</td>\n <td> 9.031872</td>\n <td> 5.273974</td>\n <td> 9.496544</td>\n <td> 4.820668</td>\n <td> 9.683140</td>\n </tr>\n <tr>\n <th>AI_Q2</th>\n <td> 0.889168</td>\n <td> 1.048126</td>\n <td> 1.048869</td>\n <td> 0.999777</td>\n <td> 0.909382</td>\n <td> 0.862454</td>\n <td> 1.175420</td>\n <td> 1.172265</td>\n <td> 1.031164</td>\n <td> 1.052110</td>\n <td> 0.865492</td>\n <td> 1.024486</td>\n <td> 0.920890</td>\n <td> 0.955357</td>\n <td> 1.172684</td>\n <td> 1.061354</td>\n <td> 1.049691</td>\n <td> 1.175078</td>\n <td> 0.899897</td>\n <td> 1.154652</td>\n <td> 0.919565</td>\n <td> 1.059794</td>\n <td> 1.147775</td>\n <td> 0.868314</td>\n <td> 0.888762</td>\n <td> 1.127415</td>\n <td> 0.890081</td>\n <td> 1.186712</td>\n <td> 0.876340</td>\n <td> 1.140042</td>\n </tr>\n <tr>\n <th>AI_Q3</th>\n <td> 0.818064</td>\n <td> 0.994917</td>\n <td> 1.042944</td>\n <td> 1.187256</td>\n <td> 0.752952</td>\n <td> 0.748589</td>\n <td> 0.797054</td>\n <td> 0.829200</td>\n <td> 1.017138</td>\n <td> 1.094621</td>\n <td> 0.753428</td>\n <td> 1.129748</td>\n <td> 0.798284</td>\n <td> 0.863209</td>\n <td> 0.779626</td>\n <td> 1.345191</td>\n <td> 0.718964</td>\n <td> 1.292199</td>\n <td> 0.711595</td>\n <td> 0.620383</td>\n <td> 0.777438</td>\n <td> 1.153282</td>\n <td> 0.767467</td>\n <td> 0.781805</td>\n <td> 0.709162</td>\n <td> 0.757448</td>\n <td> 0.777549</td>\n <td> 0.759514</td>\n <td> 0.738630</td>\n <td> 0.806234</td>\n </tr>\n <tr>\n <th>AI_Q4</th>\n <td> 2.488546</td>\n <td> 2.433338</td>\n <td> 2.354930</td>\n <td> 2.514009</td>\n <td> 2.650772</td>\n <td> 2.603981</td>\n <td> 3.467764</td>\n <td> 3.155869</td>\n <td> 2.443279</td>\n <td> 2.492955</td>\n <td> 2.493957</td>\n <td> 2.631683</td>\n <td> 2.431289</td>\n <td> 2.364550</td>\n <td> 3.493251</td>\n <td> 1.839989</td>\n <td> 3.077337</td>\n <td> 2.028077</td>\n <td> 2.700255</td>\n <td> 2.997242</td>\n <td> 2.494796</td>\n <td> 2.515655</td>\n <td> 3.414992</td>\n <td> 2.583106</td>\n <td> 2.838240</td>\n <td> 3.381259</td>\n <td> 2.400160</td>\n <td> 3.395808</td>\n <td> 2.248372</td>\n <td> 3.265560</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "env_ai_df = env_ai_df.apply(preprocessing.scale, axis=1)",
"execution_count": 681,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "env_ai_df",
"execution_count": 682,
"outputs": [
{
"execution_count": 682,
"output_type": "execute_result",
"data": {
"text/plain": " 0 1 2 3 4 5 6 \\\nAI_Q1 -0.516714 -0.199489 -0.239778 -0.419555 -0.267650 -0.553756 1.960343 \nAI_Q2 -1.147633 0.256334 0.262891 -0.170703 -0.969091 -1.383574 1.380630 \nAI_Q3 -0.317329 0.627480 0.884058 1.655020 -0.665182 -0.688492 -0.429575 \nAI_Q4 -0.502653 -0.629859 -0.810520 -0.443984 -0.128866 -0.236677 1.753577 \n\n 7 8 9 10 11 12 13 \\\nAI_Q1 0.973950 0.129541 -0.375775 -1.079842 -0.325698 -0.575869 -0.671011 \nAI_Q2 1.352763 0.106519 0.291520 -1.356744 0.047537 -0.867452 -0.563033 \nAI_Q3 -0.257836 0.746192 1.160134 -0.662638 1.347794 -0.423004 -0.076149 \nAI_Q4 1.034936 -0.606954 -0.492495 -0.490186 -0.172850 -0.634580 -0.788354 \n\n 14 15 16 17 18 19 20 \\\nAI_Q1 1.372606 -0.771555 0.758582 -0.820905 -0.466559 -1.315205 -0.130014 \nAI_Q2 1.356466 0.373167 0.270158 1.377604 -1.052871 1.197202 -0.879159 \nAI_Q3 -0.522680 2.498766 -0.846757 2.215661 -0.886127 -1.373409 -0.534369 \nAI_Q4 1.812301 -1.997003 0.853989 -1.563627 -0.014851 0.669440 -0.488254 \n\n 21 22 23 24 25 26 27 \\\nAI_Q1 -0.297185 1.533472 -0.720533 -0.695850 1.652820 -0.841960 1.961305 \nAI_Q2 0.359386 1.136461 -1.331815 -1.151216 0.956636 -1.139565 1.480357 \nAI_Q3 1.473522 -0.587637 -0.511039 -0.899122 -0.641163 -0.533775 -0.630125 \nAI_Q4 -0.440191 1.631984 -0.284777 0.303081 1.554259 -0.706304 1.587781 \n\n 28 29 \nAI_Q1 -1.142899 2.085182 \nAI_Q2 -1.260931 1.068156 \nAI_Q3 -0.741692 -0.380529 \nAI_Q4 -1.056040 1.287676 ",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>0</th>\n <th>1</th>\n <th>2</th>\n <th>3</th>\n <th>4</th>\n <th>5</th>\n <th>6</th>\n <th>7</th>\n <th>8</th>\n <th>9</th>\n <th>10</th>\n <th>11</th>\n <th>12</th>\n <th>13</th>\n <th>14</th>\n <th>15</th>\n <th>16</th>\n <th>17</th>\n <th>18</th>\n <th>19</th>\n <th>20</th>\n <th>21</th>\n <th>22</th>\n <th>23</th>\n <th>24</th>\n <th>25</th>\n <th>26</th>\n <th>27</th>\n <th>28</th>\n <th>29</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>AI_Q1</th>\n <td>-0.516714</td>\n <td>-0.199489</td>\n <td>-0.239778</td>\n <td>-0.419555</td>\n <td>-0.267650</td>\n <td>-0.553756</td>\n <td> 1.960343</td>\n <td> 0.973950</td>\n <td> 0.129541</td>\n <td>-0.375775</td>\n <td>-1.079842</td>\n <td>-0.325698</td>\n <td>-0.575869</td>\n <td>-0.671011</td>\n <td> 1.372606</td>\n <td>-0.771555</td>\n <td> 0.758582</td>\n <td>-0.820905</td>\n <td>-0.466559</td>\n <td>-1.315205</td>\n <td>-0.130014</td>\n <td>-0.297185</td>\n <td> 1.533472</td>\n <td>-0.720533</td>\n <td>-0.695850</td>\n <td> 1.652820</td>\n <td>-0.841960</td>\n <td> 1.961305</td>\n <td>-1.142899</td>\n <td> 2.085182</td>\n </tr>\n <tr>\n <th>AI_Q2</th>\n <td>-1.147633</td>\n <td> 0.256334</td>\n <td> 0.262891</td>\n <td>-0.170703</td>\n <td>-0.969091</td>\n <td>-1.383574</td>\n <td> 1.380630</td>\n <td> 1.352763</td>\n <td> 0.106519</td>\n <td> 0.291520</td>\n <td>-1.356744</td>\n <td> 0.047537</td>\n <td>-0.867452</td>\n <td>-0.563033</td>\n <td> 1.356466</td>\n <td> 0.373167</td>\n <td> 0.270158</td>\n <td> 1.377604</td>\n <td>-1.052871</td>\n <td> 1.197202</td>\n <td>-0.879159</td>\n <td> 0.359386</td>\n <td> 1.136461</td>\n <td>-1.331815</td>\n <td>-1.151216</td>\n <td> 0.956636</td>\n <td>-1.139565</td>\n <td> 1.480357</td>\n <td>-1.260931</td>\n <td> 1.068156</td>\n </tr>\n <tr>\n <th>AI_Q3</th>\n <td>-0.317329</td>\n <td> 0.627480</td>\n <td> 0.884058</td>\n <td> 1.655020</td>\n <td>-0.665182</td>\n <td>-0.688492</td>\n <td>-0.429575</td>\n <td>-0.257836</td>\n <td> 0.746192</td>\n <td> 1.160134</td>\n <td>-0.662638</td>\n <td> 1.347794</td>\n <td>-0.423004</td>\n <td>-0.076149</td>\n <td>-0.522680</td>\n <td> 2.498766</td>\n <td>-0.846757</td>\n <td> 2.215661</td>\n <td>-0.886127</td>\n <td>-1.373409</td>\n <td>-0.534369</td>\n <td> 1.473522</td>\n <td>-0.587637</td>\n <td>-0.511039</td>\n <td>-0.899122</td>\n <td>-0.641163</td>\n <td>-0.533775</td>\n <td>-0.630125</td>\n <td>-0.741692</td>\n <td>-0.380529</td>\n </tr>\n <tr>\n <th>AI_Q4</th>\n <td>-0.502653</td>\n <td>-0.629859</td>\n <td>-0.810520</td>\n <td>-0.443984</td>\n <td>-0.128866</td>\n <td>-0.236677</td>\n <td> 1.753577</td>\n <td> 1.034936</td>\n <td>-0.606954</td>\n <td>-0.492495</td>\n <td>-0.490186</td>\n <td>-0.172850</td>\n <td>-0.634580</td>\n <td>-0.788354</td>\n <td> 1.812301</td>\n <td>-1.997003</td>\n <td> 0.853989</td>\n <td>-1.563627</td>\n <td>-0.014851</td>\n <td> 0.669440</td>\n <td>-0.488254</td>\n <td>-0.440191</td>\n <td> 1.631984</td>\n <td>-0.284777</td>\n <td> 0.303081</td>\n <td> 1.554259</td>\n <td>-0.706304</td>\n <td> 1.587781</td>\n <td>-1.056040</td>\n <td> 1.287676</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "env_ai_df.apply(np.mean, axis=1)",
"execution_count": 683,
"outputs": [
{
"execution_count": 683,
"output_type": "execute_result",
"data": {
"text/plain": "AI_Q1 -4.440892e-16\nAI_Q2 2.094621e-15\nAI_Q3 5.310567e-16\nAI_Q4 -3.774758e-16\ndtype: float64"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "with open(\"%s/envmatrix.txt\" % bayenv_dir, \"w\") as o:\n for row in env_ai_df.iterrows():\n vals = \"\\t\".join([str(x) for x in row[1].values])\n o.write(\"%s\\t\\n\" % vals)",
"execution_count": 684,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "!tail -n 13 bayenv/matrix.out > bayenv/matrix_last.out",
"execution_count": 685,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "def setup_bayenv_cmd(snpfile, name):\n work_dir = \"/gdc_home4/cfried/ipython/bayenv\"\n bayenv = \"/gdc_home4/cfried/src/bayenv2/bayenv2\"\n bayenv_matrix = \"matrix_last.out\"\n bayenv_seed = -47372\n bayenv_pops = 12\n bayenv_runs = 100000\n bayenv_environs = 4\n bayenv_envmatrix = \"envmatrix.txt\"\n bayenv_cmd = \"cd %s/%s && %s -i %s -m %s -e %s -p %d -k %d -n %d -t -c -f -o %s\" % (work_dir, \n name,\n bayenv,\n snpfile,\n bayenv_matrix,\n bayenv_envmatrix,\n bayenv_pops,\n bayenv_runs,\n bayenv_environs,\n snpfile)\n shutil.copy(bayenv_matrix, os.path.join(work_dir, name))\n shutil.copy(bayenv_envmatrix, os.path.join(work_dir, name))\n return bayenv_cmd",
"execution_count": 686,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "cmds = []\nif not os.path.exists(bayenv_dir):\n os.mkdir(bayenv_dir)\n\nfor name in snp_names:\n P,Q = get_bayenv_snp(name,popids)\n if sum(Q) > 0:\n file_dir = os.path.join(bayenv_dir, name)\n \n if os.path.exists(file_dir):\n shutil.rmtree(file_dir)\n \n if not os.path.exists(file_dir):\n os.mkdir(file_dir)\n o = open(os.path.join(file_dir, \"%s.txt\" % name), \"w\")\n write_bayenv_snp(o, None, name, P, Q)\n o.close()\n cmd = setup_bayenv_cmd(os.path.basename(o.name), name)\n cmds.append(cmd)",
"execution_count": 1127,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "print cmds[0]",
"execution_count": 691,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "cd /gdc_home4/cfried/ipython/bayenv/0-10037-01-257 && /gdc_home4/cfried/src/bayenv2/bayenv2 -i 0-10037-01-257.txt -m matrix_last.out -e envmatrix.txt -p 12 -k 100000 -n 4 -t -c -f -o 0-10037-01-257.txt\n"
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "rc = Client(profile=\"gdcsrv2\")",
"execution_count": 1004,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "dview = rc[:]\nlview = rc.load_balanced_view()\nlen(lview)",
"execution_count": 1057,
"outputs": [
{
"execution_count": 1057,
"output_type": "execute_result",
"data": {
"text/plain": "40"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "len(dview)",
"execution_count": 1059,
"outputs": [
{
"execution_count": 1059,
"output_type": "execute_result",
"data": {
"text/plain": "40"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "def get_hostname():\n import socket\n return socket.gethostname()\ndview['get_hostname'] = get_hostname",
"execution_count": 1044,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "dview.scatter(\"cpu\", range(len(rc)), flatten=True)\ndef run_cmd(cmd):\n import stopwatch\n from subprocess import Popen, PIPE\n import psutil\n import multiprocessing\n t = stopwatch.Timer()\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n proc = psutil.Process(p.pid)\n proc.set_cpu_affinity([cpu])\n print \"affinity is %s\" % proc.get_cpu_affinity() \n stdout, stderr = p.communicate()\n t.stop()\n return cmd, stdout, stderr, str(t)\n",
"execution_count": 1118,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "dview['run_cmd'] = run_cmd",
"execution_count": 1119,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "%%px\nimport psutil\nimport os\nimport multiprocessing\np = psutil.Process(os.getpid())\np.set_cpu_affinity([cpu])\n#p.set_cpu_affinity(range(multiprocessing.cpu_count()))",
"execution_count": 1120,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "bayenv_jobs = lview.map_async(run_cmd, cmds)\n",
"execution_count": 1128,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "bayenv_jobs.progress",
"execution_count": 1135,
"outputs": [
{
"execution_count": 1135,
"output_type": "execute_result",
"data": {
"text/plain": "3082"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "bf_files = !find bayenv | grep bf\nbf_data = {}\nfor b in bf_files:\n d = open(b).readlines()\n d = d[-1].strip().split(\"\\t\")[1:]\n if len(d) == 12:\n bf_data[os.path.basename(b).replace(\".txt.bf\",\"\")] = d",
"execution_count": 1145,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "bf = pd.DataFrame(bf_data).T.astype(float)\nbf.shape",
"execution_count": 1146,
"outputs": [
{
"execution_count": 1146,
"output_type": "execute_result",
"data": {
"text/plain": "(3073, 12)"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "freq_files = !find bayenv | grep freqs\nfreq_data = {}\nfor f in freq_files:\n freq_data[os.path.basename(f).replace(\".txt.freqs\",\"\")] = open(f).readline().strip().split()",
"execution_count": 1147,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "freq_df = pd.DataFrame(freq_data).T\nfreq_df.shape",
"execution_count": 175,
"outputs": [
{
"execution_count": 175,
"output_type": "execute_result",
"data": {
"text/plain": "(3078, 12)"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "freq_df.to_csv(\"bayenv_freqs.txt\", header=True, index=True, sep=\"\\t\")\nbf.to_csv(\"bayenv_bf.txt\", header=True, index=True, sep=\"\\t\")",
"execution_count": 1148,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "FileLink(\"bayenv_bf.txt\")",
"execution_count": 1149,
"outputs": [
{
"execution_count": 1149,
"output_type": "execute_result",
"data": {
"text/plain": "/gdc_home4/cfried/ipython/bayenv_bf.txt",
"text/html": "<a href='bayenv_bf.txt' target='_blank'>bayenv_bf.txt</a><br>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "FileLink(\"bayenv_freqs.txt\")",
"execution_count": 1150,
"outputs": [
{
"execution_count": 1150,
"output_type": "execute_result",
"data": {
"text/plain": "/gdc_home4/cfried/ipython/bayenv_freqs.txt",
"text/html": "<a href='bayenv_freqs.txt' target='_blank'>bayenv_freqs.txt</a><br>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "plt.scatter(bf.ix[:,1], bf.ix[:,2])\nplt.show()\n\nplt.scatter(bf.ix[:,1], bf.ix[:,0])\nplt.show()",
"execution_count": 1207,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAG4CAYAAADffDppAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4VeW1/z8bMNFCFGsdUKTYSo7WmcnQXi8KobZRBrWK\nE6IStUSGxAEcAFtwAocAKjjEWsVewd6rQa+0lDigtz8ik2Kl9kjvVUHCbb1OJAKJgf37Y+3N3mfI\neIAkJ9/P87xPcvZ5p713Q7+u9a61HNd1EUIIIYQQ6UuHlt6AEEIIIYTYu0jwCSGEEEKkORJ8Qggh\nhBBpjgSfEEIIIUSaI8EnhBBCCJHmSPAJIYQQQqQ5nVKdIBKJ9AMeAg4BvgXuiUajC5L0OxV4FDgU\n2AHcGo1GX0p1fSGEEEIIUT8pWfgikUgm8CLwYDQa7QUMBeZGIpET4/p1BpYA90ej0R8C1wETI5GI\nLIxCCCGEEHuZVAXXYMCNRqPPA0Sj0f8GXgEuies3DPhHNBr9d6/ff0Wj0cHRaHRXiusLIYQQQogG\nSNWlexywIe7ah0DvuGunAR9HIpES4AzgH8Dt0Wj0rRTXF0IIIYQQDZCqha8zsD3u2g7vepiDgUHA\nE9FoNAKUAC9FIpFDUlxfCCGEEEI0QKqCrxI4IO5aZ6Aq7tpXwMpoNPo2QDQafQbYBgxIcX0hhBBC\nCNEAqbp01wM3xV07HlgXd20DcFbcNReobeQ6btO3JoQQQgiRVjjNHZiq4HsdqI1EIldGo9HfRiKR\nU4AhwG1x/RYB90cikbOj0ejSSCQyHNgfWNGEtc4GPk5xv6J59ASWonfQUvREz7+l6YneQUvTE72D\nlqYnegctSc9UBjuum5rxzBN58wjy690RjUZfjEQidwPfRKPRu7x+ucBsTOh9DtwQjUb/3MhlXCCC\nBYSIfU82EEXvoKXQ82959A5aHr2DlkfvoGXJJoXnnnLi5Wg0ug74SZLrt8V9LgNOjO8nhBBCCCH2\nLkp8LIQQQgiR5kjwCSGEEEKkORJ8QgghhBBpjgSfEEIIIUSaI8EnhBBCCJHmSPAJIYQQQqQ5EnxC\nCCGEEGmOBJ8QQgghRJojwSeEEEIIkeZI8AkhhBBCpDkSfEIIIYQQaY4EnxBCCCFEmiPBJ4QQQgiR\n5kjwCSGEEEKkORJ8QgghhBBpjgSfEEIIIUSaI8EnhBBCCJHmSPAJIYQQQqQ5EnxCCCGEEGmOBJ8Q\nQgghRJojwSeEEEIIkeZI8AkhhBBCpDkSfEIIIYQQaY4EnxBCCCFEmiPBJ4QQQgiR5kjwCSGEEEKk\nORJ8QgghhBBpjgSfEEIIIUSaI8EnhBBCCJHmSPAJIYQQQqQ5EnxCCCGEEGmOBJ8QQgghRJojwSeE\nEEIIkeZI8AkhhBBCpDkSfEIIIYQQaY4EnxBCCCFEmiPBJ4QQQgiR5nRq6Q0IIYQQYt/hOE4W5Iy1\nT+XzXdetbNkdiX2BBJ8QQgjRytlTIs3myS+D4v52pegCx3FyJfrSHwk+IYQQohWzZ0Vazlibp4v3\nubg/vD8WmLWn9itaJzrDJ4QQQrRqwiKtC/a7b+0TonFI8AkhhBDthvL5ULQSqrBWtNKuiXRHLl0h\nhBCiVVM+H4ouCLl0my3SXNetdBwn13PjoqCN9oMEnxBCCNGK2dMizRurM3vtDAk+IYQQopUjkSZS\nRWf4hBBCCCHSHAk+IYQQQog0R4JPCCGEECLNkeATQgghhEhzJPiEEEIIIdIcCT4hhBBCiDRHgk8I\nIYQQIs2R4BNCCCGESHMk+IQQQggh0hwJPiGEEEKINEeCTwghhBAizZHgE0IIIYRIcyT4hBBCCCHS\nHAk+IYQQQog0R4JPCCGEECLNkeATQgghhEhzJPiEEEIIIdIcCT4hhBBCiDSnU0tvQAghhBAN4zhO\nFuSMtU/l813XrWzZHYm2hASfEEII0coxsZdfBsX97UrRBY7j5Er0icYil64QQgjR6skZa2KvC9aK\n+wfWPiEaRoJPCCGEECLNkeATQgghWj3l86FoJVRhrWilXROicegMnxBCCNHKcV230nGcXHhfQRui\nWUjwCSGEEG0AT+DNaul9iLZJyoIvEon0Ax4CDgG+Be6JRqML6umfA/wZuDoajT6d6vpCCCGEEKJ+\nUjrDF4lEMoEXgQej0WgvYCgwNxKJnFhH//2BEmAT4KaythBCCCGEaBypBm0MBtxoNPo8QDQa/W/g\nFeCSOvrfCSwGPgKcFNcWQgghhBCNIFXBdxywIe7ah8AJ8R0jkciPMYH4a++SLHxCCCGEEPuAVAVf\nZ2B73LUd3vXdRCKRA4DHgTHRaLQmxTWFEEIIIUQTSDVooxI4IO5aZyxJUJg7gdJoNLo2dK2pLt2e\nTewv9hw9436KfUvPuJ9i39Mz7qfY9/SM+yn2PT3jfop9S0/Mi9osUhV864Gb4q4dD6yLu3Y+0CES\niVzmfT4CODESiZwcjUZvbORaS5u/TbGH0DtoWfT8Wx69g5ZH76Dl0TtoOZod/5Cq4HsdqI1EIldG\no9HfRiKRU4AhwG3hTtFo9Jjw50gk8jrwVDQafaYJa50NfJzifkXz6In9gesdtAw90fNvaXqid9DS\n9ETvoKXpid5BS9IzlcEpCb5oNFobiUSGA/Mikcht2Pm9q6PR6N8jkcjdwDfRaPSuVNYI8TEpmDLF\nHuFj9A5ako/R829pPkbvoEk4jpMFOXuyOsTHtOJ3sBfutzXyMa34HYjkpJx4ORqNrgN+kuT6bUm6\n+9+dleq6QgghWjcmfvLLoLi/XSm6wHGc3DQVQe3ufkXbItUoXSGEEKIOcsaa+OmCteL+gfUrHWlv\n9yvaEqqlK4QQQuxD2onbV7QyZOETQgixlyifD0UrLVNXFfZ7+fz6RjiOk+U4AyZZc7L2zT73FA3f\nb+D2XTbTWn5Z27tP0RaRhU8IIcRewXXdSsdxcuH9Rlmz2voZuMbdb9jtC/b7+2OBWftyr6L9IcEn\nhBBir+EJnkaKmeRiyHGc+b16XZg/Zsww+vQ5onNubu7e2m7KNO1+hdh3yKUrhBCiFVOTCfllGzb8\n5uZbbhnBsGEv/rZtu0Cb7uYWYk8gC58QQohWQvl8KLog5NJdCR3csNVv+/aZJ8PaNusCbaqbW4g9\nhQSfEEKIFiWIWs0BSkbA+6Psm/L5LZ3WZG9E1MrtK1oCCT4hhBAtRrJADSjZHajhOE6M1e+AAya/\nt3373nOBxgm8BZBf2laDSIQIozN8QgghWpD6kxWbuCrJ7dXr6vvuvbeUl14678q9JbgSU6YMLVci\nZZEuyMInhBCiVeMJvBLgZuCbvbdSfJTw8B57by0h9i2y8AkhhGhBWnPUah4wblPr3JsQTUMWPiGE\nEC3Gvo5arT8IIz5KeNpKeHoEREcl7y9E20GCTwghRIuyr6JWG6rkUY/4VEStaPNI8AkhhGgnNFzW\nTAJPpCsSfEIIIcQeZm/k7xMiFRS0IYQQop2wbwJEEtO75Je17XJwIh2QhU8IIcRepzVYvPZdgEjD\nrmMh9jUSfEIIIfYqDQVL7Et0Rk+0V+TSFUIIkYDjOFmOM2CStVTdkfVX00g/6nYd79nnKkTjkYVP\nCCFEDHveIlebsed21/qpy3Xcmiydov0hC58QQog49pxFzkTO8cOhmMDiVbhmb1asaA1WNNd1K113\nxSxrvqBrb5ZO0ZqQhU8IIcReJGcszOsLLlAKVAPvLN5bVi1Z0YRIjix8Qggh4tgb6UuygMuBkUBG\ndcpbrJPWbEVrzXWDRbojC58QQogY9mz6kvj6tO1X5OzrusFChJHgE0IIkcCeSl+y70VOwwKzJXMC\nKi2MaCkk+IQQQuxV9pbISSbcGhKYOuMn2isSfEIIIdocJtzGvA6z+9iV68c7jtPfdd0t9QtMVcEQ\n7RMJPiGEEG2QvhNN7PnC7ZHu8MVKx3F+JGudEIkoSlcIIUSronF59DoNSLw2onvDEbmKlBXtE1n4\nhBBCtApM3PWdCEOvgQd6wJvAodc7jpPjum5c75pymJIHd3qf5wJXASX1rqFIWdFekeATQgixV2lM\nVGxsMEUlcBdwLzCyB4x7u6ysbHhubm5oxNrZ0GsEjOsNZ2Bib2qjKnjUd8avJSN4hdibSPAJIUQb\np7kiZV+Im8ZHxYaDKUoxseefz3v46AsuGPHgp5+eTlaWeXg9S92Z0LsQojnw6ApYPSeVe1AEr0hn\nJPiEEKIN01yRsifETeCC7TTAXKxrZ9cv5KC5UbFbt15y5uDBD3H33f07+5Y+b60ZTZmnfhTBK9IX\nBW0IIUSbpmmlxPyACMhZWN+4hgIngrQor8+AZXkwYjqMei2xb21G4i5qMhPnDgdTDAYKa4LAirnA\nRaxaNYGCgscvaeIDapDgmTBwT88tRGtBFj4hhGgnxFr1FjWyHyS3/uWMjU2LUgQs6gsbdlvEbJ5R\nw6HY+x5g7Dtw2vAgf14wd1wwxQJYXwL5eTAeq8VbtWceBGF3dm0GjDwPhvSGHUDhNzC7s7c3RfCK\ntEGCTwgh2jRNqVUbtgZeRKwQC4/bU67NnLEwry+42Lm8aiD6T3jt7GRzh4MpTJDVlMNbJ8HIo6GK\nfv3mMmrUGYs9axzNPXeYGCByJzDS+3ZLZzjrVej0JwVtiHRCgk8IIdowjU0z4lm0Bppl7yLMYpYP\nDFkCLG+6uCmfD4UXBZa6YmDD6uRiMwu4HLPQlexM/L42Iyzi7Oeo12BgX7O6XfTpMcdk/Edp6byJ\nxx571zx44WRYQihly5bG7xsSA0RmEgjQW4AVveG18yT2RDohwSeEEK2MpkbPNlSrNtFFWwxcDNy4\nEWpXwOq4NRprNXxnMQz6P3CA2j8nBm0knScfikqDa4Vr4PjhZgkE679yKfTqG1jdvugOq9wFC15j\n+/YpJ8NTwAT8lC2O45ywZ8XZBQfDNgVriLRCgk8IIVoRieJs3DjH6fNE8gjYxhLvoi0CLv4KFvYA\nZkDR0PAZvWRWQ9vbbivcAsgvjRVyJQn7q8v6GHutJhOWT4918Q450PYY7Pfzz0ecar8vwcRekLIF\nok0UZ2Eh6geIzPaCS4oxy+eCxk8nRBtAgk8IIVoV8eLs4aNh0XQoP3fP5oQ7r2t9Z/R8q2GQeqXb\nNfBYD3PPXno9FPdo7hm/2LN6faaamzkTGI5ZC3d+AhwXHnPIIV3WFRQMP3PKlCu21NaO7Fbf/A1Z\nSJMI0Rfgn6/C8B4m9qYpWEOkHUrLIoQQrZ5MGkq3Uj/x9WPHbYK8BkcF1sbXZ8C/9TBXqosJo7rH\nhFKudLPxy2Zayy8Lp22x308bbq7bEcBsoGA1rLrKXL3+fse+AzBv3mJuuCF7tO0/eS3cYM/J1wz6\nxAjCv8PLJ0LJZDh/MpQo2bJIP1zXbQvNdV03uxXso722bL0DPf923vbZOwCyIP9tqHSt3eXCVu/3\nnEmpzZszyRrdYtfIfxvISuzXe6p973qt0oUFLlS4MHpj/PjEvY/eaH3D44N7sDXi5+87JXYfvafC\nmNX+nAccULDO9r/7XrJi7zPZnOE14/cY3Lta6/k7UKvz+Td7vFy6QgjRinB3uxvfDblRHVLNCefG\nBXbUcbYu/vzgJktb0iU0UzXm8nz6MojO8cbn2/gBk5K4o4ExTdhpp5rwfm3OIN/f9u0zT4a1o1x3\nRYz7OGS1G5i45zCqpiHaJxJ8QgjRyvDEzp2O48yBz/ZIjdw6zrXFiZxk5wcv3WjuXDAB+JcnYG1J\nXNBGqQnInCS7WbzRomkhUbSWz4eCCy39CsDyOtK6NOZ+w0K1sApmdDGjo5InCwESfEII0WpJLsrq\np44qGSPiBFoT6uZueQKG1NjvvniMt+T5VrJkaVheHgFDRllFi+pMyFnoOP1WwOonoe8Y+PIIO0+Y\nBaxwYu8jZ6xF8Rau8fP9HXDA5Pe2b48XcPFCdXaXuvMLNiVRtRDpgwSfEEKkFUldliWNc2MmE0Or\n5zTWsujWnYZlviVS7tXX0q1U5sHUW4ISZnOx8mmz+8D6sdY/LFoLVh9zzOVzrrvuFxP79Dnvytzc\nRxqzn+Xxbt/69tiY+xOiLSPBJ4QQ7Y5KgKscZ8BA7/zdFog/P9hpgJU2S0bdVjI3Jp1LzljHGQD0\nzjS37UiC6hazOwcCdIJ3bYT3OV60zuvbqdPVr0+efDnAN03ZTzKaYzkVoq0jwSeEEGlFQ9UtKoGp\nO2HZccBxUPih4zjZbkx5slOHeuPzoCgh/19DVrLkwR/VDey72t/rAsgpiS0BVz+y2gnRMBJ8QgiR\nRtTjVvWvXWViL3zebX0JcI59blwUa/1WsmTBHxdugs+PNpfuYKDwm8ClGw4GGfNybH1eS4Q8b961\nzwE3Q/KgFFnthKgfCT4hhEgzkomfUJqTgcRVsYilNqNx12KJFWE1mYk9/u9xKHVgSY5Xv/dJWD/K\nvvNFab8p4RQsnjhcCisvzM19ohtAWVlZ5yRBKbn1RCILIZDgE0KIdkZ5PhR+aJY9gHE1sG2N4zhZ\nJpB2OWZZK/L6F2PXEgkE1jdZcMWV8Eh3++b6TyF/LZT0ts+JwR/x1S+MTgOC3yuB54EO3w/3KCh4\n/BL4jWc9rARy+sP7Cx3HyW9+JLIQ6Y8EnxBCtCNc193iOE42vPcUHHI6nNsVzpgKy3/uOM4gyKk2\nN2qpNyIfWLL7AF4g8mozYNRwmNkXbgUeJrDMPdIdLgEGToOM6rC1zcaffDMMGgcXHAznAdO81DH9\nOsI44HZgISY6Rx4H49b/4AfD/mPdut+F7qQSeAgL+BiZB5eWp1LfV4h0R4JPCCFamH3tijTR1+fP\n8OOzYbR3taIv9C6E8tkwLWnEq9XGHf22nckDs/79J3BGklVGdIeS6nBqFLvPcHoWf45J/eHb0Lw3\nAL8mfAbwo48WFQ4e/BDjx5+xeMKEooFm2ZsQ6lN3fV8hBHRo6Q0IIUR7JohoXTbTWn5ZcnfnniYj\nx0RXF68VARk5JjZLcmHIZGslofNxQ8tNlIXHfIAlTp4GVHltrnctnpyxlp4lft2HsHldzLJ4OvBC\n3NhMVq2awEMPvTXc9leyJPb7PCz4w9+DEioLEUaCTwghWpRwRGsX7Hff2rc3qV2ReG3bGgucyFkI\n27pY8EXO2MACObyHuVKf9VolcCxQAozF3LGLgKuweru7LYNZVp2Dgcn3sv7LwEU7AsvXt6oGthAI\nyOG7e5soLb/YRJ0v8KathKdPjxeqKT8mIdIEuXSFEKJdsnoOFI4IUqCMfQd6D4OHTrHP9+dBLXA9\n5uJ992X4V+Au4F5vjkIXjnfgu0DBZvjiA/hgJzz6X36QRmxOvkpgchVUdAlcutd/Cq+dBde9ajV7\nd7txMyxC9/Dj4bEe4NCv31zuvvva56De3Hs6sydEEiT4hBCiRdn7tV3rylvnOM5ZsN5PpZIFy6cE\ngusm4BngVWxvA/8TbtwYK8pmO3Ab0As44Si48yjvHg42QQmJFsyZXWDYUliy00vP4gnDfk8AM2J3\n3uH7sPkZOLemV68fZr366pM3Z2Vl7a60sacFntK6iHRGgk8IIVqQVKtEWCBFTgns6gjbV0HnysSo\n2LCF7brrTVztTpMyy/oNeCVx9r8Bng4loxo2LQQmxfY5BfgLMJn4CFmriZszMLFqRqedwHJYHbrX\n1XOgaGggfCcDLxwHWVOgcM28eRdfk5WVdXNjn0sdz6pOQZdYHURpXUSa4bpuW2iu67rZrWAf7bVl\n6x3o+bfz1ireAZAFOZOskQV0gzGVUOlaK3BhrQtDP4G+U4L+lS5sdeEuN+ib/zaQFczdeypMD31/\niwsDXTjfhcGbgGPhkk1wR6jPXd68lS6UuOB6rdK1+fLfDvpOd+FDN3a/8XsgC/r/Eca7UBEzX69e\nF85K5R3Y3OH9xK/tP6fwPeRMagX/22tNrVX8HbTjltJzV9CGEEK0AZJF80K/pyyBsu8unQI8irld\nX59hffyqF4sJ0pgkCw5ZOxs+fMescY8D/3Qt5crTQKQ7XPAGPNAdjsLcuIuA8QRWuz8TGyHbwY11\n5RYBl0dj9xu7B9d1K6HDTrMa1h+o7AeCWGtMVHNLBccI0TqQ4BNCiFZIoqBJJlg6fj921BLgAWL7\ndHBNgFXHLwHUZPprEPhjgRXAHCd07g448iib/wAs0fI/AAcTeFO8a5duhLOmWtqUTjWJ63U5rOE7\nrymHj7D8fL6ALKjwaunufjZ7PpVN+fzYqF+ldRHphc7wCSFEKyPZeTKLko1n2++hsCgok7YES2kS\nplONCbC1hfDqtTDYK3+2bC2cNjyI0h03Du7xcuz9qY6dLd4ID/QwAXg9Zul7/yvY8ji8/Xnc2cH5\nNqefTHku8OjBlivPvzZuE5QviF1j7WzoNQI69rb5jwPcf8T2CYtfaFxVjfqDY9wUz1IK0dqR4BNC\niFZHMkHT7w0o+ArmdbVrRSvhvfvgvfmw3gva2LoOxl0SCCoTNZ6YmW0Cb6Qn+N48DGZ0D1ezsKjc\nr4A7saCJmd53k4HP18LLV8OuN2BQVyuldjdAV1vzL0+E78DW7PMELJoOmZj71wHe+S1cOtpy+t1z\nNOxXGg6OsHH9XoTXewd7u+K0goKrL/nww9xmP9HGCDpXaV1EOtMKDiE2prmpHlZUS6npoK6ef3tv\nKb0D4oItGu4fH0DwoQtjqi2QocSFYTuAYxu7FruDIeKDEuIDLc7aFvTZ7AWBnP5POGkG0A1GbwzG\nJZsrWRCGHyhR4QWT9PtjfEBGfHBEsgCKcNAGDQRgqLXOvwO1PfL8mz1eFj4hhNiLmHt2zOuB67Tw\nIsdxznKTuAuDs3o1mVC4Jhjzyy9h8cFm8RoDjMyEIXOAc+LncOOsVMH6A/ok7u4tAhfw/cC5BwTf\nHYlZ+Ibc77rvzbJzfn5Ztcwkd5pJvGvV3W1VW1sIJ11jwST0sPN5hSQLzLD99s6Mdf0WrfTO8N0c\nO6/cr0I0Fgk+IYTYq/SdaMJtd7LiPrBuIuY33U3iub2C1RYA0akGdg0Czk42e5CHD6B8IuSc7/3u\niaCcsbami52jm+CNLMZcsqVYQMdRwMVYFY1jvD7LVycPXBjujferZRQDR2CRuzUxatDE2YDqQCzi\njVuEic2imBJswTPYAgz/EqpWwsqrcnOfyIqfF5jli2THGYCEnxB1oyhdIYTYq3Qa0Lhr8VG48/pC\npxrXXTELVl4FhVVBBOm4Gqt76xwLYz6EZXnWxvwNnqkjcjULO0fn17rNx6x4l2PC6wMsMXMn7/NI\nIMMJxoejWB3gg0/hjFlw0acmGC/xxpw2PDFitibT1vXr7wI8thSGLIkNRuldCDn94TlgIWbVfPVs\nyC8tKyvrHP/E9k60rhBpSivwSTemuan6rtVSajq3oeff3lu974B6zuhZAuI7QsmKJ7hw0ozEOepP\n/At0s/Nv53xpZ+AqXRj1ZeJ5uKKY8ba3MauD9Sd6iZSvXhubFLnChdFJzubF7CHJ+cC+UxoeE17/\ndhd+vhl+vim4j/y3aeCMYLLEy0qW3Lr+DtT2yfNv9nhZ+IQQIgUatjKtLYFoFYzDrFy3AP3OSbRE\nxeeBK1gNtRmO02eq4/SbAjmjwP0vWNjVLIClwMCu8EIjdvnOYhj0Klz4tUXclnaHGmDQUttTIdAN\nOKPeWVzXrXTdFbOs+a7TZPn2GBjcn+9S7oK5lTOB54+E57vDU9614v7mlq7vjKAQIhVSPsMXiUT6\nAQ8BhwDfAvdEo9EFSfpNAK711twGTIpGo2Wpri+EEC1LQznhckZBbhdzd/p95pwG7xba2TYIpU7x\nAhw6/gQOPwH+bYa5Nv2zcpduNJfoUwRn8cbtgi0dzGVbuBMmdwwlDn4Bhr5vKVDygEewXH2ZwKzT\n4Fzv3+DF2Lm8fwUKa2BGhvV7qdrmSE7yAIti4IU8mFbmOM4Iq6Xrs9i7F/85TMCE64i4mePPCMYG\nbQTUn1tPCBGQkuCLRCKZwIvADdFo9PlIJPJDYHUkEnknGo2+H+o3FPvPyn7RaLQiEolcCPx7JBI5\nLBqNJvuvQyGESGMqsajVh4+236+73nH6PQE8Cb3PDQTMNEzj+ALpgR7wy53wu45mGVsMnNEBzt0A\nGTthx0twQQ107g01a+HiN+CJo2zsfQTn88Cicnv1Cz4XA8s/hbO6w+1YgMfITBj3muM4J3iCNMvO\n2WXkwLY1MCbPrHeVwAVfwbFdobe33+n94du3LdeeL96SVfuoxhNq+VBUavfuABtWw1mLzYJYPj83\n94lu/oggmjkHKBkB74+ybxS0IUSdpOIPzs7OzsvOzt4Ud+3Z7Ozsu+KuHZ+dnf3j0OcDsrOzd2Vn\nZ/dq5Fpuqr5rtZSazm3o+bf3Vuc7oIGccPb9qFV2Ts7vc+4m+7nVhbtC10d9aTn33Dpy5ZW48Ih3\n3i48brSXo6/ChTGVsWfztobGNpSH72fb6zjH94qdRbx8bXAf4fm2urH3d5cLD8d9X+LC9XH9Rm+0\necP5AuvMV5jtuq67bNmy05SDr/X9Hajts+ff7PGpunSPAzbEXfsQ+0+83USj0Q/i+pwPfAr8T4rr\nCyFEi+LWkRMu1gq1YBj0zoclOVC7AmoyYNFUWA9MJ7DgzetqZ/0ewly0lZjLE8wlu3gjPNYjsMDt\nrpKREfSb3SU2/UkpFonbGHrtD6ckuX5yHjh50I/ANe2fs6sE7vDuw7c6Hg488yWMPtj6ZBFYEvMw\n1/TmZ4AayNht9nMbUemioODxS+A3TSyrJoRIVfB1BrbHXdvhXU9KJBI5E5gDjIxGozubsFbPpm5O\n7DF6xv0U+5aecT/Fvqdn3M8YXNeFQHF1KysrO3b//cc8s2PHgBMB9t//hFEvv3zxFbm5uYvKyso6\nDx36H8/s2DESC5iI5wzgeUwYTdkJz3UE6NRp4pYbbjg+/8EHpzxdW9u3W5KBdVCNnelbDnwCTPKu\nT8CEWZX3+XYg4q0bztc3BfgVloR5R2je4VjOvkzgBOLPFnbs+F81++1X+P6OHbO9Z3Dz+926bS7r\n1Gnpt+PHD1k8efLf5m3fPvNkgAMOmHxZWVnZlbm5ud+Ed15WVta5oODxS2prd+x38MEHHnbYYYex\ndevWs2xr3DuhAAAgAElEQVStLrv79ep19PeA7MY/E9FMesb9FPuWnphRrVmkKvgqgQPirnUm+Bck\nhkgkcgV2kOSiaDT6WhPXWtr07Yk9jN5By6Ln3/IsraysZN68xQAUFAwnKys22LayspKZM0vZseP7\n+FatHTsqTvx//++jtbm5sGbN/7Jjx32YYLmI2OCEuViOvAnAK8AzHX1hU1s7p9t3v1v6p08+GUS/\nfpOpqPgQP3fzd74zmW3bpni/38K2bfcC4DhFuO6pwG2YYHO9uX8C3AU8SiA6D8dy8ZVgOfoWAW8C\n92ARvHcCBVhCZD8x8wbgSW/eiYStjjt3PnT4tGmLDs/MLPWe1awTs7KyTgSYOfPZm7dvn7m77/bt\nM09es6Z0bW6oVG5lZSW33baSDRvmAI/x0Uc3ed8U9z3ggDvYvv3XQBb9+s3l1VefvJmEgA6xF9G/\nRS2H03CXOgZ6/2XaLCKRyBDgqWg02j107Xngr9Fo9Fdxfcdg/+qcE41G/9bEpVwsy/zHzd6sSIWe\n2B+43kHL0BM9/5amJ7D0r3/964i+fR+ZHrJMvffSS+fttkyVlZV1Hjbsxd9u397xZKti4Vuhqjjw\nwBFvfP112XU/+MGIgo8+enZi8N0W4PJdcGkHs675gqsQE1PBHMccc/mcTp0yamprd+y3c+e3GV99\n9e2PDjmky7qiosG/f+iht4YDnHfeMcsefXTNbTt21BxdU7PohybWnsUiYf2I2GDO4NqVmCv5BaDU\nhW6OicRuob6PY6Kw2Ls2Gnjam+9JYiORg/0CzJt37XP+c8rOvih/w4bf3Bzu26vX1fd9+OHzJf4D\nD/ok2/MiDjzwuTcOP/y7q8Lzir1OT/RvUUvSE/hTs0encgAwOzu7U3Z29sfZ2dlXep9Pyc7O/jI7\nO/vYuH4/ys7O/iw7O7tnM9dyUz2sqJZS00FdPf/23rJd13V79bpwVv1Jhv1EwMkCJPpOIWkAxxWb\n4C0XBrsw3oXN3pgK15Io+/3GrLaxdQcrEBNAkiyooq7AjWvcxATO58UFWEx3YWzc+ApvbKUfMFIV\n9L96bV37pYFAl9hnuaCOPSvBckv9Hbj6t6gln3+zx6fk0o1Go7WRSGQ4MC8SidyGHfC4OhqN/j0S\nidwNVEWj0bsxW38G8IdIJBKeoigajf4xlT0IIUTLUQkw0K/jagEakOiqLVwDq+dYEMe8vua0KAW+\nBv663ax6C7DghrlYCbQsLGXpLzbDl+/DLuCls5MFK4QCRAZaOpR4d7Gf5uTf/wBvXRnkzLsB+AzI\n9dYL0x2zNPpHE/OB8/+GBet5ZAHRrTB4C3y7CX50KCzyoj62HwoPdE+2X7eOQJfY9f0ce9P7WwqZ\n3S5d716Ub0+IJtEKFGtjmpuqslVLqem/6vT823sLpQQZtcosTA/HWbT88mC+5arChaGfBJY9siy9\nSYlncUuWymRryII13bUULeE1wmlWwqXTwtaycJ8K19bMmWR7y5lkaVBOex3O9+6hwlvvKjcodXbF\nJrjJTbREhu+v0oUx1cGY0XVY4lw3mTW0MY3daVp6T+3R45xHfvazIveYY4YWozQsLfp34OrfopZ8\n/s0en3KlDSGEaA0EVi5oagLepo3NcOys2iJgduc4C9YoKKkjRUt+WZBQuRgrTlRX1Yl1WFDF4rg1\nirx1R2JWw/L5iZU+wn2mrYTyi+16eP1LPrWzd89h1sUir/8U4M0y6LgTTu8OO7Hkz0cDf11vVUNK\nRsDbBfCda6HPYWat7ELysmyLN8LIHt6+mlQFI/adrJ39ySduNyxqZD6eaVUI0QRagWJtTHNTVbZq\nKTX9V52ef6tuNOJMWIpjk5zhe9yzYC0IWeaSW7CC82hu2Nr1QXKL2MTQebpk59eKvH4nzfCSFL9i\nlsAFXoux6mXFrr/V6zM+ZNmLn99PCu1bCz90Y5M5j1wTa3W83rVzhxXe3uMtnnUmUm7SO1m2bNlp\n+jto8aZ/i1r++Td7fEtvvrHNTfVG1VJq+iPX82/VrQ5B1Sj3YSPHxgm+eHfsdNdcvckFTvI1Tp4e\nK2omeiJyc2ju+EAI311b4VqVit2u1drAtTqmEjg2vA/7GV+d4+paeLARbtj+/4ztU5BkzHhv/4M3\nQe8ZTRV4jXknvXpdOEt/By3e9G9Ryz//Zo+XS1cIIRpBZWUltbU79oNxm+CMo2PdsUXAGa/B6LeD\ngIiiCxzHyXVdt9JcmYUXWd1ZMJfuKT+HkmFeHdiB8EJekAIlHxiyxKpy/PA8WORVL/KTKF+3Ef6t\nR7D+7I5BRY3ZXeCfr9r3tg9zw153feyYOR1hlDefH1wy9muYdVDsnX//UPOgulhC6GRZtd75Fp7f\nD7K6Q8HP4IPFkDPWcZwE93gqrnchRAq0AsXamOamqmzVUmr6rzo9/1bd2Msu3WXLlp3Wr59vHatw\nYdAXiVauZNfCKVt6T63LBVzXHhItXRWuuYL7/zFxrQX1WOlyJsGpM5Nb8za75iYe78KJr8VaDu/y\n1rw8zurop2LxLYX3e+tvduF2b94S3+oZrivczQJZSrx5kr+nZM9DLt1W0fRvUcs//2aPl4VPCNHm\ncRuV5qMxY2syoYMbb50qKHj8kg0bfoNZx7oAzx5slj7fmjduE5x/dP0rZVTHJyZuaP+W7sWnEguw\nWHYcVB4HhVVmzQP7fUYXm3PcJrgnbi81WXBSQWyqmNuxur2/xergAlzfC9b+FhZNsZJp47GULgcT\nWDS7AL8GxmDVOT6uhDldbfxYrMKZXze3oi/0LgRmmGUvbAGdi6VceXcifsmQep5Hbu4TTSgnJ4SI\nR4JPCJEWeOJsVmP6JnMrOo4zPzaSNeySjScL+MsTMKTaPtdkwj3TY2vQjtsE5QscZ4BXvLZ8gblX\nd88fH7XaBRjo/b4AqIzNRfdroB/muh2OCbwhS4DlNvf6UcE6+5XGrkMOzOtibtnngL9gaVPvwKpn\n+CL03u4wop9F1z7Ww8ReMZZ6r5IgJ99g4KfAW5vg2aNt3sXenPGu7iVecsKcsSb2wlHJi4Bu1ziO\nMyf+OSd5nxJ8QqSABJ8Qol2RmCLFhF1iepMgUfC8edc+d9ttc29etcoXc0UrYe1sX6TYnNPONWG2\nCBNMLw+G/JDwGjcOSobC+3fb5/L80PhjYcx6mJ1h3xV+7DgnzwLmwdt/gqJsOLxrYDm7AegAfLPW\ndd+b5c3hpWjpnQ9r/wRD/g9qymFtCQz8IHgCn2Fl38DO7FUeZPfsWxBfPdvb7yZ457fQ6VvY1gXe\nuQmmd4AlWMWN9XPgwC+A6VaSbQKwNckTr11R99v4MyYsPxtLI8W6EKKZtAKfdGOam6rvWi2lpnMb\nev5p0+qKym0gWjd769atXpRu8ghUdp+5C0fGhkublbgw+NsgmtZPW9J3CpzxTeLaY10YtsOiYuuK\nph1TZXP4Z+Me8c7Qhc8CHn8v3OJdH59knqGfBPMlv39L8xIf5XvZdui9DM780r7b6sI0NzZ6+eq1\n7E4NQ7fY9C5jXIgmOctYZxoX/R20fNM7aPnn3+zxsvAJIdokqUd7VmJuyGrMJbt2NhRcCAP72vfL\nY8p3ZWVlMW/etc8NGTJ1SLIIVHe3WzhnrLXajGAd3wI2slNQOq24P/yj3CJnb0uyv8+B32Xa75cA\n18R9n4klZf7L6xDJgnlH2vX7MRdrlrdG7imWOLmCmKpou/nfD2DI+7AzE0YOjv3Ovwcwy94EAgvo\no/vDolyzOt4PHAXcTFA2rhp498XgGeWMMje07xae4c1ZvhLK59dleW36exVCJKUVKNbGNDdVZauW\nUtN/1en5t6pGylG5o1bFWqLGrMYsUKvjrvlzZm/dutU94ICCdXWtGbunChd+vgnO+dKsbskiasPR\ntJvdIL+db/2qCI152K27DNuQOqx/4d8rPQvf7XHzjNlpiZUrXfjZxtjvJrpw6jKzQB5/LwzfVX9k\ncDLrYd8pwfNJakF9hYTk0DHfh/Mh6u+g5ZveQcs//2aP79AiKlMIIVIifN6uC/a7b+2rH9d1K2Hd\nH+BIzNrkYvnxckrspz/n7D7hOYuLn2f79pkn172mvycXeAp4vjss7Aqv7EzcRTUWJZvnfT4SKARG\nA5cBP8IsdD7nAxuAZ7DI2quwgIoioHuSu1wHbPH64t3jMcAt3jql2FnD0zrAm979nHs0fBezNhYA\n1wPn58LrM2DlZOjm2LUqrxVjwSM+b39mpdnC3+9ygu/L59vZR//7opVQfrErC54Q+wS5dIUQaU+c\n+3cBjL4yCICYiwmouikrK+v82GPLCcbUx2IC12clcFrH2HQotwLfYgEOj2AiagnwGrAfFgG7HSio\nhXnev9H3YaJtJRap+yLwBnAKcBix898LbMRE2zxMOM4F/HzKWViC5ipM9K0FtgHLgZ97+3vMm9+P\nuK3EUrBch4nOPwEnYqKzCpi4E0Yeaq5n32WbDyyp9p+K22DqHD8iuc4oZiFEKrQCE2VjmpuqKVMt\npSYzvp5/q2o0waWb2NcPUnBDrsNzvgSOrWvOY44ZWpzoDr34U3N35kwCulli42E7AxfuVjeoe7vZ\nc38+4lowhj/HhLjP092gbNoJxdb/Ku/adW5i4ubx3u+Tvd/HujC6DtfvRS6M2RXU0D3fW//n3s/4\nZMvjQi7a+IAOfz/DvHuqcK0sXDioo/Fu9th3paCNVtz0Dlr++Td7vCx8Qog2yrsvh1KP7E6Rkkh8\nupXhPRL75HWFbr+zEmTv+/nsdlugPv9826nmDnUxC9Y/gI6HmLsToHCqBSRkYf1uxixifkLjYsyV\n+jyWfcTfy12Ylc3FLINHAv+J5as78zKz6D3sfb8/gYXxPm/+/wH+1/tuSmgtF9vLBG+/I4BdwPWO\njZ3uzTUeyAWuJTE/3i4Cy+E6Yq2bWcDHwG+8PftJpA/HXMIrlsLqC+t+J8nx+s/yLbKWeFrl14TY\nE+gMnxCiTRFEc74+A5blQe9zmzZDHpZjzj9LNherKVvcH3JGue6KWa67wsttN2CS4wyYlJW1a4OX\nXw8YhCUufnT/0Hm/LvAqJrROA/4O3ETwfRGWS/mtuL1UAi8DUzFRNhL4wLve91D4jtdvMVaMoou3\nRifgCmAhJvTi11ocWqMai6KdC8zBxJ7f9yFMuMXzFrByKZROg4F3wrovY8/nzcXOKf7B+1xQBZu9\n/d8NnPI9fybHcbL852jvrn6C97tsprX8ssaME0LUjyx8Qog2Rt0Jkv0eiWf2wmfDbt0ETw+C6BzI\nzzMrVxbhUmfxKUI2by781oRiFnA1cHaSfW0nSL+SjOWYxWwKJt4qvZ9DiS25Nh0rUdYZOMHr3wsT\nnJmYgAtXs/hpkrW+Bp7Eztr1Bw7BBOmBSfpuxAThTd7nKcDWd4H/gowaqAEWHgyTQnsYjz2vkr9B\nyf/AN+/DvEnBnmb0gfULHaffChg1HOZ5qW4ak2qlzvdbWvcYIURDyMInhEgrkliISqHkMrh0owmW\ne46G/N9Beb7lgPMDD4pC+eByFkJOfwusKAV672fu11Ks+lkeZuXyLV7jaiwQYwJmgdtFYsTqv2Lu\nz+uBXwD3ADMxARXPP7EyZQ4WbFGOicIRJFoJ8zA3qr/WzcCHXv8nMWEZ9cbeigVY+H1vx8qrvb0J\nznoVBi+F1+6E7+70LKgz4SQvAeBMYL03TxUwtcrq+i7Lg1OvtXUgVPM3z+bo1deeSdOiqYUQe5hW\ncAixMc1N9bCiWkpNB3X1/FtNA7pZjrvxruWnG7WKmHx4SfO5fZC8ukZMkIBX9WLoJxaEUOHC9UkC\nKu5wYZQXIPELF3I/BY5NrEZR4cKFblD94nbv2lgXLg4FQmyNC3a4woXLQp9HJwmYCAdZTHfhGteq\ncRSFgkDC91oSN368d+2STdB7asPPzw90qfB+7//HxD7DdtRdsSOcry8mt16y91tXQI7+Dlq+6R20\n/PNv9ni5dIUQbQazvo15GWZ7yeeKAbdjwyP7JSsxgRsTJBCu8jAXOBRLceK7FoswC99NWFqTed71\nwq7AN1B+MVz7N3juyOCM3G+AacCvMWvdkJ1Q+zXs3Ao1R0DF/jbvVcAlFfDp/8Dh/wL/Hlq3H4Er\ndTjmVq4OXSvELG4zMRfxogaeRRbm5r0cGNkdhuTU3bcSCzT5xwcwsAQyqi1VSs5YEvzaZ2fCkCX2\n+8i82O+qCVtR69udW3f6lm4N3JgQoj5agWJtTHNTVbZqKTX9V52ef6toya1PJTFWIxIsRNNdS4tS\nd8oQs+zFz1tUh6Uq3mJmFSNsnn5/DKx2C7x+j4csaxNDe7jNhSFerdxrXPjx1/CTXUHFDdeb5444\na94o11Ki+OuUeJbGh73PW93Y9DHT3dj6utO9Pv7eH4l5HsHzq4ibZ/RGoFvQZ/TGxFQuvtU0/PzH\nrDYrYvIaxPo7aFNN76Dln3+zx8vCJ4RIK9zdFqJ3J8KBN8CzB5u1LHnKELPu/fy6xJmOBQprYLZX\nT7YYSyZ8I/Cr+FX7Ok6/KVC9CiadbcYoPxHy/VjVi1uxFCu+5e5WYHImfOF97nWgnesDmIxZ7J7H\nLIouQdqWzlhd3XuxuLubsPN6xQTBF/lYEuQR3u+PYlG9uUAtwbnFG4CTsPOK7y90HOfi4Pm9v9DO\n4fn7ffho+KLccZwTvT6nwxfllubmKmDaSt8aV3+CZSFESyDBJ4RoQ5TPh8KLrOwZmMjZsDreTWii\nY0CNib1HsX/qijBhNPEwWB3qnTMWzukeW61iCvDOlzD7YAuyOBX4G1YRYxTmpi32+hYB8w+DXjNg\n4juwoQJmHRkIpZuwkmmDk9zPCUAFVvYMbK83eeufiwm9VcARxEbRVmG58Z4j1uW8CBOJb2NBH3/A\n3KndsdyBnwO/9Pq9gQm/tVh08cg8GLfecZzTXdfd4jgDlhPUfvMY3gM+GwvMsj7OifZ5XiZ0cC13\nnuMLvFkIIVoNEnxCiDaDZz06C9ZNhE4DGk66nAX0IDbtyZzTYPXNjjPAy8NSk2mJi/MJMn9MBl48\n2KJSH/HGVmBWtd9jlrELvb63Y/1O8+bOjSbu43DgXa/fzNAaPbFzeH5S42Ist96ZQAR4ABNn4f3f\niVkHv1vHU1rk7bmbN9+bWNTsucCNNbAkw8RgFtAnbu7AigfMh3Hj7BrevX8BuFc7jrPAdd0t3vuY\nH3v+sTGpV2KJS6Mji6AQewEJPiFEm8ITA3f6n/3EvvYpLBb82qw5/WNnqAROGQ/zutrnwjWwbC1U\n9I51w9YSpEyp8K7djbln78OEH5hwC8eEjIpAYZUlYwbLX/ddzB17HoGonIIFXDxJrJXuNuAlAutd\nsrQt+2ECLGyVLPb2/DSWc+9ygoAQP4jkJxlBqplXSJ7armcPS0tTfjE8fTp8vhLO6m5ibxZABAo3\nOI7Ty3XdLfXlRWyMkEsMmGm6YBRCNIwEnxCizVKfWAid5fs9/OXsQCPeiok9X6DM7mPVJD7qDO9F\nzLp2LeYOXYO5cj8jOH83H3iQYPxMTPT5FSjGA+d3gcFROCoCh2GC7zVMvF1EkOh5d0GKEB8DGZil\n7iIsMjcs7G7Ecv5lYYLxVsw1exJwsfd7mF3As9485wPXfAWneGJ3OOae9kvA3YJZLLPyYNx6E3wV\nj8OK6VZZY/cz6wzrS4BzktwA0BQh13AibSFE6ijxshCiTRIkSPbFQmJiXxMXqy+EL1abgFoE/PPT\nxNmOugJejZio+SdmdRuJaY7//dpSo9THPzHRdygWXFEFHHO4uXnvAL4BfuvNORVzud4F/ACLyvUT\nId8PnIxZ6UYCs73rG4FnMIvcr4C+3noOZhGsxoTq7ZgVsac3bqJrQnWEN1fhOvjHZyZKb/HGjwUu\nd22e2zFXcBfMlXvOX+HbjPozopTPt3Qr/j34qVfCQk5Jl4VoaWThE0K0OQLrUby7FmBbl3gXr+M4\ng2BDuNRaaWB5uvZT+FkPE1PDSTzzN/8gE1tzsUoaYzFrmx+0cQvm6r2pGmZmmsv42p3QrWuQuy9c\nCs3PlfcdLJL2AAd+jpU9OxoTfWEX7y+woIpe3rUqzFI4BbPOnQB0xSyNs0PjlgO9nUCsFQGXHQcv\nZdqZvomYyFv/JVQ8DT0KzWoY5ryuUHolfPouTD41OH9Y+I1VKqk7b57jDEh8NUnxXe+7LYEN5uoT\nQjQdCT4hRJvBhF7fiZBzGZx6nAklX4iBnWvrcyPM/Y59LrzIgjwAajOAf4F+g2DlUjjrZdjlwInX\nWsoSvLkOSrLyG8AcTKi9goms4ZgIuxGY/jU8epBF1T4FPN7RXK11kYkFidyHuVOvwATZSUn6DsPO\nC/r3eAOBiDsBWLEG3u8BZYeG3KJYZLDvxNnf+/nTTBtbiEXzrvoblHuWt1uJde/Oxc7/0R0efQw+\n+BPkXgl8CW+fa+f3jORRuY0TckrjIsS+wXFdt6X30BhcLGTtw5beSDslGyvGqXfQMrT7529Cr3eh\nibNHQlU2aoHrsPN26zEL2TUEwqcKGPQGRA6CWaeZZcs/C1e4BtaVWr3XcP+xwA+9eZdgUa4RTPSd\nCdQQpEi5HdgGvFsFr3cxa94I7OdgTPxdiFnefOuYf87veWItiVWY6NoPq4e7BCjdBdtcOKejne37\nBBOJRwIXb4ct98Da2ZCz0urahuc6D7NMPhba7yxvbv8M4ZAlrrviHMdxusHQchjYw1K6nI1lZHkK\nE33nToPe58aKt5IGAyv2cPRtu/87aAXoHbQs2aTw3GXhE0Lsc5IJgfhr9jNnrKVNGTMcBvSJFUh+\n3rk/YFG0N3nXrolb7bozYRPwn8S6Vmf3gSH/SNzdwcCl2Nm7B7E1p2AWvdexs3j+HHdhbtHHu5hF\n7QhM6G3HBNvhmGVwirfXP3tjHOBlgnQsPscDX2JBIyOAxzuYSP0CE4OPEVj3Nj8E+1fbMyq/2ATs\nbK/MXCFW+m2J91z8/U7yWh9geRWU53vu8VIo7mF9Vm+G/3CAI4OEyh3cJIEVuxM1Jz5DQ/n4hGg9\nSPAJIVKiqVacOqI3R3iiw7t2/XiLRH28e5CHLlkKEYDHl0LkEPhDX7OkhV28vjXNwdyV8dSUQ9H3\ngnWLMWF1uzc2/txdlyRzRIAnsEALgHHA/2EWskwsShZgDOaCvgfLyTcnbq/3Y/nxdmApWfz95wMv\nYqlWbvL28cZWOGkQzOtr/QouhD8/BLmX2s0OO9SE4fok++2EPc+lH0H/p8DpCZMiwb09cRScNRVK\nakxs7q6dG0d+HpxYphQqQrQRWkFtuMY0N9UacmopNdVP1PNP2kiomxpbozb5mGT1cHNeSV4j1/V+\n+nVjw/VwC1y4uApTNlnBHFtdGO+Ni68ZG64NOyZubLi/v2Z4Pwu8erHXhOa41oXhSfqOjqtd+9Pt\nibVp/Rq/C7z9PuztMdlzGO1aTd5KF8514dRlsfV2Y+5rNYxcY9ceTrLm4966BW7ss9wcfh+Tgveb\nM8lq4V69NrZ27taYvu3576AdNb2Dln/+zR6vtCxCiBTYF6k3dmGWNwdzMU7ArFxTgDM6Q98xrutW\nmltz3CY7m3Yg5ub1a8aOXwdPllk+vEWYtXBGZ8gZFawzkiBKNQ+LYvVTjcwFBmEu0s3AwM8tsfHJ\n2Jm7eM4geCZFQM/94Qo3cCn710uxlCobXHjxn7AyyVx/xqyC32IBG53XQqflwfeLiZ13dh/47xeh\ndBqUvAF/2xmkpKnGcvXdj50p9MfMxAJeqrBnWD4/sMQumwnLp8P2Qy0VzCLMahof0SuEaM1I8Akh\n9jFJ87blx14rxnLPVWH/TOVjLtklmCt0DCY4MoFOlwVpWJ4eBKNqLVVKISaoFgHv/QdkLIOfYm7O\ntd7ctRkmal7IszWrsEoak7x1R3ntQiw3Xx6WvPiIgyxCdzQWyOGPrfL2GVeCln8Ax8RnRMYCQfKA\nXzjgHhq4ksNz3end6zrgnaWw6ExYvRCGf2X7etHbc5hONRbMcfQP4H7vXN8fgI/8+/b6VWJJmRd5\nz/s2YP1f7bt4Mf94d/iRdy++kDZxmHhfQohWRyswUTamuamaMtVSajLj6/knbTTDpRuMy5lkzfrb\ntb5TYOgn5v6scGHYDnjAhTvc5C7R2z23pb9276nJ3bE5k4BjYUxtaK874cTXrP9mz3V6jQsXbrfv\nKzxX6jnVBxzQf6V9DruUJ3puza3ePh5x4UIXPozbZ4ELE1y41BvjX7/UhbVxc04P7WW0t4dK7/5/\nttGeEcfChdWxLtmrd9lcwTuwey5xk+/7fBfy4/Z5lbf38LOMf46Dvghcz0M/Abrp76BdNb2Dln/+\nzR6voA0hRKNIFpzhNiKHWt1BHTWZkJEDfTMcx5njXb/TcZw58NlYYKBZ3rphlqjnsbQk538Nxx1k\nwRJbCOrT5vSHd780i1k4GKLgK0u2nFNiUay7I007wG1nWf+7MJfmSKB4f3MH34u5ZvMytm+fdAr8\nGovcDQdylGKu3euBX2KWszexaN1FXr+/Y9G3j3n3MQGrlPFjzFr5MImRxyMxa9wSzIp5HfDK49Zn\n0Cr4KgN+Exo3x4Fh38JXy8F5M3j6/+rtaxiW3SqLIAClGsv/58/hP7M5mGXvrJfN6uoHtBRWwbMH\n2xzjNsHLOW4oF1+YPZyORQixB5DgE0I0SHML3CeOGzfOql6Meg569fVy4uVB4QjHcc7yRSQwy6vU\nkGcuR+9XAN55AFa4sOoyeOY4S5Pii7s3T4CitXB6b6ti8TNgZlfILIV1dex1CSbuwqJrDObCBRNC\nszKsXwnmKvbPr1Vjrs3HgM7ATizdylBvv/d51+8kcI3OxQTXeuysYTx/wqJ8N2OuaTCBtfpJ6Psi\ndO4aRP6GOXE/+DwXTs6F70yFr1fBPdvgd14S6mJv775nOdnaP8HOBI7A3MIlvpgPiW+wsmvRUSRJ\nudLc/60IIfYyrcBE2ZjmpmrKVEupyYzfjp4/Sd2tSSNrJ9GASzf5uEFf1OV2jV3/5Olw9TexrtGR\nayl/YG8AACAASURBVIButo7vcg3PU+HCFZuSR5Oe9GZiZOosz5VZV4Rw+POC0O+VLlzpwnWuuZwv\ncOFBF34Zmn+M5yJNFnl7gffdw948/pgJLtzp7a3CW2u4Cye+GXtfV7sWIex/vt5zD08IXTs/ybp+\npPLt3vxhF/NdoTXHrG74PSaPzm1K39b8d6Cmd9AKm1y6Qog9Q13WGcipY0T4YD94CXnHkjTZru+W\n/e7BZhlraH3ftenPPRMY/Jm5Zqf3N2vTGXEzLMEqcfhj/IhegK4/DoI/aoEfAOWYxS3sAp6IWeTC\n/BlzdQKswKx4fqzCVMzKCGZF812ns721bsKiYv1qF+Ow4Ay/XNr5wNWYddCpgPIMePV7dg8/B/4C\nDD0j9lnMwQJGfoEl35+IRfKGcwceRSLLMSvl/3prHuXNk4dFQN+HVRl5Z7EbY5FTvVsh2jqK0hVC\nhKgrzUrSyNpG/B9++XxzR27BBNBIrFxXeY2JIH++wjVBgl9//cwk8117NizLM9FSiQmiyaF5Sncm\njlnqrbuko40bi7kzu7I7DR/jsfN4V2Fu1KdCc07AkjFXYWf1/o6JvW5YMuTZxKZaWeztbREmLB8D\nLsPcvOOwVC5rvXm7ePP8BqvQ8dsjofv3bN+VWOqZO5M8i0pMrPXASq69iZ0L9KNunwV6Ehs9XIyd\n6avy9vx77+fRWLLnV7FziqOBjBhFbuKvJBeGTLZWX1m15v5vRQixN5GFTwjRIG4dwRmO48RZfgrX\nQE2mpUnZ3ed02LTeDvz71TJmZsCwpbB0J9SsBWpM7NVmBKsOx0SKX/t2CjCDQFg9jZX1/CFQAAwE\nHuwINwIPhMbMIdZKeAVwGiYC/5XAwpUH/DsmwHwBWO3Nf+k2iHwHHvXm8c/DJWOrt84xwClY8MUk\nIBcr2/YBdj4vvqyazyGYiP2Rt+9FmLD1rZCVBEEmeNdWYYEi/v2C5ew7mMDCuQ34G/Ae8CuCdzEZ\nE7QPe5+TCzS3kWXS6vrfSkPjhBB7Fwk+IUSIul13yf4PP/b/3Gsz4PjhlqQXQof1tzjOKQ9DydRA\nvBUDu/4M5bNjXchj1kHhLpjdwYILqjExdypQg1nPhmOWo7e+giFdbVwP4CJv7pMxV+cw4AQSEwRv\nA47EhNnvCUqi3YgJtMu8sXnAI8DnwC+/k7yObx4mmGZ61+/HxFcOgaAr9u5jM+Z6xXuMBVi9W7/P\n34G3gO9h1sDfeev731+M5QQ8kiBpMgRBIC9+BQu7BtcfBC7YAUfsD4diOfYc4KwPoSQ79l38ZQP8\nZCF8p2pPCLTGikMhxL5Dgk8IsZvmWGfcIKp2ktV2TXaeL6MmqAYB9vtLbuIZwJ+eYu7FRZgb03fX\nhi1XxcBb1XBG11hR9VuCtCejvWtjiD2fdyPmrs3yroXPvD2AnWv7nff5Bu/ngySv47vO+9kRE4gn\nAidh7uv4e33PHsPua5OwKGL/Pv2oYF+EXQr8W9wc52NicG0NELKE+pzXNfHa8P1NsOZ791wFsAmK\nsmPnPqQXvHN2/a5aIURbRoJPiHZOHTnT9rB1plNNE3ZErDXteWLdskXAa5mJouoqTMzFW+Guws7e\nHYS5Mv28fn6/MGcTayEb/A3Q2ayKMbn9sOAMsIobHQgCPZYmmbdbkmtbQ/f5LLH3MzxJ/0Ox84BP\nZ8S6uosxd+65BGf+wKyJP8Isgs9gIrhgNRxxvH1fiVlMq7HycPUF3Agh2joK2hCiHRNbL3XZTMgv\ns2vNIelh/QWOc8p0qM2Hy3aa9asKs9z98DxLiBwe88Y78J/VscEGbyVZK5lY2/hN8LsfNPFH4AXs\nn7rjMCtXJfAQdm4tXE7tckz8hA1cx3aOreN7uWviaSbwHcw9/CGxefYewqJww8ESt5AYQHHETrho\np1n2tsbdSx52RtDvfyMmVrtgwjUfszqWer93wMRuARYYssjb0zZvrre/goHT4IPF8PiRFo07G8u3\nNxKL2pVhT4h0RhY+Ido1TUmrUj9J3MEvwMWr4EdHBdaoaVjViSnAkt7wyahQcl9MNPaeBPlT4Dks\nwCEbG1/szXELJhivxixyeZjl69nOdn0KFo1bhImZucDdwNDP4MNDze3qR8iOwapYHEqQ4LkYE1F3\nYGfyumDCajEw3wmsdQ94+/jI+xy2mG3AhOFKLF1KFpZo+RksQrgQcDoGqWfygb8SBGLc4T2nadg5\nxF9hKWd6Yda/2QTPdALmTh7vrR9fuaMUmNcVhniRt1nYmcf4M4mXblQ0rRDpiwSfEGKPEZznc7rB\noPWQe3CssJiOCZCshDH+Z8dxZsHkn1kljukEbln/HN3tmHXuN6HPxwJvY0LqaiwYIz4XX4f3IJoN\n3x4dnP17DRhEovi5EIuqzSJw3UJiAMinmIXuXuwsni/C3gRewcToQuAN4LvEljKr8sZ0wQTq05iV\nEcwNe533+1zv5/OVMDIrCGbxz//d5d33tdSV3zCgfD4UXgQD+iR+t+UJnd8TIn2R4BOiXbPnE+qa\nS3j023DGwcl7VGNWtPUVUDvIcfoNgtp1sP+J8M1aONmFaJalWXExUZNFIIaqsITLvnC6C7OcVXu/\nH51kzdKdMHqwBT7c+Cn8MgsePahugXQm5kpehZ1vOxOLcr0BO9sH5ma9H7P4HUOsaHzE2+8OLDr3\nd5gFMGypjE/tchDwU+9+w3NNwNy0R2SZKPxv4GYCS2MVcDowohaqt8HqA81l66+Rj/9ePSvsWbDq\nZlg+3ix/eN+v9qNihBBpiASfEO2AuorZ15NfL2n/xpEz1mqtuthZt3CAQRF2/ZMt0O0geOlsz/16\ntn0/Kc8sYX4N2bnAlcRWqpiCuVLDrPb6jsQiYMNrFmL5+bphLtI+3WHhBph8EHyLWcwq4vrXYMmV\nS0LX52JJmy/HInO/JBBlyRIj9wD+AJyHWSeHYxbLSzCr4kZv7SpvzdOwyN/TEx8pZ3j3tsh7Drdj\ndW/zsNyAnYDSTsCB9qyew+7tpaWw5LX4dw5McxznPtigXHlCtBMc13Ub7tXyuEAEOx0t9j3ZWIZb\nvYOWIaXnn6Rc2sr60m80tX/i+AGTLACkCyakbgX+z4XzHRMot26C96LwZq4JoRHEujkXYWfrwp99\n12um9zOcwsQXgGGL13NYIMMfgLMw65mfv28mQSTrDVhJs13A/3jXemFn5Pw5Mr2xDia29g+NvwUT\nX2Dn7B7AxN40Yi15+ZgwO9zb0xGY+FuClTs73Zt3obd+N2KF5nhv/au9a/7ZxZnA94Fr4p7hM5j7\neMhk112RLlG3+neo5dE7aFmySeG5y8InRNrT1MCMVAM5fDfx9P4mzP4VGOkE8z18NORua/z+n4jC\n/kfAyIOCOfIxF+spWJ65+LN1HbBgikMxIVWNWb4OJ4ioBXPPXoKJzn8B1mDVKCqxIAtf2M3FzhFm\nxI2/lyCwIhtzGWdiYjF8JvAW7J/bmzEhdr333S5M4I32Pv8Fc0nvjwnlSizow/E+7+fCY06wp8ne\nvq6Ju/83gPLVCsIQQvhI8AnRjknNdZuckJt4odW9TZa0eGcHEyuFxFaqKMKSC1d5nwu/gRcj9nu4\n372YAOqGlR0L55+7AYvudbH6suHkzKWY4EpGHmaRPAoLgAiLtgmYSDswybhaTFx+gQnHZDWA/Tx9\n4TN+I1zIdmITMt/5/9k79/AqqvP7fwZCApIg1qpFgdqqxGtVBAy/Vi0gRRGEeiFeQAQCyD0oclHA\nFkQF0QAieIlapFWj1oIo1QIqtf2CCGi9VAO1tlyCVStIUiEhML8/1t7MnDkTCARNgL2eZ56cM2fP\nnj0z5LDyvu9aL+qocT4iesVA/zK4JFX1gA97yWKUzoh0mgYnzEC+hZfPd2laBwcHC+fD5+BwyCO+\nmX3FHnwV+em1Hqltzz59iSQSAtNiO19uCdx4isjeWLNZT7kJwJ/WQrtCaLcWJtYXqWtkxo1HJGcZ\nIn0liISlI6LXG/g1Mmv+PgHJ8pHytS5Sv+6+NuARRAqfQJHD91D9XRibUMp3JxKG2OPHonRrCbJR\nSUPEMXy9eSgSGcUVnuxbCkj0wKtL4AuYvRPapIpIfh4zx6soqniamWeeWU8G+2Z27eDgcKjD1fA5\nVAaubqN6Uan7v6doXdxnibV2IHLSfpQIX4thkNIaypbD6nzImbenmr5gfttPd1YLkZhxZTAtVa97\nr4evvoGemSIwv0EpVqtILUZEbRUSbkSVryUENX+2j+0YoBXwH+BYlBr1Ubr3HHO8j8yQbZeMwajf\n7r8IooR2/gIknMhEEbvhiHzdS6DOHWk+a2/W8ARKqy5Ekb40RBwXAs+jDhipyNw43B2jHKV47fsc\nYBwSW5yPoo1WvDIUpXq/IMisD0REb625jmdC8+9b3eVBAvc9VP1wz6B64Wr4HBwOd8QILa70PO/i\niDKzEjV4ZWmReb6vn9GavtW5ntfaeJosn5tICPMQyWoETEwV+Vq7Ho7/Ep47V2PGAzcBi4CBW2By\nQ5knj0AkLQ+laqMtxHII7EwykMnwbYjw9NsAVzSWOKIY1Q5ag+UxhGoIEemzgUpruNwO1b6NByai\nKJ/t1hFu2TYFEbxuBD157Tj7lXojqs/7MUF93j3mmBOBk4CGBOrd4ebaa6F0b/g+ZqCI4WBUkzgG\nRRrromgeKNL4fhHMexxSi53q1sHBIQm+7x8Mm+/7frMasI7DdWvmnkHNvv+QNRKKffDNVuxD1siK\nx5MBLcZC539DkRmf85b2Jc3zcuK+Ih96rtO+YvO6KHLM3NDY4T4M8ZPn7elDj7eBRtDyleTPZ/jQ\nwxx7nw8dfbjRh/5mzo1m3FW+roOT4bLNkO/DGh8G+cEaJ/iwNTR3vg9TfRgYGtPXh1/48HMf/uDD\npWbui2PWnu/DJDNnsQ9dzLUW+ZATGhM9boAZ0zt03klm3/kfJ4+fGzmn3XrGzN1hA5BRA/69Vtvv\ngdvcMzjEtyrdd1fD5+BwmCGIBr4+EZ5qKpuUi8arxVlc3VfZ6sSavv7rpLS1vWNnNlH6MoxSlAqd\nhOryMlEU7LcE9WoXAB/N931/E9TeGRxbhNKmi5BI4y4kWMhH3ndTzZyTUDRuJ/DzptByJny+SmP/\njCJqdo3DUbq4BEXLOiJD5MmhMfejCNwC4PdmfReiSNooguufYcYNNXNORZG8hSj1O8HMFyfeqAss\nQaIKe96hqK7Qi3GMLo2sGaQebhUz99EnQMvnKlNn6eDgcPjBET4Hh0MC8cKM+LFh2xVL2FJLfd8v\nNq23ViUKDs64BPK7qr6v/SjY9GjynPM2hEQZq2DGROi+WaTLRzVv2aj+bhoiRh0JCOY3q3SutYjI\nTQGeQqlUH5Gihahuzgo8xiIbk8nAVuC1DvBaO1i1AxbHXPfvCdq05aN2bFHYVmezUU3gh0i1+2Nz\nXAGBKAJU73c0cJS5vglm7mKUqs0juC+jCMyjo7gEaHeEIo52/O3A1yhlbde8CtX9/WUDDPg6GHsv\nsnd5rUOiAMfBwcFBcDV8Dg6HAPwKOmbs+ahiYD6KIpWlBfOcNx8KzhP5yQW8FrC2hzXwVZ/cQf3h\nwcaaJw+o/zm0eVgEzopCWpYBE3WO4ST60j0JjA+R0pQdigjeRmK93FACocYLQEukSl2IatmOR9G8\nEaFjZtSBdjshr3Zi/d8XO+DxnfBiXTgLEclwB49oq7M083kBInObgXfNa0uGx5AY1bPXZ49Zg2xg\nrN9eA1QrGLaYscbKJcAET8eCSOW7KCo4FHnxXWCuvfARKK8DBeO0zqYkClz21TvRwcHhUIcjfA4O\nhwj8Sgszls+GgVfDKS0CQrSsi+d5+ZDVA1KzktWxXOR5rQkEGuc0FjHZTQqbw0XGcC9rgOd5s4Fn\nYMDt8PO6yWv4/WZ4rWsiKT0FRdSiWIEidt8HrkeEcCha43DgLQKvPav0rVdbAg/rAZgDLPgrlC2B\nBhPhA+CvKIpYgIhVMUGrM0vCIIj6DULWL3OQUHEzSgPHRQqfRUR0vPn5KlISFyCC/V9ku3ICUhND\nkBIO3/cbgFnm/VTgKkSUV0/TvmUdYdp5AUl0cHBwqAA1oAixMptf1WJFt1Vpc4W6h9j9jxdndP63\nfhb50Kc4EBX0KQ6EHVagMTciGogKOa7fBr8ol3hiZkhkEBYpnDVRYo1WH8M1RfpsTUj0UOxDPz84\n9wQjeoiu+zIzf5EZs/saQq+v8KHFYuBs6L0r2N83dK4RPlwXmisq9sg3+yeFjunuQy8fxoX2DfPh\nhpixPX2JQIZF1mrP0z3m2vIj77NeJiTMADIk2Gk+DvqsDObLeYtDT8Dhvoeqf3PPoPrv/34f7yJ8\nDg6HJeLEGV2aBnV9E9OhvVFivNAx8Kqb2UTRpG4oCma97fqvkwDERqceqqtxz6AI4BUoXdsKRc4+\nA1qOhOmpGm8tSE5Bgo0+qC7vcYJzD0eedlH8EkXN7kYCj93XgKxdTkZROdrBTcthtBdE/gYAv9gJ\ndWvLFuYNc96hSAzyPYKo31/NMdbqBVTrVwCsQ2nqJcj2ZSzwh8jYmWatT6Dz2zR3MUpNLzVrHmfG\n307gw5eAdM9rbY2tZ4dS7dPgwwPaNcXBweHQgRNtODgcloiKPAavD1SgYEQJS7VFa/9fLBUJ6gVc\nXwoX3Qkbn0w+RxoiNfPNfFtRLZ4H9N8ishdW0c43xzVC7cKuIvncHVBaNayY7Yhq46LK1QygHjJd\ntue5t66OL0V+eNOBP9WGF1HKdCsiYE8gAtcYuNq8vpOA9EWv81bz8wSz/ulozihOi7wvNuvLRiSw\nHqopLDCv80kU0DzZEfqsSe6OopS+7y+bos2RPQcHh0Q4wufgcBhChCD/4kB5O+d81YZZcjFwpbpm\nlKXBsHeC/YM2wNQ0kZMlwENpUO5D5o2JitQ8pFIF1eANRRG+AvPTj1nVCuAxRP7aIUuUYaE5RyIT\n418hE+Kw4rYLyarYGSjCZ1Fsxj6NCNajKIpmyeB9yDx5RGjfCEQ830Ckcow5d/gc9jpfRWIQi29Q\ndDN8T0abn+3Mz2cJooD2fJmolvEUFOm07eRyUb3itPRgfF6rxDZ2Dg4ODvFwKV0Hh71gTy3LDmb4\nEZFHoPItS4Nzu8inD2BgiSJcacDnviJY3c1RJcD3hsAjDUXi5qHomU2FDkKRqvOA35njPgQ6NYSh\nO2FGbc1zCyJyGcDbiJS9hkiZTb+OQySzO0rfdv0Gnq8H53g6F+bcA4Cfo9TxkwTdOp4lUS38IHAt\nSuUeb/Y1qOBulQOXI9HIMKC9D5me1uGhFG4JSjmXoCjiOWY+K6goNdeXY9ZfBry2DbLrJZ5ryU74\npbkvdyFLGAgU1Q4ODg77Dhfhc3DYAwKT4uQUWk2D53kZMt0NjHfj9lUEmxKE1FIpP20UaVa6iEsf\n4PEmSv/aqFW/DdC0oWbIIIh2vWFe34NSpV+hmrgRKP3ZENhQJnJ2BSJ7jcz5pgJ/QarcKKwRcT4w\n7wj43v9gNXAx8AukhD0BRfA8ZN58DYqS/Slmvq6I825C5sf/QxHIcFRuMbJDOQE4F6Vgr/b09bkQ\nEboylCIegiKRPorU/QgR5W4ouvcsIphbUV/crRsSI6gDyqFpba0/29wDawXTFfXqHVZWOb9FBwcH\nhwAuwufgsEeETYqhpvqbVdBL93ro9Dp0baw6t3HdPM9rs38RylIUbVsF/H07tH0Vdv4Vav8U5jcW\noboVEbHhiKCMJbFGrwD4kpCtSj24yYcOXnKtXgmK6N2BrE9AKc1PQq8zgIfTRRgvJhA4TEUijddQ\nT9vJyOy52BxnHE12W69YMtUEeN6MGwTUN+c7BegbOu8k83oYEqWUmbXsBI4wx5+DTKTvDJ2rF/D4\nNmhXTyRwJpp8YAlcMAVO6AeXNlTa2v57s/V89v1o4JFU7Zu/DhYkWNscqtFoBweHqsNF+BwcDlIo\netdyrOe1fhlaPAcTQt0zJrSC7ivh6cYiNE8AE8+DFsP2PF/rkardG7gy1Dnjf/Ax8G8U5Zp/CvTv\nAMffBNv/JrIzAriJIGWajsjO/MhZapNYs/aQB+8h/7lwrd6J5vhfh8ZOQxGvbHTOYkR8TjVz+wR1\ncIUobfqUOS4dRRAnEt8xI4VA3NEIpXv/H4rMhVu0TTPrGgmcjpS4LyOyeB4imrPRNd0ZOm4oImtN\nvoZFO1QvGI6gpnWBZxrCkRU9nhCORdHWp5rKN1E4mKLRDg4O3z0c4XNw2CP2pWXZdwf9R97ndXhx\nIuR0hDM6KBJmAzoLgdlHJhKOhUBK64rns2Th9YmQ6qm/bvtR8Pb9IlU/QvVnD5mjuh4Pp98ANxbB\nH4HjEOEJ98u1Kdg84B+h/WFcaI4tQGnVY9G1zEHE67HQnMeiaNkmRL6yUZ1bGoq2hfEAUvWGkYFS\nv0UEdit5qD1aFKWodVpBZN3NgdYkijvuNffHvj+/guvM/wE0rqP3xea6CoBapo9uF3N99t/bFGBp\nSbwYJopoyzwn6HBwcAhQ5ZRuZmZmS/TNejSwA7i7sLBwbsy4G9CfuHWQzfzgwsLClVU9v4PDtwl/\nv1qWfRfIGqCIXbjrxFgkUuiJ0n3ZTROPeRP432pF8SDxWqKp62nnQfv/AEshNeTZ9wL62rCdLT79\nAXy6Pag5y0Mp1mmoE8X/bYdHy+HydEXUnkF1e7MR4bkdaIFIz7EoqtYXraMI2ICIVDuUNv4SpVWH\nktiCbThB7d2wnXBnbUX4OpLoFxhuY2Z9AX+A6vwGotrCTNSJ42hEJjHXlYNS1n3Mvb4h6akIxWbt\nVixij7dt29qYNfw49Pk/j1A95CONZQNz+TYo2QDbC+D9WbC2hyKvp3VRq7ua88eHg4PDQYKquDY3\na9YsrVmzZhuaNWvWzbw/qVmzZpubNWt2ZmTcT8z+k8z7bs2aNVvXrFmzOpU8l19Vh2m3VWlz7uo1\n7P6ru0J+TGeGrI/0GY0SOy8M8+GX71TUjUGdGvJNB42t5vOZptPDpevhsg+gsw9tIueMW4PtwtEx\n1EmiRzncFup80dmHoaHP7zD7Lzfvt/owPPS57c7xoJn3Qh/u9+ERc74is7a+vrp1POLDlabjxRpz\n3BV+fNeOmeb84a4X15mx4evq5gddRqJdNIb5MD7UHcNew1zzfqbZN8CHjX7Q4cPOX+Sr40jLV+Da\n9RV1zGB3Z42skUQ6aeiznLcO4W4b7nuo+jf3DKr//u/38VVN6bYD/MLCwmcBCgsLP0EFLddGxnUH\nXjKfY8Z7yDvBwcFhn7F8NszbkLy//HfGeHcTPNYG2oxTx4w3x8P63yeqb5XyUzr33C6BeGEaqp37\nCu17tjEcd6rUpVftwxqvILBqyagtDztbI9cFiR/C/nO55rMxSM06geSU9HIgC33N9EUdO9qhermH\nUZXK42b/b1BKeCawDaV970T2Kp1QWrgA1SeG07PDgbbmfGF836xtK0oNDzHXVgCcYea4DaWBMWO6\nm3v4SWjcH4H124N5rT/gkkx4rQMc21i2ND7RtKy/B3NlP8lbMf/i6BgHB4fDF1UlfKciKVoYa9C3\nWhiZZn8Ya2PGOTg4VAL6j/ylVjJCtvVdw96BXZ61YBE5ePtO3192me+vmpg8SzGwqy1krVB6OEx4\nviFRgDG9tjzweiAVrD3nSoIUqa0xa4dSns2Ryrareb03/MLMXYxSx1H8CdXG2XX5yD/vXnO+RYi8\nnRxZ+2gk4ngEKXYvBPoBqcgsOdr9wuLN0HXlmnPMROne0ehv1q7IFqaTed8AqXvDBtBjEYHOBuqi\nuj1vMwz5mz4P+wNasUstVCmzCeCiytjqgOu24eDgUDGqWsNXH/3pHMZ2s39v47YhD4PK4sR9WpnD\ngcSJkZ8O3y1OtD8XL15cf+DAR64FWLRo0dPA5QMH9r62vLwsddOm77fbvn3pBIB69UZdv3jx4hsv\nvvji/wE88MADx9SufeqgnTttXVkxnjd+m+8vMaoGW2MmTuF5hcW+H/ZKKUbRtdVIkZqLzIjvNp/3\nRATqZygyVoZIzm8RielGYk3bp6h+z1qc2POnI1I1h8TauwFmbYVmLT4iRPbzqciG5Tizxo5mzHzU\nweN+Eq1OViExCEhxOxqpce1aSs2Wh4jfHIKevlMQ8e2N6v9OBZ4hJeWZf+3aVStj165zj1Y0cDwi\nn6cgMmjnvQr4qlGtWn+p9cMfdp/+xRdfn1dSkv0zkjAU6F4GizoCHevWvbXHj398+eKUlLo7Zs3q\n97R9tocRToz8dPjucWLkp8N3ixNJDp5VGlUlfMXIRj+M+ujP1jBKSCZ3ceP2hFf3bWkO3wLcM6hG\nFBcXv3rbbStYu/ZxAHr1Gn/rW2+NYM2aZ5k8+beMHt0VS3K2bTv9J3fd9cLqVas+o0ePtkyZ8g47\nd84mSLGuwPfz6iWKHgqAbI44YiQ9emRlPPzwLcg+pBgRIhs5g/T0XEpK7iYgQXNo02YkKSmFfPjh\nFoqKzkU2JRa2w8RtwNnIs26Teb8OiTiiAaxjEGlqQqCEBXXlOJvA3gUCEjfDzDMcWciMIL47RdfQ\nsVOA65Dg5WOUfPjKnP9tMza6tjJzDWcDF1Kv3r1s29bpxESRxq0ootjUXMdpKBK4BOjJrl1fHNe/\nf6thpaXbuOOOqMDjB+Z151S7zu3b7z3z008LzoRsbrttxq3nn38+GRmHpeuK+x6qfrhnUH3w9j6k\nggN939/vs2ZmZrYHnigsLGwc2vcs8PfCwsJfhfZNAk4sLCy83rz30Lf9NYWFhW9U4lQ+8lf4134v\n1qEqOBH9gh/SzyAcPathEZQTgVcvvHBA/ptv3psTEJUSUlJ6bPrjHwddNnDgI9euXTv9VlmmHEvY\n9DclZdim8vLmjRINfR9DKcZgLpEvgExSUws+KSsrOEnkZDWqvoiOL0CK1WLgWdLTf/uXY47JWLlz\n567Udev+cyO8eESgIgZF9L5Eac9jESECEbhyYLp5fw8iXNbbujtBpNCeuxPwUsz6S8x1/zG00XzI\noQAAIABJREFU3mJUl2gJVS7y42u0e+2quxuNagM/JDBMzkPdN+qHjh9oHokRO9O3BL6XLnIXXs94\nRDgfCx1rVcIe8CSnnPLGvQB6dkvMmHbAQlJS/m9TefmdjQJSXYLIeneghFNO6X3vmjXP5nP44EQO\ng++hGo4Tcc+gOnEi8S2DKoWqRvheB8ozMzNvLCws/E1mZubZQHuC/zksfgv8X2Zm5pmFhYUfoD/1\ni4E/78O5/kUVQpkOBwT/4hB9BoEP3eOtANq3H34RtK9RRe+fffbfzdF95eWdGrVvP6oT1NoK2dug\nbT3ViVnTXygvn95I0atwinTJBvi/L2D6uXqfBxyFzJMXUlZW+g/IOCnomRsXJXuxFDqm2e4aJSXZ\nPyspyfuZfr3vQYKJQYgYvoosT6YiInSs+XkGaqs2DtmRXIVsWEYTkKfOMee+msSU8EgzV11kpRKu\ny7PRxVtQ67ULkMCjP4mdQUYhM+Xg3umzOSjydxuqRNlqzmfJ5OnpQS/eMM5A5HYTcMGbcNzJcHkj\nEcx/ABtXrl37nKmtPPKioEvK4PXw/qPl5avzoda8YH/Y2gXWrl3/JYfo7+Ne8C8Oz+uuSfgX7hkc\ndKiSaKOwsLAcye36ZmZmrgHmAr0LCwv/kZmZeVdmZubtZtxHqAjnGTPueqBLYWHhrqot38HhQKF6\nTWsr0/N21qx+T4sMbEJRo6FID3XGzTJL7llPEaW0mKNf2qAuDjcDl26Dwo/h8W5w0Z1w+Rb4HiJ7\n+YgMrhilDhslKOL0JolChDzgV2nqWhEWHAxHkapJqDOHVbr+CKU/RyBByFdIhZuNyNfpSF27imRy\neSEijvbcM5Bf3ypEEIei9fc08x2H/hYdGzomH/gJ+tuzAUH9YXjtkwlat1kUo2jp3YhI7iLRVHm+\nmaMbiYbJt6By5gKztp1LoXGRvPuygaINMPdyiSyi6to5Z/j+qolSWtv9bcbB2pWBWbTz4HNwcNhH\n1ABfmcpsflX9Z9xWpe2Q916Sr1mSp93I7+bce/VP233/gZOhZ2kwtufOwC/O+t9tjXjE9VkJ3VfD\nauNFl2983/oUo3xhBjSfCG2/kl9ckQ+XrJN33XDjabfGhy4+DDHHbzR+dQ/6yffNrqOHGZtvXheF\n3kePucm8nulDf+NrZz37BoWO7enDmz70CV3fxTHztTFrzvfhah/u9OHnZYmeeHNjjsuP3LsbYsZc\n6QcegeFr2Wre9/NhhB/4Ghb5kPVyVf99sQcPvsNkO+S/hw6CzT2D6r//+328a63m4ABUbwu12Oji\nM/GRvqwrYGZqMHZmLUXRilG6cSyKAvUCrv4M2hXCOw3gnHOlap1DqLduOmTl+75fDKnFMP8oRaBe\nApo00esJyNPueaCoBD7fLgXsPShN+h8SI39TUURwOErTppltMor8xUUfQRG/YpSSbYmUrQVIqHEP\n4qV9kIL3NoL+uOnAL2Pmuwp4DkXepqNo44I6uva/oShptI3ZSBSVS0OdN3oCm3Ykz30pqj8cDCxD\nUcsSc9+LkODiZhSp7AqMXwHlyyq48ErDd5YrDg4OVUCVW6s5OBwK8GtcC7WcjnDmYs/zup5yytU5\nffpczhFHbD4GuCh57FJENGS3AtdsgY3vwznnw3NG7jkYkSVbmzYUEary2qbV2kUiQc+hlGjYxsS2\nLZufLjXtsF3wg1pKc1oz5XmI4HyJPPQ+QDV8YfGDbWE2GZErq+Jdhwjcs+Z1GVAbEa84q87jIu/b\no3S07fFra91KkA9geeR67geu9+EhT8R4MKr5K0Fm0fkEfXnvqQPDCAQlYfuamUDnLdC5oe5lmvnM\nM/d24RZ47H5YPc3cx85BPV7uKihL072v7n9rDg4OhwVqQIiyMptf1VCm26q0uTD+Pm7sQ/qNpJTu\nJJMeLPKh5zq73/P6/k9pygmhlONAH+6LSTsOieyLS6NeWg69V4fSw6VB67C4VOd4X+3MrvYTW5Rt\n9YP2YFf48AuzJjuXTWs+aH52DKVK7RxFJk261aRiO/nQzk9uwdbPV2p6kB+kfPv4iSnfjWae282+\n6L0oNmu50Hy2MXTNcdfeqgyu8uGXfnK7tRZj49O1vWwqd2Tyv4kWY6HH24dwC7Rva3PfQ9W/uWdQ\n/fd/v4+v7sVXdvOreqFuq9Lmfsn3YUsmcHv/D92QgZdFUCyBqqhPra0Va/kKZK+KJzTDI/uKQvuK\nfeheDue+GU/sojWAk/ygZi9KSu0xRT7khD7vbQhXmNT1M2uIu672hrj19VUrWOSr1m6qIVpXGJK2\n0Zx7jSFr7WLmsnV6dr1FvohxeC3htU0KrcmS0yhRLfbr1Ontp6X1/Cj6XJOf93Czzvg6veqsFz3I\nN/c9VP2bewbVf//3+3hXw+fgcMCx74pf3/eLYfk1sHxFoMScvy5+dAaqRav9GhR0gmWvwsAtiSrW\nESTW1uUjofw1W6DNEuA9GBTT3eFllFptaM5RgHzjXiNR0ToUKVRBNXFDzfl2t2JDytywevdzVBMY\nV8fXFfghSrf+1qx3F1L0PolqD99BqeOGyMqlHKVgo3jGrDfHjF+CUq1dCVSz1vbFXst2JBQ5H6Wh\nu5rtDuBiIJ0dO6aza9faNPUmbjPO9qr1d6ts24yDbhvgJOQDOHClU9I6ODjUFDjC5+BQQ+An2XMs\naAfXrZMFyyY87+ZvJIjYLSp5Fdp+CK06QGZD1ZN1K1JdWgNElkai/c9NgRtGwctNIeVPMPvcZCuR\n4cCZiOjdgGruViICGufDV4rq+D4BtlTiCsvNz6hYIg+oQ7K9y8ehfT7qWHGD2U5BXnbPI8uWTQTm\ny983155PQNzmAD9G5HRRzNrmA6d7ikxaA+V0REAf2j1qx47eP1Krs3MSzAH17FZOh+P/E9jDpFbg\niF+dAiEHB4fDFU604eBwwLF8Ngy/MijQr/x/6CIOTAmMoPOaAjRuPJ7rrjuq65Qpl58PKa1hywfQ\nZwVMS9WRo4BHGsI4Dy5fArXKYdvbUL84KgrwvNaIIM1GAolHgafXwo2niExZccN0FF0bhNSz7xEY\nHY9HrceKUNSs2Kxhsvl8KvJmzTbvb0HRvfHmZy+CXrRjCLpMhBH2xLN+d3Zt/RHhs2RsPNAYEb2L\ngbdC44tRVPF+M3YMUv6ONu8HI0KYAbwRQ9LKCYip7feb18oIfKYE47IGwLTzgjVOOw8+jIypiQIh\nBweHwwGO8Dk4VAIiYFmV+g/6wPyHHk4Lw4YNE3juue6XwTmttf+2jjICtuRiMopunXwktG+nfUuP\nhrltk8+9/AWYcjfkmQj/zUD6sfGp1gZIbVuASJlVo/4adbp4gCAaNhYRr+aIkL1EoN71zftbzRxv\novRpP5Q2vRURKtuC7CYzt+0OEo0wLkRkz17/BBTN/CEBybSIksW7gb6IzK4AziJoX3a/GZtn3t9i\n1t6LoE9vRShP3cOHCbDEvrLjHRwcHKoKl9J1cNgLgmjbosnachZX1A3DwjeeaYrsZQ3YUweNymLj\nxq86QVYrEZC4v9U2RN6nt4CzRiaPy5oushdOW558JCzcqSidTTWOBtqGjvscRfm6ojTvp5F5M5CN\nSlfUq3YrIlQLUOux4xFp7IYsTd418wxAxG81ImEF6KvpT8iC5WlUYxfunPFmzPX/HdXtFZi5R5qx\ncenoNDP+blQTaNEIRT1HAV12iUCeT1pa3b+fd14+FaVh9WxP65JYN5m7yqVqHRwcagpchM/BYa9I\njLbFp/OSEUrL2tTulZ7nVbI/7/K5MHgwzGwCUKfOLZSVFZwkUjUD9bi9BbjPjB+FonFpBBGuIqDR\nYM/zKmHUuwXYUlupzvFm3zAkPvg/FLVrhghQgfn8wsgacpFgoQCoj9Krd6GU6ngkJMGsvxcie08i\nolfHvLb32ApGshGJKkUEbh4ikTkoMmnTtNZ372FznmyUVr4WiTReQAKPjsh0+m6zzUaG1Q8ChcBm\ns9bxG+GEWjC0EYDnrdz14ot9aN366lnr1m1pCzs3A8d5XmsTxW2eBrNaiIzbqOY7812q1sHBoabA\nET4Hh28N+0YUg7RxeSr06AJ3NxEJemHnjh1zawdpx6Go7ux2lMb9YDu0qysVazh1ORz4oiFsfcbz\nvGsC8rE8Bwb/G2bW0fvxyM/5JaRwnWDXi3rSPoxEEg8Ab6B6N3uOd1Ak7IxaIp3PoK4Z/wIuQQRo\nCYGC165/IJCFCGU6cFnMHUkjEHBkI0LbFViMiOmjiFyBIoqDEdmz5xmBoocnI0IHihKORMS5HJHi\nFLPmu0LX/bMTJL7QXNu333vmgw/OYf36JjfCc0cAp0LuxzCxtuYavF7EthEi4yVAflxo0cHBwaFa\n4Aifg0MFCAhYWZrSc9NMa4iKRRiJtX6Vr+lKjgZagtQAuLZ2cu3YBYiEzQBK6ipi9tOYmU8FzrZd\nO2x0sQQ2fg5PniAV7iQ0/8KdMLx2ImE8GpGlkcARKBVr6+pAZszzawXHXIP47BPm/Qwk7ohiOxKI\n/BLV021BBHY0qs97k4CAgQihJXd3IzKWgcgVuqTYr7OjSCTBd6LI4XuI/N1j9ueQeN23Jc30/PN/\nxvcfOyIkyqitNXUBLmgC3TfDb4/Supzy1sHBoWbB1fA5OMQgsW5v6QQo8+Wz1n6U9V/b8zGLJqum\nK3dV5ew3ot59wwl87jqSaGMycIv2hXEJqkmbGBo3BfW67UaiF2DWgIDszUBRqXTgitrJ62qASNJt\niJQtJKirm4OsR6xKFxQFDPvxDUW9eK/H2sso/TodRf/yUaSuGEXoJqNo3szQ+CGofVoYX/rqtmGv\n9Raghblmu28skJl8SfwNRf1+g0jlXWYd4Ue6DqWENVdKyrBNP/zhsTFzbTPXnI16EY9ZDxeNr+jf\niIODg0N1wRE+B4dYRAnYrBaQUrbnxvVxx7wzP/DV21cSUAq0w/Pu+EYRvALkyze3JYwP+bjNQKRu\nArDRjCtAfW37E68szUC9bAuQ0XExIpGDyxLn7WLGnwW8j4hNNoqQvYVIXzbqhbsJ+CjmXKuA35lx\nY5AhcwaBenYJSr8uQuQyTHrvBL4G7iXw1BsDZJbBPYZsXotUvQPMGu5HEcEm5n1YSDEc+CdK5w6N\nnOtJRDIHAa3MmCeB69bdf/85V//mN2OMF+JuUcZO2BGZZ2YTSC11ZM/BwaGmwRE+B4dvFamlIol7\nIoqQbMabuwpmjYcrRt1661FdL7nkXho0ePoNWJDl+/4/jEHzx0EnjAwCq5I+ZpuCauQ2Ab/cCH5v\nz2v1igyb+22ALxDJKzVzTAduT1Unjmt3imSWoHq711Aq1RKbu1ENnjVFPh6RznqIANnrGI+EEXbc\nBUikcS+J6tlN5hxRbEDk7f7QuS8AHk1TZLIPijZ+aObPQsS0GyK7o5DX323A5Sg1/QywNHKeYkRM\ns1EK+0tE/H6/GRZkDRky5Ivjjz+e6dPP+oU6bbR9FVbcB3M/jn2cDg4ODjUNNaA3XGU2v6o95NxW\npe2w659IJfvhalzWSG002tsxkfF7/QxolJLSuyhuTuBkuHx70Mu2U0xf2eavQ/aWxD64vcvhLnNM\nuGduX9ODtvki9art7qvdWLgH7dbQ3EP85L67E3y4w/SmnWvmK44ZN86HO311trBrj67neh/u85N7\n78b14s2PHHuHD6P8oK9uRx/uD62/yIfu24LxV8bMOcQcmzUy/Dug59z535p7jQ99ivelb7Lb9ns7\n7L6HauDmnkH13//9Pt6JNhwcYuBXwjw5znYF8rvCBz3ijtmbTYsfMePV+M7Ly8unN4oqfT3Pmws9\nX4OZxi35pu1QpwzuaaCUKagTRcpPoX0dRa52d9CoLbHDsQTpSFAUrQA4vaX2/RxFAK1YIgf12bVW\nKf8173tFxtwF1EZp0jlm7PGRc41EkbtnUGRyG4pSDiGwNdkAtEZ+f2FT5qUkdv3IBU6PzD8CReiG\nofo8ayUzgyAi+ve7oH0W5HRM9Bu0OBtYj0Q7wuLFi+tDz8XWLkfzjUpX1I+lrmuGg4NDTYUjfA4O\nFSBKwJIRa7vSQ4bLlR6/26Yl2s1Dr7s0TZ6nPBU6LxfpsHM9VBfm1JW9iPXhux04t078WrYiJawd\nW4zI24fAlCOh7xZo21BkyRKtPFQjCPLYuxd1yHgTpVk7ovH/RKTzNkTMnjZjo/CAP6C6vDCp64o8\n9hojD8CfIkHKGOA0pBa+CugBdEJCFWveXIxqA0tRHd4SElW6QxH5W7YKVk/TvjMXw4RWiaTSEkMP\neNm3Kx448JFr4fEmyfOxtOLn7uDg4FD9cITPwaEGID5a+Nafgg4Td5qRgzbALi+eCBaS2G5tEhId\nrCORzNyMvPV8VAN3Iarns8bIeUCjhvBcGSxKTbQruQKV/o4zx9dBiloQScpBVi7rkejBA35ltvAa\nRiEimIGI4RizbhvdO9Vcj4/8+M5FpLAIKXLHAHND1zobqXxPCp1jKuoBHMUjr8KKq20kLojklqXB\nSz+Ffh2CKGAJkFIWM0kI89c5CxYHB4eaDifacHDYb0SFFnvzXosfbyJ7zyQqfPNawQ9vlN/cKERm\nngR2fQG1/GSrlkEb4B/R3mrIVmUE6jZxGSJsnvnseaRKrUtgWGwVq6cDx8f4CJ6M/P96mTXNDB03\nFKVn66Ao3BTUVs1D4o2/IHuWnigNa+1g7jLHWV+9bJTOzURKW6sMTkM2M28Al0bWlWHOaaN56eaa\ntpOo0h32DpT/Ve3u1OrON23wfH/VRFhxNSxfoTUnP9NZs/o9nfgMB683QhqXxnVwcKjR8Hzf3/uo\n6oePvv3XVPdCDlM0Q+EW9wwiSOyOscuD1NI91XElp21Bkb2sVol1diWo/u1I874dSk92RT5vzTsp\nDbkQRZgWZGlcj7/DLNMc9mbg14gMjUTpztnmZ3eU+kxHPni1EKHqgsjOUNQX958owrjQbA2Q7xxA\nb+DxyJqHohRs9FqeRDV/4fRwH6TMLQVeNmPsZzkoRft0ZJ4RKG3dGvkC3ho65viY896GLGVqmfP8\neQvkm/szfEWcVU70GZnPd/8OeJ63KeZzh28f7nuo+uGeQfWiGVW47y6l6+BQBRhxx+zEdOzAqz2v\n5XylAkUIAhKRRZgkeF7rkTrOJ7GDRb8N0KyxomEgQvOD0JnfXQBXfAlly2H1tOAcH70FBR1E3kYg\n+5SPgOKd8Ifaqjf7K6p9A5G/zwiI2FhElCYhgtkWpWPvIxBr+IhETkeROlMKx2BErv5GUBto8Q/k\nE2jJWA4yWbap6neBK5GdSq6ZPxrFK0bRyMfN+6mIFL9gOlykR+7hLcif70PzfjsiexW3uouQvbmK\nBLZm0aKJiy6++GKgMrWdDg4ODjUQNUBmXJnNr6oc2W1V2pwUfw+bbFSspcdWP9ECJectkuxaerwN\nLcbquObjEo/N9yHrZWg+Mdkm5EFzbLd3ZRkyxIfsVYgdGRuZIh9uN/Pk+3CTDz19mBqxWOlrrFHi\nLE4u26l5tvrQK+bzuaHX9/lwlQ+X+rJxKTaWJ31C5xoYsmex88Sd96KdifuKfBgamqdnzDHn/wdO\nuwf6rAzO3csPWaaEjr/RfB4+Pmtk8BzDVjxFCXYr9eoN/NvWrVvd70D1bu57qPo39wyq//7v9/Gu\nhs/B4YDCdo8I1+Jl5Qf1eT5wSgt4faLar53bBQauDGrC5q+D8mVQqzQ6c4MGL7wBK5fA988OWoId\n3RzOWQVnjQzOkYYibB2RqvYkZHYc7mJxP0qN/i3mGn5ZS31unyW+NdlWs9Y81AXjcRSdswbLjZBy\ndjwSYYw1x4Vr6f4cM+/ptRLHPIzSttcQdL+Iou+xsGIUlNaCdq8q7TwdpYv/jKKP9pofQNHDcP1d\nuOYyrKJeAkxLt8du2zb5J7NmzWfx4sX1Pa/1SG1eXAsTBwcHhxoJR/gcHKqMsBgjiacB/Dh4GSWE\n086Dj+arLm/MeniqqchgYh/exo3Hc/TRR7wLGVcoFWqPnwycfAq0GglrgTvM/D7wBPCUeV8fdbMI\nIxWpXceT2E6tI7I/AQkkwiQsD3gOiTa+h9LGFbVua45qBTPMMd9DKWVLAkcj0chjSBV7Ekr1zkO1\ne8ci8UZb4CdIANJ/V7CWqSgFnA7MPldijGWrAsHFgph1laI08HXrYM75/j7U35WWlnL55X/4TdAr\nOWexI30ODg4HCxzhc3CoIkQa8i9Wv9xZ48NETQRp1qlBj9o4QphSJrGH9dUL9+FtMy4lpcemDRtu\n5dNPn8qFIxonH38M0DoVRuyCExCpugORsnBEbzQihY8hItYD+eYNQPV3BeaYOxERzAaOIyBh88zr\ny83+lYhcbQJeMvPY6x6NhCYlSGX8KIFHYFdEuo4iUOD+EHn2zTDHfYaijL9Fkbrfoxq842oFvYLL\nQ/egGEi9DlZvhjZvqO3ch9Mg95vEZzEbWLHBKGsjDDhM3NsBuSX22Hr1Rr0Hu9i2bfJPItHbATEP\n1MHBwaHGwYk2HBwOAPxQIb/nefnw6Ydw3VFKLf4GuDtVJOX59fCXr+CBs3Vk7qrAZDmK1CwoX1Ze\nPjfUaeORehIj3Gfej0SRs2ygYy2RtcnmszwCAQQocnc7SsF2RF0oGgCDtsPxdWWC/AxSyzYyx9wN\n3FoOD5nviqnIC+9+RM76oUjcXES6eiKyNAyRvhLgHmTl0gepZt/6ElJT4I8hAcUIdH/eRaKLJwii\nlL81Y24GdqKonvXIK0A+giN86HEqFJ2q8wIM3wp/mQm9RsIloXvxYGNY04OI8MJP7q4yFz7sAfDi\nixMXrVr12erkZ+Tg4OBwcMARPgeHA46sHiJ72SgqZlt+9QGym8CVGUGrr9Ja0DwXyhD5m3ae9ucB\nL3SE/mcmzt0I+GQD3NJYRsSXINJlTYttuheUyi1A65iBoncQECmrds2rCy+VQc9Udc0IZykzgPUp\n0HGr3p/UAD4H2pUBxdDv6MAKJR1F7sajOsKfAdcSWKN8huoO+b5SusWhtVqcE3o9n+TWb73M/u5m\n39vAW8DvvOC+WRVxXito/6XuUdiupWL4yQpc+7rZ+ecX8+tfj3pPUT7Yu++ig4ODQ82BS+k6OBwA\neJ6XYYv51bHBGiPHpXC7NVSUKg34+bnQewIsnWCEB4UiSH0QubuvqecN2hqkJQeuhM2/gfcWwqY3\n4V97WdnTvkjf1SjqVoqieJZIWaPlc1KVQm2M/PUeQ6naPDO+fQO4sIEI2ylAVioccaREH9EyuObo\n+j9C585EXzXh2kWbNg6nWz9FadulK2WQHHfvdplrsMe0REQwfC3zw+NrK6o6NXQuG1XdN2RkZPDi\ni7+8Uan79qPiPPwcHBwcaixqgMy4MptfVTmy26q0OSn+HjYS7DyKfVmE9Hhb1h4zfehZGnw23NiF\nTPIT9201r61dySQfNhqLlyIf8v3atS/bBL1Xh2xKShPnKvJhUGje631Y7cMjEUuWYTH2JJ19KPTh\njsi4jaEx+caSJc52pci8nmCub2Do8wlmDVFLlXxfVjPtzH1a40PWR7KkOWsinP1JYMViz9OtVJ9l\nvaxzzq1g3mIf+pQE67pmA7R8RXY4ZLjfgYNyc8+g+jf3DKr//u/38a7ThkNl4NzV9wBF9RZNTuzw\n0GZc0IN1+Vxo8QS07qAescuBWSR3hBiD7EC6m329UOrVjnuM5E4Sg1Gd3d3A2cAFqGbupyjKlk98\nB4ruBLVxe+psMR5F7Nohy5M0ZMVSl8TOHL2ANsDf0a/r5Mg8Baj2L9xpI8dcXy9UP7i8BLLS4WPU\nlaM5iuZ9hqpPRqCaw/ajFKHLWaxuI/mheQd8DX97GOqdDfM6BLWIeia+/7Z1et5XuN+B6od7BtUP\n9wyqF67ThoNDZVFB26xvASllvr/Mijgy4Ozvm/o1VHMWxanAONTD9mbUs/boyJi4FGcrRMTKgNfK\ngRSlksN1fKNI7nyxBRGtHyCimUF8hcfJiOwN1tSMBh4k6K5hawMvQWno31awTlCKeIA51xmI3A5B\nhPHxL6DTMUorgwjhJwTt4MLkMSqwKEuDF/3EziatX062i0lpXcHCHBwcHA55OMLncMgjsd9tjy6y\nPAEYfqXneQegDmv5bBh+ZdBaLVrMnzVAYgxLWu4BbvoaHjKNcvOA/yF7lf+hFmSgKNk9WNVp7doL\nP9u5878/SIySpSCVbNE6WNAb1r8K2bUT11dkxtrjRiBBhVWzTkW1cw0j46aaNT2BxBjFiNw9T3At\nQ5Epcioile0QwQxH8wb8Bz4rh0tPUIu1d7dB8Q6Y0kDmzi+WQvNjtK6o4ORrYOCWoD9wcG/9PbY4\nK1sOeR0T71XZ8vixDg4ODoc+HOFzOKQhshfucxtVcSb2Ut0f+Ml2HqFeuV4GZF2UeEQG8PcvoOBI\npUVzEfGBxNSr/OtSUzt+0rZti5P+/ndeWLcuZ6DUuKCUaPdd0KkWZDWFhq/A5NqJpG2Qubw3UHp2\nO1LM9iTREuUWFLnz0fyliOx9ggioVfZeHXMHzkeCi85b4Jv/wMRMzXUbilyWHwUnrIF+J2h8Xj34\nsh6MLoMHUyE7TeuMwxvrYEEWrO0Rvbd7xuppcMblUGDI/dqV2ufg4OBweMIRPodDHOF2WSAiNI/A\n1mPPqGwK2Eab7HjPa41q93Lmqc4sTMJyV0H6yZWzClmys6ys50mvvAJpaV/8HEZthMknKI07GHio\nlurUBgOzUjRfLoqO/RHVvM0BfoTSqKvMvMUExLEdsHYbUE9k1NYQ9kRdLiCwSPFRGneo2T/Mh+Vv\nQspSSNkh78D5mfC70LWlpUL2mclp5gdTE6OetxGkvfOAj8IGyQmkvKLnEuzPAuZeLqJYngq7PD0X\n71tM4zs4ODjUXDjC53AYwtp67NlHTeShz+uBN15uN8/z2lREGJKjidcNgrymiSQsf6FSi70nJJLA\nVahzRDgVOgw4rbatvystff90WPSJUr13EvjrDUFiDYsM89lCVJdne+ti5l+AxBXWoHkSvzICAAAg\nAElEQVRYGdxXL5HI3YwsWt5E3TnOCs09xFzLh8CdHvT9CXzviCBV3tXUEu4Jn0XeZwDfAFdvga/e\nUpu01fmQ1cOQ5wipC99npeb1OnE/5HcV6U4c60ifg4PD4Qan0nWoDA5aZVYyOchdpZZlqaV7Sw96\nXsux6mubqL6tSOmZqNYtRl0t7iLx+IvuhFot4ZoO8AGqpQP4CyJVaSiNegZS2f4BRelAkbhrd8BL\ndRLnnGc+mwSca/b/6Ws45UjYGrOGnijqF1XRdkORvFJECu9FpHQnElbURUQTAqLpEZhI9zE/1wL3\n7ITptXUf+pYC/4VHjzepdNQu7UISa+xWAevH+/6qiTGkboX1vYtXRbcfpddJ+xfCoo7RsVZQsw84\naH8HDiG4Z1D9cM+geuFUug6HN/aUdt1Tfd3eEafqTGm99zRvMfAAUr+Go3h5wBnD4YT6EkjchZSq\nmNf3onq5MDlZAcw0728HUuskr6kUpUgbEUTyXvdUF/eHmOvaGbPvTYI+t7bn7JidMKy2lLoPIMHG\nk8BLPlzmqe5wHXATiiZaNALevhvatITTzodnGgLHyzLlo89h578hxYOcdon1iMs2BHV20VT8Xust\nTZ1kXPcOBwcHB4fqNhGs7OZX1XDQbVXaaqzZJkmmxzlvsX/GujFzNx8n0+CwgfBPJlR0vmAt1vjX\nN4bK+THmynGGwTMjxsc3lAYGyXae/j4MCI3pa47rXoEB8SM+jAuNH+fDVB96lideV6EPl5tjNpr1\n5ftwyTqt4UEf2n4Fp90DPd8Pjr3Dh9E+9CiO3hPIGhm/ppy3gEYyqN59reuBRsG9jzs2a2T8M+9T\nHBgsh1/b8xyQfx819nfgMNrcM6j+zT2D6r//+328i/A5HOTY50jQPiBO6Zmyo6Lz+UE08RnI7qjP\nbT3dPPO6xBzXhcDDbiEwbwP84yk49zooaKwx5an6+RjwV5SyzQZGArcCLVBrsb4o3RrFn4GfIAVt\nL6A1SsH2B4prwzVb4fNlML8DvIQiczZa2BqllxumwC0b4JHGcMNRcN21MLOpqizmA02Q8ndoutKn\nLA3VRUbUyZg581rBB/nwWGf40Kpv54br9YAKrW78xKjtReo5bA2WpyWsw69ShNfBwcHh0IEjfA4O\nFcCQhbawdjdZCFK5oPThkwC9PK9lKqycbo65BoaH6wZLYGK6yN5I4HuIeF0NjCmDmamQ3Rj6XQc/\naxx0sLgQ+BVwH4kCjSmo3+2niJyB6v1uR6QQlJY9E5XbWP411oy3fWefaQBt/gKjjob0FjJhbo/S\nyGlmzqJGWq8luF2a6rqfIBB4jAVeILhHpEPPt+DuJokpbbt+gJyOcOY8yI+ILYqB/oNg06MSXHwQ\na8fi71ZFtwYyOkYe3dJwjZ6/R78+BwcHh8MENSBEWZnNr2oo021V2mpsGJ9vMaW75/OtMWnUnn4o\nnbiShPRu83Hq+dp8IrR4JUiXPuLDEB9afRykLTeaufLNfJNMGjWa1rSp4Jk+XFQWjL/DhxEmxTvE\nh+tCqd/w8fnRNOnLSlPbeYaH0r+TzL6B5rxzfV33ZZv30L92pdLA4ZT2g+aYotC8Nr2dNTJI3271\nE3sM91wHnByMSX6u3+Hzr7G/A4fR5p5B9W/uGVT//d/v412Ez+Gghv8tpeyiwgz9tP5u+ddD6dsw\n23R/sJGraefB34axW8ravJOJ8nWEAdthIxJnpJrxb38CZCqqdReBtcpDyAuvzy64IdLvrBSJOzyk\n1gVZqPwQCSjqAb9G6eNrfDMwhBcJhB15KB065izNu5BE0chQpMBdT2DhklsGRe8CP0+cN80cN+08\n+elZZKB2aY/dD11/Cv06wI1I8PE3oPRSSDG92KzXnz3/zCaw+QP4XZreJ1uqfFvP38HBweFQg7Nl\ncagMDhopfsVETe8rQwYSLUGKgT4boDaqY8sArlsHTzVNtkbpCnTZDFvv1/6opYslT8cAf9oFL/4M\ncqbBaa3UUi2s5v0YtTbLD+3PRbYrHiJR4bmv3QVPG3JoCehnBPYoIGL4FXA8cDayYbF1hVevh+Oa\nSBEcnrc3MJ2gRq4EdeYo/x9Mqx+sNzc015OoV69N+Q5eD3POgOa5cOkEVZKMCF3rVqA+qgcMm1GX\nIPLYCqW4PfbTUuVA4KD5HTiE4Z5B9cM9g+pFlWxZ4rqlOzgclAiI2qLJ2nq8JuNk+z5nscbsDVYI\n4qNatWcbw9ON9dpHdWxRWLHDb4+CFydCg5tF8ML8Mg0RnbrA72pB99cgvx+8tE2kztbWDQeORiTL\nGjaPR9G3usDvY9b8o1oinT4iWvOBRcCdtbV/Hor8HYfIXjYiaBafz4ENG0QKS8w2FkUdo7esJfCD\n+tD2VfkK/n2jyFgJMOwdWL5SIpECRI7nnC+inVoqsml75tprPRU4AYk/BmwPzn8LsrbpimxhXODO\nwcHBYX/hUroOhxCiit2LWiRGjPJawbvDPK91md7vLeIXTTEORcSpI4pazWyi/Tejv53uMGMfAOYf\nZc6JPOaeQFG3YtShYh4wpS4UvQ5X1ks+96nmp1X5FiAD5v+glO/NgAkkMhyRwQwC5a81T76BoI1c\nCdAcpX6jrd4og3mNg166KxDZSifZSzAXEbxXgXMvhYknaH1vAls9+PcrcMXn6iiyelpwj5fPhmMG\nwQ0xhLkecC3wyL1wXU84sakEKzayOBSRx4o7ozg4ODg4VAwX4XM4TGAVtfXGQPfJ8MIeIn7LZ8sG\npDRmnlJg/AqYc77sP55EpKQlIlxhkmgjWP0QCStB5X0TUNQqHzjpKPglIlI2spWLOm/Y93ko+jUe\nkcZGwIlAp21wlZmvkTnfUGAA8DWKpoXnnYHSuLci5e1Qc0/eXqjoGwS9dMcAY9bruFJE6ApQ+zeL\nWieqZq8R6rJxN9D0HFg6Vt0tmncC0j2v9Uh1xwBYkAUDNgVrmoLUxu3QPX/vXlhwptYUfTSbHnX1\neQ4ODg77B0f4HA4hWKJmycTSlYpebULWJjcAC49QHdtDwIRWiTYrgkhF/sUwa7wieXa+weu1L/9i\ndhvqpSFfu10oBRpHEhsjocU4JH4Ik8FdiPjlIEI1GKVcfw1kb9e+HOrUeQ8RuSdRxG95GVxdT9Yu\nUWL0C2BpqdqzlaI6uAJEFu3YPyPyeQOQ+v/k+XfdOt2rEmDUSnh/DlzxsTp29DHbTcj+pVspnJ2Z\nmLZeaOa015fXCjovD6fUgfrgZQQE8l9l8PspcMUo2zpN93/5NYnPcvgKWDk95uY6ODg4OFQCLqXr\ncFAjUaTBbJGx3YrNudCiD1xRH144NUjNDkdkY2HyhAYmkjTR87xpUDgAytKglg+pZcBx0HmJavk6\nEhC2N1fCjD/Cn3vBg8Y8OQ/V4w0C+q8DIunMTzfDxKPUYi0NRcmWoKjZp9Nh/rVA0x07bgJ+tQNO\nrWN616Yq4jeARAPnl9D+J/4Cz52g634JpZFtnV0eMM2suxQ47QKY3E5kcPB6WD0HWl2qSJ29hlyz\n3nwU/ctPS0zz5gBvECiALbo0jZhUL4BZ6cG+7FRof6bvL7ssev+d+tbBwcHhAKIG+MpUZvOr6j/j\ntiptNdJ7iT14sCV/NsH4vPkh37jO/6YSnm2JcxX50Kc02asu6+Xg3M3HBe3TdvvNvQycrHNazzvr\nMxdd5xofOq2HVq8ErdVsq7Oo/10vM35YyL8uZxestmstDtbd9mvNEb4P94f8/fzQWuN89vJDY6Of\n9/XhavMz3C6tKDIu66OYlmkvV/e/pYP1d+Aw29wzqP7NPYPqv//7fbyL8DkcxNhTW7XoZzaql40i\nUh9tgAVZfqWiRmHV7r1A61S9zkB1cLdFxpfXSZ7jm1WQ8zvIMxG+weuNenVTEMkqT4WSDFjbT6pg\nGidG1+LQAujzjVLVu++DpzXNQB0+bKux8hzIbhCMA7Vs67v3W8CH5mcxsBpFBq2tC8B/gXMIUtN/\nBlY8BeN/HmmPdj3kvqMWaKAuJMtzKrEABwcHB4cqwBE+h8MIj7wK+TuT1aOJSPbyyyJoJzbBjLJe\ndx6quburIwxf7Hne9dB9WJDanIqEDmmtEgnozCZQmO95LZdBcw8ohZWPqeZtVkONK0bCi9sJWqoV\nIfJaDPTdAp+/BTtrA6ZFWTGBqfGDwBVgWo15Xss+yYrbcmSmPDE1qJVbngPD5wVELQ/VFG4iaPVm\n9+cAo4ug7fHQE627D7r+dmdHUuy2t20z+DDf7MvxfX9Txc/MwcHBweGAoAaEKCuz+VUNZbqtSluN\nDOOzTynd+JZbGhe07qrguEZwSQXtxO7w1SptrkmbtokZd/8e0qQ2jVvkB+neuDZjw3woNOfq70P3\nLcFnvVdDj1LNMSFyzKXbgbN1fee+rjG2TVqRScGeNTHaviy4Ly1fgdE2BR2Tys16OUhhRz9r+Up1\n/xs51H8HDrPNPYPq39wzqP77v9/Huwifw0GJIAr37gK46CXZiuyOIFX4WfIctqMGwPArYfVLyWni\n1TnqtBHFo1/AxcfIPw4U8Tq1YfK4lzbHR81yCdS68whEIDOQQXLYA/BOM6YvEtdnHxl8Nv1caLME\nhrZTFDJ8zG1p0GkVTKgtw+bZgHFI4W5g+0p433SuyBoAWQM8z7P3aorntQYad9BY2/otAUth9WxY\n0g+KGgfRwynAzr/GHeDg4ODgUA2oAYy1MptfVWbrtiptNeqvOg5AZE9js0YmR6VavRIfxSqKRNx6\nlsJZk5PHTvIlpLDCjGE+/GRCsLaskcF84eNsxK3nOv0cEhMxs1G0zv9O/qzF2Pj99ph+Zv6tfiAA\nafEKFUc1Q/czLDRJuAfrQuMawSXrtO4HfejxdkX3/SDdatTvwGG6uWdQ/Zt7BtV///f7eBfhczgo\nkFhX1zxNHnrzzKcT9iDWCAs5KoOjz5B337Tz9H74CihfBhkdVUc3DwkWPvsC0iI1gMXAmjKYmar3\nucBX78pMeLfVyxTP8+bCuDWBcGGUGTt+BczpCoU9oLwtTO0Q9Jy9nTp13v7njh2zfgOr8xOjhbs9\n6h6DQSsSLWFsFPE+JKboFlrvrr/6vl8sU+TwPZvQCt57zvNa74Tmy2FBO0h/XRE8K8qYtwFeMi3T\nwJf45AzYMgDextmoODg4ONQsOMLnUOORnHodtEGChNFmRB7yyduX+bKMt96gDQFBmgE81hg6/Aba\n/0f7lucAJTC4n4QWXc24J06ATh4MXKkWbgDPr4fnmgTEaRrQ5vfJxCerh9SzlrCOBbq8Cm9f7Sek\nUvt3ELn6KzCJHTsyfgzDO8HqaXFiCKDY87zT4YORcOQo+F2dRFPmNwhEHwDLushnMCs0phh57S3p\nYO5tRzjjcpjbCprnwMIsEeCV06PXZddeqYfg4ODg4PCdwnXacPjW4Hlehm2rFd/CrLIIR+3SEUH7\nEYkdK2r5GhvttjF8Rbj/akAeF02GlybAunRZmDyNIngAzXuqNdiijpBjWNn7j5rIFkHHilrdgeOl\nSM0GjvWCrhMWKWXx15QBdDGvXwDqnw8thgX3aflsRfxABNO2TstrBVkDfN8v9v1lU7QFxEv7V42D\nLyerq4e9D2OB9/8h1e88ZCsz7TzIekbEN3eVxj1r7mf43l7UQiR19TRgacXX5ODg4OBQU+EifA7f\nCuIEEZ7nXXzg03zWhiSlted5Gf5eOzSEPfWeABYYkYXtOdt/HTwV7Q4xAJZPg+WdgusZC1zXTCIK\nO/bBxmpP9lTIa2/53OQ1L58N/YbAjxuLgL0NPNUQmAj9+3pey0eB6SaK9wxkd0w8viwt6E0bFarY\n+ZkC51wCBSb6+NlqOPvYwC7GdufI6aj5B66ENuMgpXXy+UAegeHnOfBqz2s5X+Rv+VwRwrj77eDg\n4OBQI1ADihArs/lVLVZ0W5W2vRbqkmRvEieIyBq5P+cnSVTQZ6VEAVEbkooFGsFcdl1x3SKyXpb4\nIX7dQCO4bHMgYOgVM0fziYkih8Q1Bfem+ZrEtU/wYXzStQAnQ++yYH+PEtmwRG1jkkUXic8k7rp6\n+oldN+yz67MycV3dV8t6xR6/NXLf+xTrWiv3DA7SzRWrV//mnkH1b+4ZVP/93+/jq3vxld38ql6o\n26q07fGXPJmQ5byVSBD8KhG+4BxRv7w4b7s9nyNYa5xvnJ07fC091wGNdGyUxFoVbnjsWRP3QBhD\nc1ekwg2/bzFWytfb/aC1WXc/kXjl+9DqY5jpR1q5jUy87jgC/mDkWrJeNvfgZLh0vdY40xe5Dj/P\nOLKc0Jptv59zDd7cf3TVv7lnUP2bewbVf//3+3hXw+dwABCtsctrpZq6imvp9hV+pGbNV9pw6f7M\no1TprPFKuSauz3x+PXTZrNq+25tAzrz4GsQM4HPgmlLV993dRPV/FWU0w/fp7EqsNqU1nNJE4pQ+\nSGF7lPmsGHgApWiXZMJXQDvgDmAOySKW5XMTrzd3FSxfqdebgHElpm5xMnReAs82Vtp3EDCrReLz\nLK3E2h0cHBwcahJcDZ/Dt4SUsgqUpAcQy+dC7rhIX9aYmrlEmHVMlEK1MNr2qxFc9jb8sqFMkJ8g\nsH1ZPlvmzLvr2LbARyth4cWwBG13NwnqAKFiotsNtV2ztis3fQ3lPmQ3DI4rWw6nmno6S/DGoHrD\n41ENnlX65pjzT0Dk89wunudN83fX9+XMgwlN4Eng95vhy4Xw3pOwdjrwY1h0alCL2KVp8nrDz7Ms\nDZZ1CaxrckukOq46sXdwcHBw+HbgCJ/DAUCUCIWjZd+mTUfU3mRiOnyY73neNftDLkWMer4FMw3p\nssKGhYCIYlQQAs1zRYTC/Wn/PQfal9gxwVrC98kD/rkSLnoFTrgBHjYk67p1sOlR46uHLFE+bwFN\nCDpv5AK3kmixkgf8wLxOQ2Tsw4g3oQ9sAeYfBYyD3OG6Zwsjd6IjigbObKL3yc9TZPlDex/mwodO\ntOHg4OBQg+EIn0OVEUeEvs3/9EOK1IuUVu1uPilBqtMzF+9NERzfVu3dBSI5NtI1FEXL5q+zUSt/\nt0+eXcOunyq6Zo8ZDrxY5vvLkohucJ9W50Kq8bPDS1QFP9UU2pfZtXue1/ZHP+o8oU6dj3LXrLEK\n2wzgJ8ANkfM+iUjqEOIxn8R2bdMMWe6GCKMlj2EDaIh7njFkPul6o8phRwQdHBwcqhE1oAixMptf\n1WJFt1Vpq7ZCXWLFGlb4UGQUolY0MalC0ULyvLEq4hgRyGWbMaKNxDWFhR0TktSue76eqCgk2vKs\n+bjo/d+6datft+5N74eOixFOdPDj1LLsUahixRYJoo0qq2yTr/OgV++6YvXq39wzqP7NPYPqv//7\nfXx1L76ym1/VC3VblbZq+SWPJw3WXsQSpJlGpZpfadKlueMIX/NxFSl0935sfiyxARoZIvWyeR1z\n7KUbIzYnKyPkqJnv+/6PftQ5T+eZ68NGP9nWZY0hgi1fiZIr3cvm43RN376dyoG05akhm/uPrvo3\n9wyqf3PPoPrv/34f71K6DjUYcX1x238pAcMTKD0JsKI+LF0J2S0qLxyIqztcPU1bfGo6MZVcTLAu\ngPyFkL80fIwEIH1CPXNz18A705LXsu2IoLsFJNbfweLFi+uvWvUZ//3vN+dIlWvH5QAXfw59j1Vd\nXwYwE2i/049PwUaFKq72zsHBweEwgSN8DgcZ/rcaureW8CDc4aLNw9D+Ob3fO3nx91x3mFCPJqLX\nPBd69g2EDFaZmoEhmNfEkMPXRPbCNXNtWmq8JZqD18NVTSpap+d5GXXr3vTk9u33Au1+Drn/g2n1\n9en4FbDtVcgep3PYriO7atuuI3HXzV5q7w4M4oU83865HBwcHBz2hioRvszMzJHIIKwWsA7oW1hY\n+M+YcccA04FzgTrAamBAYWHhf6tyfoeag2+nQD/JBmUltLoUWh+VPDYlVihRwfpMK7CsPa41kehd\n0CQxujYtHdovBJbGRwJ7vAbbTpXooxsihgApOxPtasrS4O4JElvYiOXg9QE5ajFs+/Z7zww8DifW\nh3avQq3XzJh0uLYXXNpYqt3RQHYHGJ4kXPkuRRR7IdQODg4ODt8x9pvwZWZmdkKurOcVFhZ+acjf\n08D5McMfQn4QpwO1geeBScBN+3t+h5qDb6tvbjJpKE+F1yfKXiRKkMrSKopqKbXa861QdG5cKDoX\nu9bgmrJaiejNi04LsDSeZDbPhVNaJFqm5CBz4+U54SibzjO+k7z+rCJ4QVawnpTWiXNnALV2+v6y\nKYG/Xl7j4Dy+GWN7AIfP8130Ng4QE010cHBwcKgmVKXTxg3Ak4WFhV+a9zPh/7d390FyVWUex7+t\nISSEYRUXddYYB5fpA2KpkQQmuhSGTFYrEhNw5U0CaCKSGEkmFom7gpRAIIgrIaGC4oBAcAloCckC\nK0sjKiIjhMjy6jNRo4EQ35UkEBJG7/5xutM93bdnbr/M7Z47v0/Vre6+fe69p8+t7nnmvDLROXdY\nSNobgC+YWWBmfcC9+HklJBHCVtrI1STVJihYYcNP/gs+oPksPkCa9Rc/2fEPL4Z5meIVMfzrmT35\n6VYOxNfO3T9IXnOfKbdgxSx8kBll5ZDRHfk+eQfin5/4B3hkJXTMSaVSranUlKWp1JSlPn13J5y0\nDLqXwX+/MwiC7flz7e3xgVzuuldl9xXmsfA6FxG+0sfQ3SMREWl+tQR8DujNvTCzl4HngSOLE5rZ\n3Wb2WwDnXAqYDfyohmvLiNRzbX55rxTw4HNwy+uhlfJBTMf88JUjojoeX5N4O/Ax/MTIUy+E7gFq\nx/oeLt138B74yQXw3Sv8QI77rvDbvAz9R38U2bRyzJjfPOWD29uAzRv9wJJyjgRW4pu/1WdORES8\nAZt0nXOn4tdzKvZi9nF30f7dwLgBzpfC/zV6I3Bp9GxKc6usg361fclKm3j37g8tFw9+5Az6NwEv\n3guXjB64pq7nWljwMd80uyq77zPPZ5tbt5emL7Txalg8O7/02PwX4erxPq67k/4DOa46GrY/A+ty\nS6r1a2oNgmBnJpM587HHfrvp+us3XLl587cvyZdXcbnnJl1OAVPXB/uWVeuY75vDF2z06+KS+9xr\n87WM6mMnIpJkAwZ8ZrYOWBf2nnPucWBs0e5x+L+iYekPANYCbwCmmllougG0VZhe6qet6LGfIAjI\nZDLnLljwydMA1qw559bOzm+04qve+lm9evUho0bN/nZf3wmtMIOxYy/9eCaTObuzs/OlKBkJggCy\nHeoymcy4j3xk2b/t3n3FuwDGjl32xIYNl9wHpHPpV606/aElSy7Y3td3aSvcxqhRd21fsiR91h13\nLJo+UF6DIODtb5/90JYtXZMKRwO3t+/uArpz6TKZzLgFC64r+NydLwVBwOrVqxctWTIn+zm//A/+\nkMVlPtWJrysMANvbX7yw8BqdnZ2HdHbCsmVnZLL5bM3lMZPJnPvRj87+6o4dp33AB3stwC7a2w89\nKJPJTBw7dsGNufIZM+b8p1pbT185atSYVz/72WPXL1u24HsFZVfRfRiB2ooeJX5tRY8Sv7aiR4lX\nGwUtqxWrdgK/dDr9rXQ6vbzgdUs6nX41nU4fGpJ2/3Q6fV86nb4pnU6PquJ6kgA7duwIxo/vKpgs\neHkALwQrVqyt6ZwrVqwNVqxYG+zYsaPf/i99qTsYP/4T2QmJ/fNt27ZFPveKFWtLVqb40Ie69l1n\nx44dweTJy/d9nsmTl+97L+xYP2lyb7DffnMLyqAru8pFPl2l5VGcj/Hju4Jt27aF5iF37oHeExGR\nplV13JYKfI1JxZxz0/Gz3x5jZtucc8uB95nZ1JC0l+FH6J5oZtVcMAA+CPy6qsxKrdrwA20qvgeF\nNWB9fXtHb9lyy6J8bdYu4Dba2++9srf39u7yZ6mMr/m7Y1/NVr6pcxcHHTTnB29608GP5mrjKjuP\nH207duylT2zYcOLZCxZcd9rmzTecX/h52ts/eWVv7+3d6fTJ84rfa2n58IO7dx92mK9tvAd4EPgP\n/KB139zsaylPLK5pa2OQ8l+9evUhS5Z8v7Dm9Ik3v3nbA8XlPVD+cu8NXsIjUhtVfgekbtrQPWi0\nNnQPGqkN+N+qj64lWkyn04vT6fTP0+l0bzqdviudTv9TwXvPptPpI7LPX0mn01uz+3Lbzyq4VhBo\nKZdGblUtp0PJ0mgzf1Na6zXzN9R5jdXwZb2uK1qKzC8lRtFaveGfoePusKXbBlo+rPSzz93olzwL\nq/V7IVsOky4oUxaDln+0peLC1tdNzFq3Tfkd0KZ7kLBN96Dx5V/18TVNvGxmK/GDMMLeO6Lg+Zha\nriPDVfHSaF+f4OfMy82Ht/C5/nPODaUngcvoP1ji8UXwnpkDzU0XBMHOVGrKD+GUGf0H0/aN9oMz\nwgerBP0GmPSNhiNmwac/WJqv0iXZKjHwcm+j9/Sf5Dl/jUATI4uIjChaWk1i1AI8+Q2Yvse/Hqog\no3j06sLn4Jln8M0QBUZNKV2rNz9Zcf/zLT45P+r2KnwAt/HqcgEV5Cce9iNh10wqnTC6dEm2SpRO\nplyy3FsuP6GTHw/0noiIJIsCPhlCYdO1bFo51DVJYbVX/nHxA/mgbfFj2QmMZ0Q731Hr4baj/ETM\nc4H/mQSb10HPvOg5K5wwuvueWoI9r7gGdbDl3uJZVk1ERJqPAj4ZMo1qNgwLbvy+vYEPtsA/39QN\nXSdEmz9w9B6/xFqAn5ryPGDGDLiw1wdakGsS9s87CoPNbOB78dF+sMb6rQVLrNVbyXJvjVhWTURE\nmkwTdEKMsgW1dlbUVtNWcUddBhkMMVQbZQYjlBtgETWf+fN2F0xnEjb1yqQLwq9PK5y1dbBBEmXy\nE1r+pZ917kY/UKP/ZxlocIm2ofsOaNM9SOCme9D48q/6eNXwSd01tkapuJlzX7+8UEHEfmxBvrZy\nnR/AUU7ZfoHk1/Ptt3/ftQcot8HyVDAw5IcXFx2rWjwREalpLV2RMgqDrnJr3EkSlgcAAA34SURB\nVMatcB3eXfhlxvpGp1JTlvpAa3A+eOo5NX+eafiBErlzdj2S7RdYpcrLLQiCnb4Jd9RePzAk7Nji\nzz7w0nciIpI8quGThkqlUq3QkZ3st2deMOg6tYMJX9e3f23Y3v1h4ix44JJsmsi1YUFpv8S18PSc\n/PNJc+H0rX4Kmvxo2dx1oq43XE8hedagDRGRkaYJ2qSjbEGtbdfaatoq6rdBxEl9gVaYu7OgD9pO\noLXW/DLoZMr16dNWdJ3W/p/5rK2+P11hX7ookzyHlluEiZc1kfIQb+q71PhN96Dxm+5B48u/6uNV\nwyd1F0SuUero9iNcC6cVebob+HCt12eI55cr7W93+mfgqgn5z3LNW2H6niBkXr5y5xyg3FoHy0/0\nMhcRkZFIAV8TSsKcaXEEXZXKl2vfaN+Hb80k/07XI9Cz1k+QDNHKvHhwyIcm1COPtZRbM5a5iIg0\nBwV8TWY4zZlWe2DaMw8WF8xjt3hXZRMZRxeyKsVjcNwX/fx6PWth3p3Vl/lO4AX8Chxd5M+vgREi\nItIcNEq36TTjCNdS+QDqvivgu1fAzKdSqckXRB3xChAEwXa4fiJM/7nfrp8Y1Dxoo5zicl15FIze\n40e4dsypvMwLR77eDnweWAzciZ/c+WfrmzFIFxGRkUk1fFKlXAAVAN8E/msCcAl0zQyrHSu/+sW8\nb8FVh/v9Xd+qZ21m/2vu3b8e58wp6jN3nJ+brwU4Ax8Edu+p5/VERERq0gSjTqJsQa2jU4bLRnOO\ntiwZmZUf6Rq22kT/Ea/lPlMto2WpeMTr3I0w59Gwcq21zGO4ZxoZ1/hN96Dxm+5B4zfdg8aXf9XH\nq4avyQTDZrRlbr67jqMHT1vZ6hfl5Gvs9u4Pc2f5ZlkI73NXfM2VR8HUC2H6t3P5z6WPUuYD9Vcc\nPvdMRERGKgV8TSgYBqMt80HOpsXw4Kf8NCRQ2YTC4ZMkh6XsP+jiNuAUBlqmLNyovb7PXtnPc60P\n6jrmp1KpfUFblIE0cd2zJIzgFhGR+Cngk6plg41LUqnUSrABgpBcYHfx0XAPsH4r9KytrGassMYu\nSne86MEkhAV1CxemUqljgiDYPkANZaxBeSaTGTdcRnCLiEhzUcAnNRusdisb2M2GV3/qawJPmQBd\ndxYEKxUGTrPoPwVKaTAXEkyu9TV3UwgPLIuDumveCn/uSaVS74SOyrI3RBYsuO40uKHhgaeIiAw/\nCvgkJh1zfBBVbbBSWGOXAjZvhKnrYdTecjWDuWCy+rkNZ02AP8yvtLZQRESk2Sjgk2GhtoERUZpk\ne66FhQvzfRFXAZ8AuptmUMaaNefcOn1613EKPEVEpFIK+CQmtdeSDeXAiGxQdwz8ucfX7H0C+OK+\nPDbDQJrOzs6XYHrDA08RERl+FPBJLBpbSxYt2AyCYLvvs/eH+dAdcx6jaYbAU0REhh8FfBKbRgUr\nlQSbCqhERCSJFPDJiKBATkRERjIFfNL0NNmwiIhIbRTwSVOrfkoVERERyXlNozMgzSuVSrWkUlOW\nptMnz9u5s1HxVeGUKgfin3dUvA5vJXKf22+plqG8loiISBxUwyehCmvWNm+GadNWcdllR4/r7Oxs\ndNaGlGoURUQkiVTDJ2X0r1l79NHzskt7xa3nWj+Nyi78NtSTDcdfoygiIjLUVMMnTa1ZVrkQEREZ\nzlTDJ2X0r1mbPHkVa9acc2sjchIEwc4gePjLfhvqYC/uGkUREZGhpxo+CVVYs9be/tZ/vP/+689v\naWl5qdH5GmqqURQRkSRSwCdlFUxWnAbOb3B2YqNJmkVEJGnUpCsiIiKScAr4RERERBJOAZ+IiIhI\nwingExEREUk4BXwiIiIiCadRutIwfhmzDk1/IiIiMsQU8ElDaM1aERGR+KhJVxpEa9aKiIjERTV8\nw4CaPkVERKQWquFrcvmmz/uu8Nu8jN833GnNWhERkbiohq/pFTZ9gn/+1HyG+dJfWrNWREQkPgr4\npGG0Zq2IiEg81KTb9NT0KSIiIrVRDV+TU9OniIiI1EoB3zCgpk8RERGphZp0RURERBJOAZ+IiIhI\nwingExEREUk4BXwiIiIiCaeAT0RERCThFPCJiIiIJJwCPhEREZGEU8AnIiIiknAK+EREREQSTgGf\niIiISMIp4BMRERFJOAV8IiIiIgmngE9EREQk4RTwiYiIiCScAj4RERGRhFPAJyIiIpJwCvhERERE\nEk4Bn4iIiEjCKeATERERSTgFfCIiIiIJp4BPREREJOEU8ImIiIgk3KhaDnbOLQXm4gPHrcCnzOxX\ngxyzBjjXzBRsioiIiMSg6qDLOXcC8Bng/WbWDtwL3DrIMccD04Gg2uuKiIiISGVqqWU7E7jZzP6Y\nfX0NMNE5d1hYYufcgcAaoAtI1XBdEREREalALQGfA3pzL8zsZeB54Mgy6a8EbgKequGaIiIiIlKh\nAfvwOedOBVaHvPVi9nF30f7dwLiQ80wD3otvAp5QeTZFREREpFoDBnxmtg5YF/aec+5xYGzR7nHA\nrqJ0Lfim3JPM7O/OuWrz2lbtgVKztqJHiVdb0aPEr63oUeLXVvQo8WsrepR4tVHQslqpWkbpPg0c\nnnuRDezeAjxZlO5Y4GDgrmywNyqbfgtwupk9HOFa6vPXWL3oHjSSyr/xdA8aT/eg8XQPGqvqYA8g\nFQTVDZh1zk0HvgkcY2bbnHPLgfeZ2dRBjnsbsEXTsoiIiIjEo+qgy8zuA74C3O+c6wXeDXw8975z\n7lnn3BEhh6bQtCwiIiIisam6hk9EREREhgc1q4qIiIgknAI+ERERkYRTwCciIiKScAr4RERERBJO\nAZ+IiIhIwtUy8fKQcc4tBebiA9KtwKfM7Fdl0i4CFuGneukFzjaz38WV1ySqpPwLjlkDnKv5Fesj\n6j1wzh0CXA1MBPYDNgHzzexPMWY3MZxzk/HLSb4BeBW43MzWhqQ7E/g8vsz/BCw0s41x5jWJKij/\n84Bz8H/DXgaWmlkmzrwmVdR7UJC+A3gI+KSZ3RRPLpOtgu/Be4CvAYcArwD/bmYbyp236f44O+dO\nwK+5+34zawfuBW4tk/ZE4Dygw8z+GXgKOC2uvCZRJeVfcMzxwHQ0v2JdVHgPvoZfw/od+JVvRgPL\n48hn0jjn9gfuAL6aLfeZwCrn3DuL0r0LH2TPzKb7KvBd59x+cec5SSoo/5nAMuBfzexw4HLgO865\n0XHnOWmi3oOC9GOAbuA59PtfFxV8D8YB9wBfycY/nwYWOefKxnVNF/ABZwI3m9kfs6+vASY65w4L\nSXsusMrMfg9gZueb2cqY8plUlZQ/zrkD8Wsld6Eld+qlkntwA/AFMwvMrA8fHL4rpnwmzTQgMLPb\nAczsl8DdlP4TeQZwV/Z9sulTwAfiy2oiRS3/XwAfM7MXsq/vAg4C3hZXRhMs6j3IuRRYD2xBv//1\nEvUefAT4nZl9J5vux2Y2zcz+Xu7EzRjwOQrWizOzl4HngSND0r4HOMA59wPnXK9z7gbn3OtjymdS\nVVL+AFcCN+FrV6U+It8DM7vbzH4L4JxLAbOBH8WUz6Q5HNhctK+X0nLvd3+yNoekk8pEKn8ze9bM\nflKw6yT892PAbicSSdTvAM659+GDky9ld6mGrz6i3oOJwK+dc93OOXPO/cg5d+xAJ25IHz7n3Kn4\n9uliL2Yfdxft3w2MC0l/MDAVX+X5N+D27HnPqE9Ok6le5e+cmwa8F9/8OKGeeUy6On4HcudLASuB\nN+L/65bKjaO03F+htNzD0u0GDhiifI0UUct/H+fcB/DN66eY2d+GLmsjRqR74JwbC1wHnGlme51z\nMWVvRIj6PXg9cDy+a8O8bL/iDc65w8r14W5IwGdm64B1Ye855x4HxhbtHgfsCkn+F+AmM9uZPfbq\ncueVvHqUv3OuBd+Ue5KZ/V1f+MrU8TuAc+4AYC2+g+9UMwtNJ4PaSbRy30VpcFf2/khkUcsf2Ddw\n5krgZDP7/hDnbaSIeg8uBe40s00F+9SkWx9R78FfgUfM7KcAZnazc+5yYAq+m0OJZmzSfRpfpQns\nCyzeAjwZkvYX+Ci3UN/QZW1EiFr+x+JrWO9yzm0BHsym3+KcmxJTXpMq8ncg28F3Pf7HoNPM/hpX\nJhPoaSBdtO8I4P9C0u37Dydbu3o48MSQ5i75opY/zrm5wEXAcQr26irqPTgJmJP9vd8CdABfcc79\nZwx5TLqo92AzpfFPwAAxUDMGfDcCZznn3pJ9/Xngx2a2JSTt9cB859zrnHOvxY9SCY1sJbIbiVD+\nZnaPmR1iZoea2aHAv2T3H2pmD8ea4+S5kejfgYuAl/DTEemfndo8APQ5584GcM69Gz/6/JaidLcA\nMwpGzc3D/1euvpO1iVT+zrl3ACuAaWb287gzmXCR7kH2d/5tBb//PcDnzOxzcWc4gaL+Dt0GpJ1z\nH8ymmwWMAcr+/U0FQfP1s3TOLcaPwH0NvrPiObkRWc65Z/HNiM9m/7NegR+98grwU/x8WC+Gn1mi\niFr+Rce0Ab80s9fGnN1EquA78Arwe3zQl/OKmU2MO89JkP1xXUN+XquLzOwO59xlwEtmtjyb7lTg\nAvw0OC8AC8zsmQZlOzEGKf9dZnaZc+7rwKn4ci/UZWbfizfHyRP1O1B0zAPAN83s5nhzm0wV/A51\n4vtuj8HPB7rEzB4qd96mDPhEREREpH6asUlXREREROpIAZ+IiIhIwingExEREUk4BXwiIiIiCaeA\nT0RERCThFPCJiIiIJJwCPhEREZGEU8AnIiIiknAK+EREREQS7v8BBSY7Q/KohdgAAAAASUVORK5C\nYII=\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde3a1f8f90>"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAG4CAYAAAA5VfEtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXFWB9/FvdYeEEBJhxHHUcWzU9AFRFCRM3EWjMiq7\n4jJAxMQlIGLrAIKCyqLsILLpxA2cB7cRROGVIa/OiGgMDu/oAHoSxKgkbiCQhayd+/5xbqWrq6u7\nq1PdXcnp7+d56qnuu54651bVr869p6pSFAWSJEnKS0e7CyBJkqTRZ8iTJEnKkCFPkiQpQ4Y8SZKk\nDBnyJEmSMmTIkyRJytCkZhYKIbwaOA94AtAJXB1jvDyEsAfweWAfYAtwM3BKjLEIIXQAFwGHlpu5\nF5gXY3x4lB+DJEmS6gzbkxdC+DvgJuD0GOPewMHA2SGE2cC1wIMxxmcDLwBeAby3XPUE4OXAvjHG\nmcAK4OrRfwiSJEmq18zp2s3AMTHGHwDEGB8A7gMOBA4DLi2nPw58FjimXO844NoY47ry/8uAI0II\nU0ev+JIkSWpk2NO1McaHgG9X/w8hPAt4LvD/yvm/rll8GenULUAAltbMe4AUKruBn7dUakmSJA1p\nRAMvQgh/D3wHuKCctLFukXXAtPLvaeX/AMQYtwAbauZLkiRpjDQd8kII+wM/Br4YYzwHWANMqVts\nWjmd8n5qzfqd5fJrkCRJ0phqdnTt/sAtwAkxxhvLyUuB3hDCzBjjsnLa3vSdir0X2Au4o7oZ0vV9\nsYldFs2US5IkKXOVbV1x2JAXQtgZ+Ab9Ax4xxrUhhG8CZwDHhxB2AxYAF5eLfAl4Xwjha8Bq4HTg\nhhjjhibL9jpgeZPLanR1AbdhG7RTF7ZBO3Vh/bdbF7ZBu3VhG7RbVysrN9OTdwTwDOCTIYRP1ky/\nATgRWBhCuB/oJYW4LwPEGP81hPBM4GekFHoX6WtVmrWc/gM3NP6WYxu023Jsg3ZajvXfbsuxDdpt\nObbBDqmZ0bU3kALdYN40xLqnk3rwJEmSNI78WTNJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKk\nDBnyJEmSMmTIkyRJypAhT5IkKUOGPEmSpAwZ8iRJkjJkyJMkScqQIU+SJClDhjxJkqQMGfIkSZIy\nZMiTJEnKkCFPkiQpQ4Y8SZKkDBnyJEmSMmTIkyRJypAhT5IkKUOGPEmSpAxNancBJEntValUpsPs\nBem/xdcURbG6vSWSNBoMeZI0gaWAN38RXHZgmtJzVKVSmWPQk3Z8nq6VpAlt9oIU8HYl3S47sK9X\nT9KOzJAnSZKUIUOeJE1oi6+BniWwhnTrWZKmSdrReU2eJE1gRVGsrlQqc+AeB15ImTHkSdIEV4a6\nC9tdDkmjy9O1kiRJGTLkSZIkZciQJ0mSlCFDniRJUoYMeZIkSRky5EmSJGXIkCdJkpQhQ54kSVKG\nDHmSJEkZMuRJkiRlyJAnSZKUIUOeJElShgx5kiRJGTLkSZIkZciQJ0mSlCFDniRJUoYMeZIkSRky\n5EmSJGXIkCdJkpQhQ54kSVKGDHmSJEkZMuRJkiRlyJAnSZKUIUOeJElShgx5kiRJGTLkSZIkZciQ\nJ0mSlCFDniRJUoYMeZIkSRky5EmSJGXIkCdJkpQhQ54kSVKGDHmSJEkZMuRJkiRlyJAnSZKUIUOe\nJElShgx5kiRJGTLkSZIkZciQJ0mSlCFDniRJUoYMeZIkSRky5EmSJGVoUrMLhhDeC1wCnBVjvKSc\nthyoAI/XLNoTY/xeCKEDuAg4tJx+LzAvxvjwKJRbkiRJQ2gq5IUQrgZ2JQW1omZWARwXY/xhg9VO\nAF4O7BtjXBdCuAq4GnhLa0WWJEnScJo9XbswxngcsLbBvMog6xwHXBtjXFf+fxlwRAhh6gjLKEmS\npBFqqicvxnj3ELN7QggXA9OAG4GPxxg3AQFYWrPcA6RQ2Q38fNuKK0mSpGa0OvDim8B1McZZwGuB\nw4APl/OmAdVePGKMW4AN5XRJkiSNoaYHXjQSYzyl5u8HQwifAeYD5wBrgK2nZkMIncCUcnozulop\nm1rSVXev8ddVd6/x1VV3r/HXVXev8ddVd6/x10X/s6Ijss0hL4QwBdgrxlh76rUT2Fj+fS+wF3BH\ndRVgMxCb3MVt21o2jRrboP1sg/ay/tvPNmg/26C9Bhv7MKyRhrxKzc6mAz8OIbw5xnhrCGF3Ui/e\nv5XzvwS8L4TwNWA1cDpwQ4xxQ5P7eh2wfITl0+joIj2pbYP26cI2aKcurP9268I2aLcubIN262pl\n5WFDXnmadS3p61ImAy8OIZwLXAccAlwYQrgU2AJ8A7gcIMb4ryGEZwI/IwXDu0hfq9Ks5bTQRalR\nsRzboN2WYxu003Ks/3Zbjm3QbsuxDXZIw4a8GGMvsPMQixwwxLqnk3rwJEmSNI78WTNJkqQMGfIk\nSZIyZMiTJEnKkCFPkiQpQ4Y8SZKkDBnyJEmSMmTIkyRJypAhT5IkKUOGPEmSpAwZ8iRJkjJkyJMk\nScqQIU+SJClDhjxJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKkDBnyJEmSMmTIkyRJypAhT5Ik\nKUOGPEmSpAwZ8iRJkjJkyJMkScqQIU+SJClDhjxJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKk\nDBnyJEmSMmTIkyRJypAhT5IkKUOGPEmSpAwZ8iRJkjJkyJMkScqQIU+SJClDhjxJkqQMGfIkSZIy\nZMiTJEnKkCFPkiQpQ4Y8SZKkDBnyJEmSMmTIkyRJypAhT5IkKUOGPEmSpAwZ8iRJkjJkyJMkScqQ\nIU+SJClDhjxJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKkDBnyJEmSMmTIkyRJypAhT5IkKUOG\nPEmSpAwZ8iRJkjJkyJMkScqQIU+SJClDhjxJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKkDBny\nJEmSMmTIkyRJypAhT5IkKUOGPEmSpAwZ8iRJkjI0qdkFQwjvBS4BzooxXlJO2wP4PLAPsAW4GTgl\nxliEEDqAi4BDy03cC8yLMT48iuWXJElSA0315IUQrgZeTApqRc2sa4EHY4zPBl4AvAJ4bznvBODl\nwL4xxpnACuDqUSq3JEmShtDs6dqFMcbjgLXVCSGE6cBhwKUAMcbHgc8Cx5SLHAdcG2NcV/5/GXBE\nCGHqaBRckiRJg2sq5MUY724weWY579c105aRTt0CBGBpzbwHyv11j7yYkiRJGommr8lrYBqwsW7a\nunJ6dX61F48Y45YQwoaa+cPpaqFsak1X3b3GX1fdvcZXV929xl9X3b3GX1fdvcZfF/07zEaklZC3\nBphSN21aOb06f+up2RBCZ7n8GppzWwtl0+iwDdrPNmgv67/9bIP2sw3aq7KtK7YS8pYCvSGEmTHG\nZeW0vYGfl3/fC+wF3FH+H4DNQGxy+68DlrdQPm27LtKT2jZony5sg3bqwvpvty5sg3brwjZot65W\nVh5pyKuUN2KMa0MI3wTOAI4PIewGLAAuLpf9EvC+EMLXgNXA6cANMcYNTe5rOS10UWpULMc2aLfl\n2AbttBzrv92WYxu023Jsgx3SsCGvPM26lvTVKZOBF4cQzgWuA04EFoYQ7gd6SSHuywAxxn8NITwT\n+BkpGN5F+loVSZIkjbFhQ16MsRfYeYhF3jTEuqeTevAkSZI0jvxZM0mSpAwZ8iRJkjJkyJMkScqQ\nIU+SJClDhjxJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKkDBnyJEmSMmTIkyRJypAhT5IkKUOG\nPEmSpAwZ8iRJkjJkyJMkScqQIU+SJClDhjxJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKkDBny\nJEmSMmTIkyRJypAhT5IkKUOGPEmSpAwZ8iRJkjJkyJMkScqQIU+SJClDhjxJkqQMGfIkSZIyZMiT\nJEnKkCFPkiQpQ4Y8SZKkDBnyJEmSMmTIkyRJypAhT5IkKUOGPEmSpAwZ8iRJkjJkyJMkScqQIU+S\nJClDhjxJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKkDBnyJEmSMmTIkyRJypAhT5IkKUOGPEmS\npAwZ8iRJkjJkyJMkScqQIU+SJClDhjxJkqQMGfIkSZIyZMiTJEnK0KR2F0CSxlOlUpkOsxek/xZf\nUxTF6vaWSJLGhiFP0oSRAt78RXDZgWlKz1GVSmWOQU9SjjxdK2kCmb0gBbxdSbfLDuzr1ZOkvBjy\nJEmSMmTIkzSBLL4GepbAGtKtZ0maJkn58Zo8SRNGURSrK5XKHLjHgReSsmfIkzShlKHuwnaXQ5LG\nmqdrJUmSMmTIkyRJypAhT5IkKUOGPEmSpAwZ8iRJkjJkyJMkScqQIU+SJClDhjxJkqQMtfRlyCGE\nLuABINbNegkpQH4e2AfYAtwMnBJjLFrZpyRJkoY3Kr94EWPcu35aCOGbwIMxxsNCCLsA/wW8F/B3\nIiVJksbYmJyuDSFMBw4DLgWIMT4OfBY4Ziz2J0mSpP5GpScvhHAdsB+wHvg0cB9AjPHXNYstI526\nlaQdRqVSmQ6zF6T/Fl9T/vatJG33Wg15q0nX3X0mxviLEMJLgP8A/gnYWLfsOmDaCLbd1WLZtO26\n6u41/rrq7jW+ugDuu+++vadOPeEb69ZdsC/A1Kmn/fOiRYveMWfOnLVtLd3E0FV3r/HXVXev8dcF\nLN3WlVsKeTHGh4F31fx/ZwjhZuBjwJS6xacBa0aw+dtaKZtGhW3QfrZBG33nO3fftG7dBcCuAKxb\nd8G+//3fN909Z057yzXB+BxoP9ugvSrbumKro2t3B/aIMS6rmdwJ/Bx4aQhhZs28vcvpzXodsLyV\n8mmbdZGe1LZB+3RhG7RTF3DbLbfcuRAOn1874/Ofv/mi0047ZmF7ijWhdOFzoN26sA3arauVlVs9\nXfti4AshhFkxxt+FEJ4LHAy8GngycAZwfAhhN2ABcPEItr2cFrooNSqWYxu023Jsg7Y566yjrn7N\na3r2hcsOTFN6lixb9o1zSJeqaHwsx+dAuy3HNtghtXq69pYQwnnAf4QQCtLAi/kxxrtCCCcCC0MI\n9wO9wA0xxi+3XmRJGh/p2rvXzIF7HHghaYfT8ujaGOMVwBUNpj8KvKnV7UtSO5Wh7sJ2l0OSRsqf\nNZMkScqQIU+SJClDhjxJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKkDBnyJEmSMmTIkyRJypAh\nT5IkKUOGPEmSpAwZ8iRJkjJkyJMkScqQIU+SJClDhjxJkqQMTWp3ASRJzatUKtNh9oL03+JriqJY\n3d4SSdpeGfIkaQeRAt78RXDZgWlKz1GVSmWOQU9SI56ulaQdxuwFKeDtSrpddmBfr54k9WfIkyRJ\nypAhT5J2GIuvgZ4lsIZ061mSpknSQF6TJ0k7iKIoVlcqlTlwjwMvJA3LkCdJO5Ay1F3Y7nJI2v55\nulaSJClD9uRJ0hjxO+0ktZMhT5LGgN9pJ6ndPF0rSWPC77ST1F6GPEmSpAwZ8iRpTPiddpLay2vy\nJGkM7OjfaeegEWnHZ8iTpDGyo36nnYNGpDx4ulaSVMdBI1IODHmSJEkZMuRJkuo4aETKgdfkSZL6\n2dEHjUhKDHmSpAF21EEjkvp4ulaSJClDhjxJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKkDPkV\nKpKk8vdqZ/u9eFJGDHlSZnyz1kilY2b+ovQbtQA9R1UqlTkeO9KOzZAnZcQ3a22b2QvSMbNr+f9l\nB5a/duGXIUs7MK/Jk7JS+2a9K+nvaq+eJGkiMeRJ0oS3+BroWQJrSLeeJWmapB2Zp2ulrCy+BnqO\nqjldO2HerL0WcdsVRbG6UqnMKU/RYv1JeTDkSRmZqG/WXovYurKuvAZPyoghT8rMxHyzduCAJNXz\nmjxJkqQMGfIkZcCBA5JUz9O1knZ4E/VaREkaiiFPUhYm5rWIkjQ4Q540Cvz6DknS9saQJ7XIr++Q\nJG2PHHghtcyfEpMkbX/syZOkCcRLC6SJw548qWV+fYd2DH2XFtx+QbrNX5SmScqRPXlSi/z6Du04\n/GUQaSIx5EmjwK/vkCRtbzxdK0kThpcWSBOJPXmSNEGUlxYcDvcsTFMWz/fSAilfhjxpGzlKUdur\nwY7NcuDFTTXf6XiT3+ko5cuQJ20DvwBZ26uhj00HXkgTidfkSdsk3y9ArlQq0yuVF52abuP79Rqj\nte92Pob2G/tjc2LX747H9pq47MmTtFU7eyhHa9+59rKOzuUBi6+BnqNq6mbEAy9yrd9c2V4TXFEU\n2+OtKIqiezsox0S9defSBsB0mH1qujF9dLc7/6ewuki3+T8dze030wZj8djStlYXUJS31QXMPnV8\n2qq1fdfUxy2j8Bhaeg4AT0nlmH0L8JTxPN6GW7bV42YsjpFBypTN61A7by22l23Q/ltLdW9PnrLT\n1+OxcQrMOwwuf2Ga00rPUP8elKLJL0Aeq8EZ2/un87EclNJo2331cfaB8Cnga8DRwPifmapUKk+B\neUvh8vLCtw8srVQq+8HsI2vLPLKtNn8t3XDHZjHEdzqO92CitL8DToZD3gWf/YfUXluP5bHctTQx\nbAcptdGtaDW9ehv5jfLT9MyZb75w1apVO2Qb0K8XY2Ex3CdYhunVoIUeu1bWLRp8gu5f1v3PHIse\nt4Flnvu7tK+heo221t9TyrKdAwf/LtX/yqYf93D1lebvf2YqU/9l0n5XFnBe0Tfv7GH3P0T7b3MP\nRuOexDc80kqvb19vzKoCri+P7eedM5o9uc0ery0e1w22s7J8PMcXsKL2WG5LL9JwrwmtLj9W5Wi1\nXQe52ZPX/ltLdT+mhevu7p7V3d29uLu7e1l3d/d93d3dxza5btHqA/M2wgOh7oVg1qzzittvv32/\nbdvOkKGpqdNYzS43cL3aUxPXDxnymnnxG+mpjpEGsWZDRuPwdXcBPeVt6dZtt/rmUIapc+BVf4Ur\nBw1KA8s0b3VatjZgnVXAVQXM+l6qj8HLlLZ3wEdTm/cPlmnesXfBSQ3bNN0ahvpb+sLnvmenclSn\n1YeMg3+XHvfsU8tjf2v9j6z+GoW8hXX/V+tiuPqoDdDH3pXqdWt9r+mr72rYHbzth39uNnesp7Ic\n8D2Y/ctUX0Pu5ymDl6cazGsf08nlcdOekDfSQDRagXest9vCa4Ihr/237TPkdXd3T+nu7n6wu7v7\n6PL/Z3V3dz/S3d393CbWL1p9YDvybaw+GQ69z4Ev8DNnvvnCkZQxvaAf8tv6Hpy+Zfc/B45d3T8U\nDAxwaTvzapabuwH2Pj8FgAM+Wh8W+pdl37P7HseKAuYWg/UoDfemVm73lrT+iqKvByUFkP5vZPuf\nCc/9Prx+Xd/+5v4u3ffb/i3Vsg98IT/2rjLknHrFFVe85Pzzry9mznzzhWn7L7g9BZyesiwrC5jb\nW1NHvcCL0vqH/LbvzX/ez8oen1tS/ffV3WDHWZpe21t2Xu0bb13d1NbfygKOLkPdxQUcVcDbi4HB\nb97PGrfhUL14+5+Z1m8U5A74aFr/kN8OnLf/mX1Brl9AWp3qpdr713/+1Kkn/LxRb/Ygx32/aeXx\nu6b/8buy6OuFu6qAox5Mj2VhAcfc3ddG1cfCU+DYFWm9Kws4aB3sd8fAYL+wgM8V6djY//6+7V5Z\nwD/9vmZ7g9Zv3weqf/xVg+O17oND/XP42A1wwKL++zn2rlSGSwt4+4bB2/R558CRDdrzlY8Az95z\nz0MuO/jgnmLPPQ+7vNXXwWY/NI78Q93YXMM6Vtvdhpshr/23luq+UhQFYyGE8HrgszHGp9dM+wrw\n2xjjR4ZZvQACsHRMCredqbsO5vq6LytdAgvH/FqrSuVFp8LtF/Rd87OGmTPfedHSpV8/dWBZ9z0F\n9ngfHLU7HAGctQQWHg7HLYGr/j4teQXwZuDtS+E5u8JVT03TLwaeBkwFXg0ceWtR/OQN/bc/ewnc\nvldfWf4AnAO8EFgP3Am8FLhjBdz7RXj+G+CV+8EG4MZeoBPmkA6fF5fbuG0L/OJR2LUACihWQecM\n+P4etY8ZDtoM61bC1F1h0gyYPil909AmYE/gIeDXvbBLB+xcgVnAnVugowNmAF8gvdddARwPHFHA\nERW4H7ingC0V2AxsKtLg9t5Kqovqtxk9oyz3pAI2VNL0jQX8fQWeDvwZeBh4HHgC8CTgT6RtVoA3\nAL8F7imX6UwPly3l/U7lPb0wpQN2qqTligJ602QmkcrZUa63pVyvUi6zpoDdKmmZfwIi6bFPAc4v\nH8d7yvVmAA+U+1xTbr+D1FYbgOlFKvfjwJMr8Fdgcrn8unJeZ7nNzkraZgXYt9z+fcDmcrmiLHdn\neXytKx/XEytpm7OBX5TH0HTg10Wq/y3l8geV2wPYD/gO0Fv0Pf6NZVkmVeAR4AlF2uekCjyzfHx/\nKPfZCTxUgSeSCraG1IZ7AbsB3y/bbH257TVle/aW9byFVO5N5eN9PfAq4ENl+7wS+CmwsqyvAJwE\nXA2cDXwW+JfysbwDWFbA1HJ7G0jH/KYCHi1gVgeUP4DBAuBFZVvesgV+U9bdFOAfKvD7cv2pZbk3\nA7uU5d/UC3/6H3jlC9Pz9Ubg/wD7A/9bLvOnzbDTRtiwHp62G0zvgIPpu35yDel6yh9tgT06Un0B\n3PZneKACnX+FJf8C//j5VDF//QpMfwQ6Ctg4GaYcCJ295S95/AGgUqk8G+bdC5dPTtv6wEZYciH8\n75fhgGuheH46Joufw8Yfw51n9n9NeM1pRfGTQa5hrH/d/ANw5K3Af/W/XrR6jXBHAZM2Dne9Y6PX\nY3jNrbD4rWP9XlCnm/QEnzDvx9uhblqp+7FKn93d3R/s7u7+ft20s7q7u29qYv2i1fS6o9xoeBqu\n8afp8SxHo9O1bP2UXu3xWFmknrKrCtjv9oGfPOcWjXteqtPOLmD/2weWof6U3CVFXy9QbW/Mu4rU\nW1RbnhNq5p9Q9PUifaRI1/zUXq91boPlLy7v7yi3X533ziL1jlxZ/r21R6jo31N1VpF6bFYXsKCA\n+Q3KfXYB/1yk3pi5dY/njroynVHAm8o6eFfdNuaW806umX5qAW8t4JjyMVenH1/A24rU+1O7/bcW\n8P6a/z9WLjtvkDo9s4BDyvJcWsDry/Zf0KCd59TUzfFlW1WPlyuLFICXlsu8sYDnFXBokY6Pu8v1\nX16ue2kBby7gdQW8pFx+aV29zisfT31d313AYeV2l5bLXVXAe8ryv7FIx8JbCjioXHZleTuqnHZp\nuf67i9Q7+fa6Nnpbuc25NY/5nUXqJXxTuY07yrLUHj9zCzi8gIMLeEVZlur676r5+5gCXl2k58ZV\nBRxX9D+ejy3gpWU555XLfa6AWMD76tp3ftHXC3hQ0fd6s6LofywdU9ZRbV1Wj+W3l4/lY3Xz31aW\nrXpMrSz6H7cnlOu9o0E7VXtVq8+fuXXzq5cOzKuZ/s4CPlQ07qmtnpI/6JGBx+Z7CpjXO3C949em\nntXGvY9Dv26uLPqfgZj/01SGRj3JIz0NPPz1pWN0syev/bft9nTtmd3d3bfUTTu1u7v79ibWL1p9\nYDvKrXG3fP31O+P1FRZDD7zof93TqqL/Re7HrBsYThcWja+Lu77m7wMWDayLFQWcWPMm8dqa9eq3\nVX1TLIbZV6OweXS57vXlbWWRgtfqIr3pNmqXRtu5vmj8mE8qBi/3VUUKE/XT6/e7skhvmI32u6Do\neyMsyjapf+NcVVe2nrrl5zbYbm3IHqzstW/4KwfZzsKi7027/s2+ut7JRQrGtfOXFo2Dwfy6x3d8\ng33Wf0BYWaRgVl3n5AI+XAx8031n0T8UVwN7o4Be/1irbVRdZrCgMq9IobJRfVY/DNSvf33NPmoD\n2HHDtHu13G9ssL9Li77joLr8ikHqs/616Pqa6YcOsvxwx8/RRePj+aRi4PFaO79nkO0N9jpTvTSi\n0XWcR9c9ntp5s763jQMvGn11zy2D72fo13X6XS6yqun1RvlmyGv/bbv9CpXVpD79WtNI/c7N6BrV\n0mynZs58+h7LlvWfNmnSd/+wefNbngIwdeppv7j55nNuJ3XZjqmiKABuItX9KdS1Qf+yfht4P32n\nE67ZGd4HXFn+/0HgE+X8K8plAS4DPrB1mzNmPKGT8rH1bf+pwBnAqUDcBEftNHipDwduBeaN4JFW\nPZl0iuiY8v81wD5DLD+lye1uAD4KPG+IZX4FHNLEtm4FziM1S72/kE51VX0b6KGvTXrK9Y6hsW8D\nL2uiDPXuJ50SvKlmH5+ifzufRWr/Sjl/A3Bpg7KdSzo9939r5l9Tt+wFpPZ9LfCWmukvaaKstwKX\n1KxTu7/auvp0Ob22fI2W62Fgu1XbqLrM+8vHdjipfqvTLwde16CM95OeF9W2ql2/dh/n1mzr5TXz\nBmv3HtIlA/V+DHyxbvkzaK4+az1jkOnb+rbyR9LxsgY4mfR4aw313Bxoxoxpuzz5yX+zx7JlJwEf\npu9Sgg8BrxhivRlTHntsUfUJ95TyNqjq62Z399F7LFvG6+vLsGpV4/Vmznz6Hgzxul4UBd3dR9+7\nbNlbXt/XVsOvN8q66u41/rrYTk/Xvqa7u/vBumlf7+7u/ngT608Yq1atKmbN6usRmzXrvGLFihXF\n+edfX5x//vVF2aO2XVi1alWx//5nFYNdAP/Upx5bVHu7dt55btF3Kqfa03NpUanM3fpYd9nlxGLF\nihX9tl9fF2eccVXRv8eotjejesH8m2v2U3tqsbZ35MMFvLeu92Jp0f/U2cdqtlF/urbaK1bfa1J7\nSvjsIp02u6RIp5aqyzbqDaoOSKjtDX1HMfB0bbW3r77n9OQinV6s3cZQp8bfV6SeqdrTtQuLgWV4\nfwGn1bVdbXnOLtJpwNreiep97dd7fK6uDIc0KFttr1BtT0dPg2Ub9f7UHw9nl2Wvreu5DbY1WM9P\nfc/RYMsd0eQ+qiNFa6cfVAw8Fmrrs3b92ksB6vexsujrzRusd3l1kU5L1u/voAbLv6lofCycVbdu\n9ViuHktqMNWyAAAPEElEQVTvr5v/kSL1Cla3M9jp2vpe2XcU8C9FX2/5iUV6LlXnv7PoO4Vee7p2\nQdGoZ7b62rJq1arihS+sPtdPKuA15f5XFpXKwEsppk5d0O81aaSvj41ey9O0/vuZNeu8pl7bG21z\ne3pP0LjZ5iw2lgMvJpE+on48xvilEMLzgf8EZsUY7x8ue5I+8i4fk8JtZxYtWjTthBM+9zaAq69+\n9w1z5sxZ2+YidQG30aANFi1aNO3d777iuIceeuyF69Y9a+bmzVf8HaQexwsu2OuEz3zmjsMATjrp\nZd++7LLb3/Tww4+/YLfddr6vs7Nj46RJO2864og9b7/22v8+A+Dccw/76EknnfSX+u3X1gXAIYf8\n+3Xr15/13NSb8e/ATgUcWkkXo59ZwIkVuJtK5Vurd975L79cv37G3kXxhunpYv5bN1Uqmx8vit4t\n6SL6nToqlUrR0VE83ts7ZQ84aEoaqPAc4CekQQ0vBx4lXdg+hXQR/NO3wBfK0RFnldXyhnLZM0mD\nHwKpl+ALpAEEl5A6tBcAu5MGbawF3ki6QHsGMJ/0uG4kXcy/G+kC+98CvwFWAM8HPlNu63RSD94L\nSAMLZpAGOdwKfIs0OKTaY9FT3v8FmEnqXb0V+C7wGOlC/+eV5buV1CP0CuDtwFWkHtWbST0zzyBd\ntL+WNHhmYVn22vvq/k4j9WROL/d5P6kn5UbgonKZy8r1Pky6eP/imm38gdR7d3nN9uaTBhX8Q81+\nPkLqjb2TNADlU+X0+aTBPWtJF/3/nr5eoY+U7VC7P8p1K2V5KOv5sbIctcudTOqxvpo0kAPgB6SB\nFleV/38AeJA0aOCJNev2kNrziaSBE5Da+ETSMXROWWcfJQ1W+QRwN6lXbibpGKpu60Tgn0nHWCdw\nIH0DLap1u5A0kKQLeHY57/vAs0i9ZpfWPKa7ST1lF5GOhR+W5Tyl/P8/y/rcSBpscyTpWH+QdAxW\nT9wcUNbhauDdwIO98ISONFBnLWmgR7EBtqzr7NxpTW/vLrvDobum5+odpA6qvUjH/5INu+++05SO\nDn5eqTzyy4cemnwU/N1O6Xn3bwXsU4GT6Ow8+49Pe9oj34Je/vrX9ft2dHRurn1tSa9ZV859+OE1\nz99tt857Ozunbp40afLGI47Y8/arrlr8iccfXxego7LLLlN+9alPvemU+tekkWj0Wl6dtnnz+p2g\nozJp0uSNI3mdb/P7QxeDvBdo3HQB/7GtK49ZyAMog93VpFfg9cDHYow3NrFqgaN52qmpEVXj9e34\nfd+KP+lFsHEx3H0DzP50ud+TqfslgWbLNXDUG8CGKbDzrPSGv+4umLKhHA13Pcw+FjZPLkfI7pRG\n8hWTYEsBHb2w/n7Y5eg0QnL9v8HUh2HzdOAImLw7bHkMNvwujWitPC1tY/LfAlNg3Wbgj9C5GSY/\nYdKkzo0zZkx96urV6x/YtOkn58MBV0NHJ2zcAr0dacTjpvLvXcpHtDZtauuI2q0jNcsRpxX6Rsyu\nJq1Xoe/02oZy/Q3ltE7SqbNdyr83lrdp5Tagb7Qs5bYghbbaU3a99I3unVIutwHYuZz3R1Ioq47u\nra4ztVxnYzltC+lxV8tVHZW8tvx7S7nf9eX0SeX94+V61VGsnfSN4O2kb2TyRvquMNkEFJVUf9XR\nvdU6mkzfiFvK7RdlvVRPN3bWzO8sH8+mct3q6NRqXXWW26iuv7lcdlLN46mU2+skhfuNW1J42lxT\n353Apk2w+R6Y+gzYNBXWTYKpO6X99m6BTZV0/G0Apm6BSi88ehd03Au7vh0qHbDxYdhpd9j0MFRm\nwOQZsHEzdKyFLY/CpF7YsqKs76cCv4ctPynL/FKYvA8Uf4UlbyyK4v70CyCzy+G7faNeofa5XXkp\nbOpMI5U7NsPmO2+//YLvzpkz527K16GB30Iw+9jy7zH/ZY4JzNG17dfS6NoxDXktMOS1l0/s9rMN\n2sv6bz/boP1sg/ZrKeR1DL+IJEmSdjSGPEmSpAwZ8iRJkjJkyJMkScqQIU+SJClDhjxJkqQMGfIk\nSZIyZMiTJEnKkCFPkiQpQ4Y8SZKkDBnyJEmSMmTIkyRJypAhT5IkKUOGPEmSpAwZ8iRJkjJkyJMk\nScqQIU+SJClDhjxJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKkDBnyJEmSMmTIkyRJypAhT5Ik\nKUOGPEmSpAwZ8iRJkjJkyJMkScqQIU+SJClDhjxJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKk\nDBnyJEmSMmTIkyRJypAhT5IkKUOGPEmSpAwZ8iRJkjJkyJMkScqQIU+SJClDhjxJkqQMGfIkSZIy\nZMiTJEnKkCFPkiQpQ4Y8SZKkDBnyJEmSMmTIkyRJypAhT5IkKUOGPEmSpAwZ8iRJkjJkyJMkScqQ\nIU+SJClDhjxJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKkDBnyJEmSMmTIkyRJypAhT5IkKUOG\nPEmSpAwZ8iRJkjJkyJMkScqQIU+SJClDhjxJkqQMGfIkSZIyZMiTJEnKkCFPkiQpQ4Y8SZKkDE3a\n1hVDCB8HeoCVNZN/GGN8Tzn/YOB8YBqwFjgtxnjbthdVkiRJzdrmkAcUwL/HGN9ZPyOE8GTga8DB\nMcafhBBmA98LIcyMMf6lhX1KkiSpCa2crq2Ut0aOAn4RY/wJQIxxMXAPcHgL+5MkSVKTWu3Je34I\n4fvA04BfAqfEGJcBewFL65ZfCuzTwv4kSZLUpCFDXgjhrcBnGsx6DPgQqSfwYmAd6fq774QQ9iFd\nh7e+bp115XRJkiSNsSFDXozxq8BXh1jk29U/QghnAh8g9eKtBmbULbsr8PAIytY1gmU1urrq7jX+\nuuruNb666u41/rrq7jX+uuruNf66GHhmtGmtjK6dCTwUY3yknNRBukZvI3Av8I66VfYGrm5y84Nd\n66fxsRTboN1sg/ay/tvPNmg/26D9tjngQWsDL84DrgwhdJb/n0oaXHE/cCPwnBDCqwBCCK8Fngnc\n1ML+JEmS1KRKURTbtGII4YnAVcABwGZS2jw5xvibcv6rSNfr7Qo8Cnwwxvij0Si0JEmShrbNIU+S\nJEnbL3/WTJIkKUOGPEmSpAwZ8iRJkjJkyJMkScqQIU+SJClDrfx27agJIZwKzCOFzt8B74oxPjDI\nsicDJ5N+O3cp8I4Y45/Gq6y5Gkkb1KxzNfDeGKMfFkZBs20QQngS8GlgP2An4G5gQYxxJL8oIyCE\nMIv0041PBDYBn4oxXt9gueOAD5Pq+2HgfTHGn41nWXM1gjZ4P/Bu0vvW48CpMcZF41nWHDVb/zXL\nzwbuBN4ZY/zy+JQybyN4DrwAuBZ4EumnY0+PMd481Lbb/uYcQngjcCLwkhjjTOA24IZBlj0CeD8w\nO8b4LNKXL79tvMqaq5G0Qc06rwJeQwrbatEI2+Ba0m9BP4f0M4KTSV9OrhEIIUwhfXH7pWWdHwJc\nEUJ4bt1y+5JC9SHlcpcC3woh7DTeZc7NCNrgEOA04LUxxr2ATwHfDCFMHu8y56TZ+q9ZfmdgIfB7\nfO0fFSN4DkwDbgUuLvPPe4CTQwhD5ri2hzzgOOC6GOND5f9XAvuFEJ7dYNn3AlfEGP8MEGM8JcZ4\n+TiVM2cjaQNCCLuSfqKuB3/yZrSMpA2+AHwkxljEGDeTAuG+41TOnLwaKGKMXweIMf4auIWBHxyP\nAb5bzqdcvgK8cvyKmq1m2+B+4M0xxpXl/98l/T76M8aroJlqtv6rziX9Zv1v8LV/tDTbBocCf4ox\nfrNc7kcxxlfHGLcMtfHtIeQFan6bLcb4OPAgsE+DZV8A7BJC+M8QwtIQwhdCCLuPUzlzNpI2ALgI\n+DKpJ1Wjo+k2iDHeEmP8I0AIoQIcDvxwnMqZk72AZXXTljKwzvu1TWlZg+U0ck21QYzxlzHGH9dM\nOpL0/BjykhINq9nnACGEF5MCySfKSfbkjY5m22A/YHkIYWEIIYYQfhhCeNlwGx+Xa/JCCG8lnW+u\n91h5v65u+jpgWoPl/wY4iNSd2Qt8vdzuMaNT0nyNVhuEEF4N7E86tfgPo1nG3I3i86C6vQpwOfC3\npE/YGplpDKzz9Qys80bLrQN2GaNyTSTNtsFWIYRXkk6fvyXG2Dt2RZsQmqr/EMJU4HPAcTHGjSGE\ncSrehNDsc2B34FWkSxbml9cJ3xxCePZQ12OPS8iLMX4V+GqjeSGE/wGm1k2eBqxpsPgjwJdjjKvL\ndT892HbV32i0QQhhOuk07ZExxi0+0UdmFJ8HhBB2Aa4nXah7UIyx4XIa0mqaq/M1DAx0g7aNRqTZ\nNgC2DoC5CDg6xvj9MS7bRNBs/Z8L3BRjvLtmmqdrR0ezbfAosCTG+FOAGON1IYRPAS8iXb7Q0PZw\nuvZeUnclsDVIPA343wbL3k9Ks7U2j13RJoxm2+BlpN7U74YQfgPcUS7/mxDCi8aprLlq+nlQXqj7\nbdKLwJwY46PjVcjM3At0103bG/h5g+W2fqIpe1D3An4xpqWbGJptA0II84CPAa8w4I2aZuv/SODY\n8rX+N8Bs4OIQwiXjUMbcNdsGyxiYfwqGyUDbQ8j7EjA3hPC08v8PAz+KMf6mwbKfBxaEEHYLIXSS\nRpcMmmDVtC/RRBvEGG+NMT4pxrhnjHFP4KXl9D1jjD8Z1xLn50s0/zz4GLCW9PVBfsjZdj8ANocQ\n3gEQQng+acT4V+qW+wrw+prRbvNJn769DrJ1TbVBCOE5wPnAq2OMvxrvQmasqfovX+OfUfPavxj4\nUIzxQ+Nd4Aw1+zr0NaA7hPC6crnDgJ2BId97K0XR/msnQwgfII2c7SBdcPju6iiqEMIvSacHf1l+\ngj6fNOpkPfBT0vdVPdZ4y2pWs21Qt04X8OsYY+c4FzdLI3gerAf+TAp6VetjjPuNd5l3dOUL6tX0\nfe/Ux2KMN4YQPgmsjTGeVy73VuCjpK+rWQmcEGO8r03FzsowbbAmxvjJEMJngbeS6r5WT4zxe+Nb\n4rw0+xyoW+cHwBdjjNeNb2nzNILXoTmk67B3Jn1f5wdjjHcOte3tIuRJkiRpdG0Pp2slSZI0ygx5\nkiRJGTLkSZIkZciQJ0mSlCFDniRJUoYMeZIkSRky5EmSJGXIkCdJkpQhQ54kSVKG/j+i+JuVpwfd\nxgAAAABJRU5ErkJggg==\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde39acb110>"
},
"metadata": {}
}
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "##Outliers"
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "def get_outliers(df, key, num_std):\n if key == \"bf\":\n key = 0\n elif key == \"rho\":\n key = 1 \n outliers = {} \n ai = 0\n for i in xrange(key, len(df.columns), 3):\n d = df.ix[:,i]\n d_std = np.std(d)\n d_mean = np.mean(d)\n cutoffs = [d_mean + (num_std*d_std), d_mean - (num_std*d_std)]\n env = ai_cols[ai]\n outliers[env] = d[(d >= cutoffs[0]) | (d <= cutoffs[1])]\n ai += 1\n return outliers",
"execution_count": 1152,
"outputs": []
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "def plot_outliers(df, key, num_std):\n if key == \"bf\":\n key = 0\n elif key == \"rho\":\n key = 1 \n ai = 0\n for i in xrange(key, len(df.columns), 3):\n d = df.ix[:,i]\n d_std = np.std(d)\n d_mean = np.mean(d)\n env = ai_cols[ai]\n ax = plt.gca()\n if key == 0:\n ax.set_yscale('log')\n plt.hist(d, bins=100)\n plt.xlim(np.min(d), d_mean+(num_std*d_std))\n plt.title(\"%s $\\mu = %.4f \\pm %.4f [%.4f, %.4f])$\" % (env,\n d_mean,\n d_std,\n np.min(d),\n np.max(d)))\n plt.show()\n ai += 1",
"execution_count": 1153,
"outputs": []
},
{
"metadata": {
"scrolled": false,
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "plot_outliers(bf, \"bf\", 20)",
"execution_count": 1205,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAHFCAYAAACdPq/GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X20XVV57/HvkZQXE0BQii+IW9PyJFaFgoiCFpAiom0d\n9qrVXqERtdBWqjLUWqhIBUWLkWJsxEqFBsQW60WvpRRbja2veGkgeuPw4c2jpepFSy2EFwnx3D/m\nOrKzc/bb2WdzMs/5fsbIWDlrrb3W3M/eyf6dueaae2JqagpJkiTV5WHz3QBJkiQNzxAnSZJUIUOc\nJElShQxxkiRJFTLESZIkVcgQJ0mSVCFDnCRJUoUMcZIkSRVaMt8NkMYlIr4AHAEck5nrO7adBbw+\nM/ca8phLgN8FfgdYCewE3ARcDrw/M+/r2P/ngPcCpwKvysy/nt2z0WIQEY8FPgJ8D3h1ZjobeyUi\n4rXAUcC/ZuaHImIC+I3M/NT8tkwLmSFOC1JEPBE4HNgAvBJYP8NuQ31ARsROwKeAQ4G3A/8EPAA8\nBzgb+M2IOCYz7272fzTwcWDP2ZxvXCJiV+DdwL/TtC0zz+zzmLcAu1Kezy7AKuDqzLym2T5BqfMz\nM/MPehznsZSw+5JR2tP22GcCT8jMv+2xTwAvB7YATwJuyMwP9Nj/I8CngRuAHzWPA9iSmVsH2N6z\nVs05VgCvByabff4+MzcAPwd8JTP/tG3f2bxeo7weXR8bEY+h/ELyMOAQ4B8zc3WvtvQ6ZkQ8ojne\nlqYOP8nMd496vm7PLyJ2A84Bfkip5Q8y84K2/XvWutf2zPxwRHyG8nqTmVMRMRERJ2bmukHbLA3D\ny6laqE4ANgIXAP8jInaZYZ+JIY/5BuBo4KjM/GBm3pyZk5l5KSUwLqeEuWkvp3xIHzts48fsncCd\nmbm6+QA6ICJe3+cxDwfOAjYBXwa+3xbgfhs4j/Jhu1uf45wH7D0H7Zm2CyUw9XI58C+Z+S7gjcB7\nI+KEHvs/GfgEcAvw38A9zZ/XD7i9a63gZ79gXA6ckZnvAX4e6BXKhqrPKK9Hr8c2Qewc4B2Z+Vbg\nZcCbI+KPep2gT3vOBN6bme9uguvdEfHqUc7X6/kBfw3c3pzvj4GXRsQL27b3q/VQr0VmfhJ4TkS0\nhmizNDBDnBaqE4C/Ba6k9G78xhwc81Tgksz8ZueGzPwe8OfAayJi52b1FZl5AvCTOTj3nGh6El4L\n/F3b6v9F03vQwxTl8vHhwL5N+AAgMy/PzDdRQkvXYBwRz6GErom2dbNtzzB+Cjy1aetdwH8Bz+qx\n/43Ar1Ce6zOBI4GPAecPuL1rrRrvobyP7mh+vgw4d6aGzKY+o7wefR77C8BhwIpm3/8CrgG69vQN\ncMznse2/j88CB49yvm7PLyJ+EXgJ8M9tu/0L8Kpme89aj/BeXQO8bZA2S8MyxGnBiYjDKZfNPpqZ\nmymXvl454jEfD+wPfKHHbp8BllEu+0wHux3N0yht/Hbbuu8AT2subXWVxVebIDSTXoFhJ+D5lNdi\nTtozqMw8NDPXNO1YSun5uq5LO5cAl2fmF5vn+jXKOKc3N5fHem5vO+eMtYqIvYAXU8LD9L5fzcxr\nuzR/lPrM5vXo9dj7gX0pPc7T/hN4ZJ929Drmw4C/i4jpY/wmD4akWZ+vy/M7qFne0bbu/1F616F/\nrWf1WmTm14FnNO89aU45Jk4L0QmUy2e3NT9fBnwiIvZu6/0Y1uOa5Xd77DO9bb9ZngOAiHg28LbM\nPK75eRdKL8ZBTSgdxeOb5d1t6+6ifMA+Gvhxj3adTOnVejxwf2ae07FLrzF/qygD9p8zV+1pDHtJ\n/DWU8WkfmWljZj4A/OP0zxFxHPCt6UDeb3vb+m61egblZpjlEfF04DGUy8FnZuZPZ2jSKPWZzevR\n9bGZ+R1gn47Vh9IWSPuYqT2nUsaZfjMiPgp8dfompBHPt4rtn9/9M+y3BNgrIh5O/1qP8lpcRwmL\nfz9A26WBGeK0oDSXMn8LeGvTawLlEs2dzfoPjniKLT22PXzEY097EeWO12mHAUs6A1xzeWcN/f8d\nTwGnZ+YPKGOStnYEhunLWXv0OMbVwP/NzHuac6+PiP/KzL/o92Qi4lHAHpl5S3OJq93A7Wme73ls\n+3wfC+ze3OAwbQo4KzNvb3vs04DnUi7fndqvzW3n+4PMnPFSfI/tvWr1qOmHZ+a5zfaPAO8A/mSG\n08z29er1vHq9HsMc55mUS58H99u3hy9QxqkdTBlz+smI+MfMvHO25+vx/L5CuRFpHx7sTYtmuQf9\naz3Ka/FtSk+gIU5zyhCnhebXgUcAFzZ/2r2S2Ye46Z6WJwFf67LP9G/q/z7Lc0w7inIH3LQjgc93\n7pRlOpPXDnnsmXoLljXL+2bYNn2uzuf8BeB1QN8QR5mS5X2jtqd5vtsEsIg4Emhln6lbmktaX4+I\ni4HrI+LszLy4T7tPBL4+7PY+tZoOJ59t2/5vwLsoIa6zZ3FWr1cfvV6PgTSXBj8AvCQzc4RDXQ68\nMzOvj4jfo7zvL6FcVp3t+WZ8fpl5e0S8hzIu7mtN2NuP0mN6B/1rPcprcQfN2D5pLjkmTgvNCZTL\nXU/v+HMC8KzZ3iWWmd+lhLPf6rHbkZQP6Q2zOQf8bMqFA9l2SpRfYfBLVv18D9ipmWph2u7Ncsbw\nGRG7RcSZbeOWoISNJ/Q7WUQcAnwzO+bPG6U9o8jM/wauAt7f5Y7ldq+i3MQw8PYBavWdZvmjtu33\nUnoTH8X2lxzntD4DvB6DHONhwIeAt2Tm1SMc59mUS83XA2TmBynv9eMjYo+2/QY+X7/nl5lvAzZF\nxKmUu8avoUw5cz/9az3Ka/ET/LzVGIy9J665ffv9mbm8787SCJoPzuOBVVnm3Gq3ISL+jBLmzt7u\nwYNZC7wrIp7R2dsSEY+jTDFxUfOBMFtHAd+ZHrsXZbLgZwEnR5mD7mc9OLO8nLqR0qPwJMo4O4AD\ngJuau/9mshJ4C2VevK806x4DfKvLudodCewTEYc1Pz8deFJEvAu4eJbtGVhEHAF8EjgpM6cHud9H\nufS9M13uHG5CxNPZNmwNsr1frb4B3E65ueLWZt0ySg3u4MGenWmj1meo1yMzb+rx2GlvBz6SmZ8D\niIjXZOZFA7Sl85g/D/xH+8bM3BgR36Bc9pzN+fq93w4C/jkz/6M51t8Alzb79qx1RNzZa3uf5703\n5SYKaU6NNcRFxN6US1i9BoNLc+UVlA+JbuNOrgT+J7MPcecDLwCuiYi3U36L30IJWe+kfCi3Twx6\nEOXS7vQH88qIOAogMz/f5RxHU6bAmHYipbfi1oh4GW2X4WZzOTXLZLRXAC/lwQ+il1LC4HS7VwEr\nM3N6Pq6NwPsy8yvN9odTxpZ1zo+13U0GmbnNZa0o35SxJDNPb1vXsz199LuxYTMltP2wOdcEZWzc\n30zfOTrD84XSc7YT3S+Tddves1bNHa4XUe5Q/WrzmKOBNZn504jYJjj1e726tH3arF6Pbo9t9n8N\nZfzXzhHx/Gb1QW3bfwd48oDt+SzwxxHxuLZQtQK4rm08Yb/zraLt+fd7fhHxJcoUJR+PiAMpr+Oq\n5rE9az3Iv50e9mWEHnqpm3H3xL0HOAP4qzGfR4LyC8M/9ZgC4xPA70XEoZSwN9Q3KGTm/RHxPOB0\nytis91L+Dd1MGcfz7o7LOOdTegZozvVHzZ8pSgCYyXOB/46It1ImkL0O+Nfm588N094e3ky5nPhW\nyqzz1+W232BwIOWyFvCzD6+PRsR5lJ6r/YA3ZOaVABHxYuDXaObiawbqf3p6e7NuAng/cBylp+RC\nyiSvNw/Qnulj7Eqpafv/W48BljWX5qZNAX+Smbc3PTuvBY6OiBdQpon5J0rvzozPt3EP8APKZM0z\nmXF7v1o1zgLOi4hzKfOY3ZBt39Awg1712a7to7welPn0ZnxsE7DWUurfHuAvbfv7QcCJEfGnbUGs\na3si4kTg7Ij4D8rlxi2UCZkZ8HwzvXa9nt8fAk+NiCdT3jsv7vg32++9ONB7dQaHUT4PpTk1MTU1\nnm8CioiXAvtk5tqIWJ+ZR/d9kFSR5lLdF4Bfy8x/mIPj7UO5vLRPM3ZLi0xEPIEyHKBXqNuhRcSL\ngPUz3WG60M30+jXjXD+ZmUfNW8O0YA3cExcRpwCrKfMZrW5bfyilO/mRlN+izs3yNUS/ATwQ5W6w\nFRHxlsz8szltvTSiZsxZv8lDt2bmDztXZuaXIuIrwAci4lWUQevf7TLf1yCOBjYY4FS5/RZjgOvh\nDyhTyEhzbqAQFxFrKeN6NtF2Caq5u+tK4LTMvCIilgPXRcT1Wb5uaHq/zxngtIM6gv6XKScpg5ln\n8jLKnXOfplw+W86D00gMayXlS9OlKjWXtf9tvtsxj7YZ9xcR+wGPmb4pQ5prA11OjYiDM3NDRKyn\njGV4X7P+BcCHMvPxbfteRrm77oxxNVqSFqKIeAzlmwa+D7w6277KSzu2ZuzlUZRvi/nLZt1ZwDlZ\nvulDmnMD9cTNMF3DtBVsO7M8lHmTRpnBW5IWpcz8PmWaHFUmMz8MfLhj3Vnz0xotFqPenbqUMlFl\nu/ua9aO6j3LnliRJ0mLVdSqlUUPcXZTvk2u3lDI306hazPK7AReZFmW+suPoPh2CHtTCeg2rhTUb\nRgvrNawW1mwYLazXsFoswJqNGuI2AW/qWLeSMuHlqH7Q/NFgJun9FUHa1iTWa1iTWLNhTGK9hjWJ\nNRvGJNZrWJMsoJoN+11uE2zbrbeeMo3IKoBmBuxjgcvmpHWSJEmaUd+euIjYCbibMrXIzsDhEXEO\nsC4zT24mdlwbEadTxrGd1MzCLkmSpDHpG+Iycyuwa4/tGylzbUmSJOkhMuzlVEmSJO0ADHGSJEkV\nMsRJkiRVyBAnSZJUIUOcJElShQxxkiRJFTLESZIkVcgQJ0mSVCFDnCRJUoUMcZIkSRUyxEmSJFXI\nECdJklQhQ5wkSVKFDHGSJEkVMsRJkiRVyBAnSZJUIUOcJElShQxxkiRJFTLESZIkVcgQJ0mSVCFD\nnCRJUoUMcZIkSRUyxEmSJFXIECdJklQhQ5wkSVKFDHGSJEkVMsRJkiRVyBAnSZJUIUOcJElShQxx\nkiRJFTLESZIkVcgQJ0mSVCFDnCRJUoUMcZIkSRUyxEmSJFXIECdJklQhQ5wkSVKFDHGSJEkVMsRJ\nkiRVyBAnSZJUIUOcJElShQxxkiRJFTLESZIkVcgQJ0mSVCFDnCRJUoWWzHcDutn/qceuG/Yx9955\n+zd++J2N542jPZIkSTuSHTbEHfi8150w7GO+8dkPfXwcbZEkSdrReDlVkiSpQoY4SZKkChniJEmS\nKmSIkyRJqpAhTpIkqUKGOEmSpAoZ4iRJkipkiJMkSaqQIU6SJKlChjhJkqQKGeIkSZIqZIiTJEmq\nkCFOkiSpQoY4SZKkChniJEmSKmSIkyRJqpAhTpIkqUKGOEmSpAoZ4iRJkipkiJMkSaqQIU6SJKlC\nhjhJkqQKGeIkSZIqZIiTJEmqkCFOkiSpQoY4SZKkChniJEmSKmSIkyRJqpAhTpIkqUKGOEmSpAoZ\n4iRJkipkiJMkSaqQIU6SJKlChjhJkqQKGeIkSZIqZIiTJEmqkCFOkiSpQoY4SZKkChniJEmSKrRk\nXAeOiF8CVgObgb2A383MW8Z1PkmSpMVknD1xS4CTMvMlwHrgOWM8lyRJ0qIythCXmRuBXSNiPXAU\ncPm4ziVJkrTYjHVMXGbemplHA58CThvnuSRJkhaTgcfERcQplDFuZ2bm6rb1hwJrgEcCW4BzM/PS\niDgL+GxmfgH4PnDoXDZckiRpMRsoxEXEWmAZsAmYalu/C3AlcFpmXhERy4HrIuJ6YB3wFxGxGdgd\neM1cN16SJGmxGrQn7qLM3NCMb2t3DDCVmVcAZOYtEXEV8IrMPAM4fg7b2tcj9li2DDjgoTznDqDV\nsVRvrY6l+mt1LNVbq2Op/lodS/XW6liqv1bHsiY3dtswUIjLzA1dNq0AbprhZAcP1q65dfhhv3w8\nD3Fw3IFcM98NqIz1Gp41G471Gp41G471Gl6NNZvotmHUeeKWAvd2rLuvWf+Q+/K1118NvGE+zj2P\nWpQ35XHA5Ly2pA4trNewWlizYbSwXsNqYc2G0cJ6DavFAqzZqCHuLmC3jnVLKRP8PuR+fOfmzfTo\ndlzgJlm8z302JrFew5rEmg1jEus1rEms2TAmsV7DmmQB1WzUKUY2sf0YtJXAxhGPK0mSpB6GDXET\nbHttdj3wQESsAoiIA4FjgcvmpHWSJEmaUd/LqRGxE3A3ZWqRnYHDI+IcYF1mnhwRLwLWRsTplPFw\nJ2XmzeNstCRJ0mLXN8Rl5lZg1x7bNwJHzGWjJEmS1NtYv3ZLkiRJ42GIkyRJqpAhTpIkqUKGOEmS\npAoZ4iRJkipkiJMkSaqQIU6SJKlChjhJkqQKGeIkSZIqZIiTJEmqkCFOkiSpQoY4SZKkChniJEmS\nKmSIkyRJqpAhTpIkqUKGOEmSpAoZ4iRJkipkiJMkSaqQIU6SJKlChjhJkqQKGeIkSZIqZIiTJEmq\nkCFOkiSpQoY4SZKkChniJEmSKmSIkyRJqpAhTpIkqUKGOEmSpAoZ4iRJkipkiJMkSaqQIU6SJKlC\nhjhJkqQKGeIkSZIqZIiTJEmqkCFOkiSpQoY4SZKkChniJEmSKmSIkyRJqpAhTpIkqUKGOEmSpAoZ\n4iRJkipkiJMkSaqQIU6SJKlChjhJkqQKGeIkSZIqZIiTJEmqkCFOkiSpQoY4SZKkChniJEmSKmSI\nkyRJqpAhTpIkqUKGOEmSpAoZ4iRJkipkiJMkSaqQIU6SJKlChjhJkqQKGeIkSZIqZIiTJEmqkCFO\nkiSpQoY4SZKkChniJEmSKmSIkyRJqpAhTpIkqUKGOEmSpAoZ4iRJkipkiJMkSaqQIU6SJKlChjhJ\nkqQKGeIkSZIqZIiTJEmqkCFOkiSpQoY4SZKkChniJEmSKmSIkyRJqpAhTpIkqUKGOEmSpAoZ4iRJ\nkipkiJMkSaqQIU6SJKlChjhJkqQKGeIkSZIqZIiTJEmqkCFOkiSpQoY4SZKkChniJEmSKrRkXAeO\niN2BS4CtwKOA12XmN8d1PkmSpMVknD1xTwbWZebLgDXAiWM8lyRJ0qIytp64zLy27cfjgcvHdS5J\nkqTFZmwhDiAilgEXAP+QmZ8f57kkSZIWk4FDXEScAqwGzszM1W3rD6VcLn0ksAU4NzMvjYhdgHXA\n2zJz09w2W5IkaXEbKMRFxFpgGbAJmGpbvwtwJXBaZl4REcuB6yLieuAoYCVwTkQAXJuZ757b5kuS\nJC1Og/bEXZSZGyJifcf6Y4CpzLwCIDNviYirgFdk5hnAB+awrZIkSWoMFOIyc0OXTSuAmzrW3Qgc\nPEqjZusReyxbBhwwH+eeR62OpXprdSzVX6tjqd5aHUv11+pYqrdWx1L9tTqWNbmx24ZRb2xYCtzb\nse6+Zv1D7vDDfvl4yp2wi9E1892Ayliv4Vmz4Viv4Vmz4Viv4dVYs4luG0YNcXcBu3WsWwpsHvG4\ns/Lla6+/GnjDfJx7HrUob8rjgMl5bUkdWlivYbWwZsNoYb2G1cKaDaOF9RpWiwVYs1FD3CbgTR3r\nVgIbRzzurPz4zs2b6dHtuMBNsnif+2xMYr2GNYk1G8Yk1mtYk1izYUxivYY1yQKq2bDf2DDBtt16\n64EHImIVQEQcCBwLXDYnrZMkSdKM+vbERcROwN2UqUV2Bg6PiHMoX6l1ckS8CFgbEadTxsOdlJk3\nj7PRkiRJi13fEJeZW4Fde2zfCBwxl42SJElSb8NeTpUkSdIOwBAnSZJUIUOcJElShQxxkiRJFTLE\nSZIkVcgQJ0mSVCFDnCRJUoUMcZIkSRUyxEmSJFXIECdJklQhQ5wkSVKFDHGSJEkVMsRJkiRVyBAn\nSZJUIUOcJElShQxxkiRJFTLESZIkVcgQJ0mSVCFDnCRJUoUMcZIkSRUyxEmSJFXIECdJklQhQ5wk\nSVKFDHGSJEkVMsRJkiRVyBAnSZJUIUOcJElShQxxkiRJFTLESZIkVcgQJ0mSVCFDnCRJUoUMcZIk\nSRUyxEmSJFXIECdJklQhQ5wkSVKFDHGSJEkVMsRJkiRVyBAnSZJUIUOcJElShQxxkiRJFTLESZIk\nVcgQJ0mSVCFDnCRJUoWWzHcD5srWLT/h3rt+9IiJiYmDZ/Hwb01NTd0z542SJEkakwUT4jbfcRuP\njWcfG896+bHDPO6uO27jhqvPPwTYMKamSZIkzbkFE+IAdt97P/bcd/l8N0OSJGnsHBMnSZJUIUOc\nJElShQxxkiRJFTLESZIkVcgQJ0mSVCFDnCRJUoUMcZIkSRUyxEmSJFXIECdJklQhQ5wkSVKFDHGS\nJEkVMsRJkiRVyBAnSZJUIUOcJElShQxxkiRJFTLESZIkVcgQJ0mSVCFDnCRJUoUMcZIkSRUyxEmS\nJFXIECdJklQhQ5wkSVKFDHGSJEkVMsRJkiRVyBAnSZJUIUOcJElShQxxkiRJFTLESZIkVcgQJ0mS\nVCFDnCRJUoUMcZIkSRUyxEmSJFXIECdJklQhQ5wkSVKFDHGSJEkVMsRJkiRVyBAnSZJUIUOcJElS\nhQxxkiRJFTLESZIkVWjJuA4cEQ8DTgPeAjwlM28f17kkSZIWm3H2xD0auBbYNMZzSJIkLUpj64nL\nzO8B34uIcZ1CkiRp0XJMnCRJUoUG7omLiFOA1cCZmbm6bf2hwBrgkcAW4NzMvLTj4RNz0FZJkiQ1\nBgpxEbEWWEYZ3zbVtn4X4ErgtMy8IiKWA9dFxPXAnsCbgKcAF0fE1Zm5Zq6fgCRJ0mI0aE/cRZm5\nISLWd6w/BpjKzCsAMvOWiLgKeEVmngF8aQ7bKkmSpMZAIS4zN3TZtAK4qWPdjcDBozTqobZq1ar9\ngc3z3Y5ZanUs1VurY6n+Wh1L9dbqWKq/VsdSvbU6luqv1bGsyY3dNox6d+pS4N6Odfc166tx6qmn\nXjnfbZgD18x3AypjvYZnzYZjvYZnzYZjvYZXY8263lcwaoi7C9itY91SKuvVWrNmzYsvvvjib853\nO2apRXlTHgdMzmtL6tDCeg2rhTUbRgvrNawW1mwYLazXsFoswJqNGuI2UW5eaLcS2DjicR9Sl1xy\nyXcvvvjirt2VlZikR5ertjOJ9RrWJNZsGJNYr2FNYs2GMYn1GtYkC6hmw84TN8G23XrrgQciYhVA\nRBwIHAtcNietkyRJ0oz69sRFxE7A3ZSpRXYGDo+Ic4B1mXlyRLwIWBsRp1PGw52UmTePs9GSJEmL\nXd8Ql5lbgV17bN8IHDGXjZIkSVJvfu2WJElShQxxkiRJFTLESZIkVcgQJ0mSVCFDnCRJUoUMcZIk\nSRUyxEmSJFXIECdJklShUb87tXpbH7gfYMXExES/XWfyrampqXvmtkWSJEn9LfoQd++dt3PQ8W/8\n6O577zfU4+664zZuuPr8Q4AN42mZJElSd4s+xAHsvvd+7Lnv8vluhiRJ0sAcEydJklQhQ5wkSVKF\nDHGSJEkVMsRJkiRVyBAnSZJUIUOcJElShQxxkiRJFTLESZIkVcgQJ0mSVCFDnCRJUoUMcZIkSRUy\nxEmSJFXIECdJklQhQ5wkSVKFDHGSJEkVMsRJkiRVyBAnSZJUIUOcJElShQxxkiRJFTLESZIkVcgQ\nJ0mSVCFDnCRJUoUMcZIkSRUyxEmSJFXIECdJklQhQ5wkSVKFDHGSJEkVMsRJkiRVyBAnSZJUIUOc\nJElShQxxkiRJFTLESZIkVcgQJ0mSVCFDnCRJUoWWzHcDarX1gfsBVkxMTMzm4d+ampq6Z25bJEmS\nFhND3Czde+ftHHT8Gz+6+977DfW4u+64jRuuPv8QYMN4WiZJkhYDQ9wIdt97P/bcd/l8N0OSJC1C\njomTJEmqkCFOkiSpQoY4SZKkChniJEmSKmSIkyRJqpAhTpIkqUKGOEmSpAoZ4iRJkipkiJMkSaqQ\nIU6SJKlChjhJkqQKGeIkSZIqZIiTJEmqkCFOkiSpQoY4SZKkCi2Z7wZIo5iYmHg4sGLQ/VetWrX/\nqaeeypo1a558ySWX3DY1NXXPGJsnSdLYGOJUuxUHHf/Gf9t97/0G2vmWLfCG932eu+7Y60rgEGDD\nWFsnSdKYGOJUvd333o89910+382QJOkh5Zg4SZKkChniJEmSKmSIkyRJqpAhTpIkqUKGOEmSpAoZ\n4iRJkipkiJMkSaqQIU6SJKlChjhJkqQKGeIkSZIqZIiTJEmqkCFOkiSpQoY4SZKkChniJEmSKmSI\nkyRJqpAhTpIkqUKGOEmSpAoZ4iRJkipkiJMkSaqQIU6SJKlCS8Z14IjYDVgHbAV2A16dmT8a1/kk\nSZIWk3H2xP0O8KXMfDklzL1xjOeSJElaVMYZ4g4ENjR/vx44eIznkiRJWlTGPSZu+vgTwNSYzyVJ\nkrRoDDwmLiJOAVYDZ2bm6rb1hwJrgEcCW4BzM/NS4P8AhwCfBw4Frp27ZkuSJC1uA4W4iFgLLAM2\n0dajFhG7AFcCp2XmFRGxHLguIq4HLgMuiYiPN7u/dk5bLkmStIgN2hN3UWZuiIj1HeuPAaYy8wqA\nzLwlIq4CXpGZZwC/PYdtlSRJUmOgEJeZG7psWgHc1LHuRryJoadVq1btD2we5jHXXnvtrhdeeOGT\nOtdHxGOf97zn8ZnPfOZXM/PJnds3b96888TExMTSpUt/Mmw7TznllFsPO+yw++aineM636pVq/a/\nZctszja716EWs30dZnq/9HuPTZvN6zcbD/V7bBZaHcsFaY5fh1bHUr21ppcV/HvYUbQ6ljW5sduG\niampwe83aHriPp2Z72t+fhvwzMx8Yds+bwGOzcxjZ99eSZIk9TLq3al3USbybbeUBdq7IUmStKMY\nNcRtAg7oWLcS2DjicSVJktTDsCFuovkzbT3wQESsAoiIA4FjKXemSpIkaUz6jomLiJ2AuylTi+xM\n+S7UrcC6zDy5CW5rgX2A+4C3Z+aVY221JEnSIjfUjQ2SJEnaMYz7a7ckSZI0BoY4SZKkChniJEmS\nKjTo127ovBPxAAAEVUlEQVRpBxERpwCrgTMzc3Wz7lHAXwG/BPwU+N/AmzNz0Q94jIhjgHcCewI7\nAWsz88+t2cwi4vnA2ZTvSp4CLszM91uv3iLiEZQplz6Tma+yXjOLiBZwK5Adm46gdCpYsxlExN7A\nh4DDgC3AJZl5tu+z7UXEs4EPd6zeB/gk8EfAR1hA9bInriIRsRY4nPJh0f6muxC4LTN/ATgIOBI4\n5aFv4Y4lIh5N+Yf7x5m5Eng+8I6IeCbWbDtNvT4O/GFTrxcCZzf/KVqv3i4A7uXBf5fWq4fMXNnx\n5w6sWS8XAz/IzP0pQe5XI+IXsWbbycwvtr+3KHX5IfBBShBeUPUyxNXlosw8kTLlCwARsTvwIuB9\nAJl5D+WN+sp5aeGO5QHglZm5HiAzbwW+CTwDazaTnwK/nZlfAcjMb1O+G/kgrFdXEfFrwBOBjwIT\nEbEM6zUU/x/rLiIeCxwPnAWQmT/KzCOBH2DNBvE24HOU3t8FVy8vp1YkMzfMsPoXm223tK27idJd\nvKhl5o+AT03/HBHLgacA1zfbrVmbzLwd+PT0zxHxXGB/4MvNduvVISL2As6n9PKe0Kw+AKxXLxGx\nDvhlytyiF1B+ubJmMzsIuB04KSJOoPyydSHwNbBmvUTEvsDJlJosyH+X9sTVbylwf8e6e5v1akTE\nfpSA8p5mlTXrIiJeEBHfpVxafR2+x3q5APhA88EwfSn14Vivbu6ijOF6b2Y+FXgDpTdkGdasm72A\nnwfuy8ynUX5ZeDfwAqxZP28GLm1+QV2Q/48Z4uq3GdilY93SZr2AiDiY0pt0cWaejTXrKTP/oRl7\ncwTlppAjsV7biYhfB54AvL9ZNf2VhHdjvWaUmf+Zma/NzK83P3+JMrj87Vizbn5M+QXhAwCZ+Q3g\nKuC5WLOumm+bOgFY16xakP/vG+LqdyOwtRnkOm0lsHGe2rNDaQLcVcDrM/O8ZrU1m0FEHBARL5z+\nOTO/RfmAPRjrNZOXAb8A3BoR3wZeD7yE0tP0gPXaXkTs1VEXKHeNb8T3WDc3Az9H6a1sdx3WrJcj\ngZ9k5g3Nzwvy/31DXJ0mmj9k5t3A3wGnw8+mOvg9yt1Mi1pE7Eq5JPj77d/na8262hv4WEQ8FX5W\nl18Fvoj12k5mnpCZj8vMJ2bmE4E/Bz6emQcDn8B6zeRw4IsRsT9ARDyFMp7wY/gem1FmJvAlHqxN\ni3Kjw6exZr0cQTPWEhbu//t+d2olmq7huynd6jsDW5s/6yhz31xEGQC7FfhYZp41Py3dcUTEK4BL\nKYNX232McgnMmnVoBk6fQekdmQCupLy/9sB69RQRbweekJknNR8Q1msGEfGHwO9T/i+7Dzg3M6+w\nZt01we2vgOWUz4ELMvMvrVl3EXEhsHNmntS2bsHVyxAnSZJUIS+nSpIkVcgQJ0mSVCFDnCRJUoUM\ncZIkSRUyxEmSJFXIECdJklQhQ5wkSVKFDHGSJEkVMsRJkiRV6P8DHddaaIEjUB8AAAAASUVORK5C\nYII=\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde3c18e7d0>"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAHFCAYAAACdPq/GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu4HXV97/H3lpQAIaJRxEugS3P0m3iDhgIeOFQoBUVb\nedp6qRc0KAqtcCw8iAoVaUXxFqmGRj1SoYC0oke0VlFbjdYi2oOB6AmPXxTdRbwUbXoK4SIk7vPH\nzA4rK2vtPWvvvbL2L+v9ep48w56ZNfOb75rN+uzf/GbW2MTEBJIkSSrLQ4bdAEmSJPXPECdJklQg\nQ5wkSVKBDHGSJEkFMsRJkiQVyBAnSZJUIEOcJElSgQxxkiRJBVow7AZIO0tEfA04AjgmM9d1LDsf\neF1mPrzPbS4AXgO8AlgB7AZ8D7gKeH9m3te27h7AecALgf2AW4ALMvOamR6Tdm0R8VjgI8BPgFdl\npk9nnyci4tXAUcA/Z+aHImIMeF5mfnq4LdMoMcRpJETE44HDgfXAy4B1XVbr6wMyInYDPg0cArwF\n+EdgC3Ak8FbgDyLimMy8u37JxcBzgJOBrKcfj4jDM/Nf+z6oOVKHy3cAPwL2AcjM8/p4/WOpAuvz\n2+aNUdX5GZn52o71A/gj4AHgCcBNmXlx021P05ZnAL+emR+bZr2e7euy7p7ABcDPqerzs8x8X9P2\nRsRjgNOprnwcDHw+M1e3LZ+q/r8GXJ+Zf95w/b6Pd6r3Y7pjj4izgT2AjwMLgVXAtZn5hSna8rC6\nHg/Ur/llZr5jpturX7cceB0wXr/uHzJzfcPjn2pZz1pn5ocj4ot1G8nMiYgYi4iXZ+blU7VXmite\nTtWoOBHYALwP+MOIWNhlnbE+t/mnwNHAUZn5gcz8fmaOZ+YVVIFxGVWYIyL2oeqt+7PM/Fxm3pqZ\nb6L6cHjRzA5pzrwNuDMzV9cfUE+KiNf18fp3A0smf4iIl9TzTgf27LL+VcBXM/PtwBnAeyLixCbb\nbmAhVQjoqUH7Ov0NcEdmvqN+z14QEc9t0t46IFwA/EVmvpGqF/b1EfGGttf0W/++1p/l+zHdse8F\nnA9sBL4O/HS6wEXVG/2eept/DtwdEa+a6fbqP9CuAs7NzHcCj6r3Me3xN6hNX7XOzE8BR0ZEa6o2\nS3PFEKdRcSLwMeAaqt6N583BNk8HLsvMmzsXZOZPgL8ETo6I3TPzv4DHAB/tWPUO4BFz0JYZqXsa\nXg18om32J6l7Fxq8/kiq4LQtAGfmVZl5FtUHcbdg/CvgafW6dwH/Cfz3JtueCw3a196GJwLPB/6p\nbfZXgZO6rNutvf8NOAxYXu/7P4EvAK+tXzNd/bdr30zer5m+Hw2PfYJqGMHhwH51iJrOccAv237+\nErByFtt7J9Xv4ab65yuBCycXTnX8Uy2bxe/GGuDNDdotzZohTru8iDic6jLRRzNzM/AZqssns9nm\n/sABwNemWO2LwN5Ul9DIzF9k5rYPr/rS29OBoV1Krfe/N/DDtnn/Bjy9vuzVU305+dlU9eyma0DK\nzEMyc029jUVUPSc39LntudAkHB5UTze1zft3qh7YbaZo7/1U4x+Xtc37Dx4M7tPVv/MS/4zfL/p/\nPxode1a+UQfAJh4CfCIiJmvwB7QFpX62FxEPB36fKlxOvv4bmfnNLqtP9X53WzajWmfmt4FD61pK\nA+WYOI2CE6kuF91e/3wl8L8jYknbX+/9elw9vW2KdSaXLe1cUH/oXwr8rJ72FBH/A3hzZj6r/nkh\nVc/BQXUonY396+ndbfPuovpQezTw/6Z47SqqQfdH9ljeZIzhyVRjnj7S57Z76afXrkn77u8ybwHw\n8IjYKzPvqeetokt7M/PfgH07Xn8ID4aO6ep/b8drZ/N+9fV+RMQJXZbvcOwRcQpVb97+wP2ZecE0\n+zidaizpzRHxUeAb7Tca9bm9Q6luJloWEb9J1du9B3BeZv6qY92pjr/bstnU+gaqsPsPU6wjzZoh\nTru0iNidaszZG+s7SaG6fHNnPf8Ds9zFA1Ms26tHmxZQjeE5DDg6Mzs/qDudQHXH66TDgAWdAa6+\n/LOG6X+vJ4BzMvNnVOOAtnZ84E32Fj601wYi4pHAQzPz1voyYl8i4unAb1NdWjt9Jtuuj/fdbH+8\njwUW1zc4TJoAzs/MO/ptJ3A91c0q+/Jgj0zU04cC9/RTi7pdK3nw8uF09e88N2b0fk2nx/sx7bED\n1wL/ty3QrYuI/8zMv5pid1+jGmu3kmpc6aci4vOZeecMtvfIyXZl5oX1az4C/AXwZ40L0N1sav1D\nqp5MQ5wGyhCnXd3vAQ8DPlj/a/cyZh7iflJPn0Dvy6GTf8n/aHJGHSqvpuqxOS4zb2ywr6Oo7pCb\n9EzgK50rZfU4k1c32F67br0Je9fT+7osm/Qa4L197mub+pLTtyPiUuDGiHhrZk72SDbadn28nQHw\nmUArM/9mpm3r2McdEfFOqrFh/1oHtqVUPUWTvbiN2ltfXrsYeH5mZj273/rP9P2aUq/3Y7pjzx3v\nqv4acBowVYi7CnhbZt4YEX9MdW5fBvzBDLZ3Zz39Utu8bwFvZ/Yhbja13kQ9DlIaJMfEaVd3IvB5\n4Dc7/p1INXi7NZONZuZtTH9n6TOpPmTWt837a6pB/Ed1+cDaQT325kC2fyTKb9E2BmiWfgLsVj9K\nYtLievqjLusTEQcDN2fbM/Bmqr7h47PA+yNij7nc9lzJzDcDGyPidOBYqhsTbsrM+5u2NyIeAnwI\nODszr21b1G/9+36/+tHxfiyc5tj3jIjz2sa2QXWp8dd7bb8eGnD/5B8vmfkBqvP5+Ih4dL/boxqj\nBvCLtnn3UvXGPrLL+v2YTa1/iZ+v2gkG3hNX347+/sxcNu3K0hyqPwyOB1Zl2zOjausj4l1UYe6t\nM9zFWuDtEXFoZyCLiMdRPbfqksy8v553OtUg7CMz8zsN93EU8G+TY/ci4teoQuApUT2DblsPxAwv\np26g6nF4AtU4O4AnAd+r76Ts5pnAvhFxWP3zbwJPiIi3A5dmZvul3+3GGkXEEcCngFdm5uRNAPdR\nXXrevc9tz4Vpx4lFxAuAf8rMH9c//x1wRb24aXvfAnwkM79cb+PkzLyEaeof1aNp2s3k/ep5vNO8\nHwsj4nlTHPsK4Gyq5yNeX897DPDdKfb/KODH7TMyc0NEfAd44gy29x2qO7wfBfygnrc3VY26jXft\nZ1zcbGq9hOomEGmgBhriImIJ1SWrqQZ/S4PyYqr/Mfcal3IN8FJmHuIuonp47xci4i1UvRQPUIWs\nt1F9qJwHEBF7U43TWQv8NCIe3badrZn58x77OJrqkQ+TXk7Vk/GDiHghbZeRZnI5NTO3RsTVwAt4\n8IPqBVRhkLrtq4AVmfmG+jXbXTqM6tsuFmTmOR2b73aTwWaqkPDz+rVjVGOx/q4eE9V02730c2ND\n13U7j5fqUt5rqR7MfCBVz9AqaFaLiDiZagzV7hHx7Hr2QfXrp6v/dsFiuvW7tH26453y/YiInsdO\nFXLem5nX16/di2pM3bbnqEXEK4Ant7XnS8CbIuJxbcFwOdWNAF8HLppme9sdX1YP2L2E6o+jb9Sr\nHQ2s6XJjQ193pzb53ZjCfmzfAy8NxNjExOC+xSUiPkz1vJ6/zsyjp1tfmksR8Q3g55n5ez2WH031\nDKxnUIWx12VmPw+WnbxT9BzgJVQfcAuA71ON+3nH5GW2eqxWt2+JABjPzCf02P53gP+iCqL3UH3Y\nnU31gfXlJpdkGxzDYuD9VN8isQ+wpb6MNrn8IuC3MvPgjteN1a97FtXg948B76F65tjvUn2wQtXT\n85msv16sDjK/QTVw/ACqO3Tfkts/fqXrtjPz+23r7EEVpNv/GH0MVU9MZ2/gn03e2BARvz9N+7Y7\n3oj4I+DJwNZ6++fXvZhNarEA+DY7/sF8RWa+on5tz/pHxK9T9SS3f2PDVOvv8F41ON6e78d0xx4R\nQXVH6y+pxsv9fWZ+sm35RVR/eOzfdrPCCuD1VD1yD6H6w+fCen9Nttd5fAuobnC5j+o5ff/VUa+e\nx9+gNtP9buzw/tTzr6Ma42dvnAZqYCGuvgSxb2aujYh1hjjt6upLU18DfjczPzcH29uX6oNu33qs\nkkZMr5BQkqgeVbKu7mndpfQI2Q8DPpWZRw2tYRoZjS+nRsSpwGqq5++0f+/fIVTdy4/gwb+orqB6\nIv6WqO52Wh4RZ2fmu+a09dIcq8ecTfcNCl0vf2bmdRFxPXBxRJxENej6ti6XdZo6GlhvgFPhlu6K\nAW4Kr6UaOiENXKMQFxFrqS5RbKRtjEZ9Keka4MzMvDoilgE3RMSNmXli23pfNsCpEEcAX55mnXGq\nwc7dvJDqLsTPUF0SWsaDj0Ho1wqqLwKXilTfjfqtYbdjgDq/qmsp8JjJG1ikQWt0OTUiVmbm+ohY\nRzVe4L31/OcAH8rM/dvWvZLqbrpzB9VoSRoFEfEYqm+C+Cnwqswc3CBm9SUiXk119/hXM/N/1fPO\nBy7IzC1DbJpGSKOeuC6PZ5i0nO0HEAPcwoNPI5ckzVBm/pTqMTmaZzLzw8CHO+adP5zWaFTN9hEj\ni9jxa2Huq+fP1uSdRpIkSaOq5+NxZhvi7qK6Lb3dIqpnD81Wi1l8F+AurkX1TLJnUY3PUnctrFMT\nLaxTEy2sUxMtrFNTLaxVEy2sU1ezDXEbgbM65q2gegjkbP2s/qfexqkuX2tq41inJsaxTk2MY52a\nGMc6NTWOtWpiHOu0nX6/222M7bv11lE9RmQVQP1E72OBK+ekdZIkSepq2p64iNgNuJvq0SK7A4dH\nxAXA5Zl5Sv0gx7URcQ7VOLZXtj9VXZIkSXNv2hCXmVuBPaZYvoHq2VqSJEnaSfq9nCpJkqR5wBAn\nSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBXIECdJklQgQ5wk\nSVKBDHGSJEkFMsRJkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJUoEMcZIk\nSQUyxEmSJBXIECdJklQgQ5wkSVKBDHGSJEkFMsRJkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLESZIk\nFcgQJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBXIECdJklQgQ5wkSVKBDHGSJEkFMsRJkiQVyBAnSZJU\nIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBVowbAb0MvY2Fi/AXNi\nYmJiYiCNkSRJmmfmbYh7ylGvGm+67gRw+83rPgi8fWANkiRJmkfmbYh7/Mrf27/puhMTE/z0lusW\nDrI9kiRJ84lj4iRJkgpkiJMkSSqQIU6SJKlAhjhJkqQCGeIkSZIKZIiTJEkqkCFOkiSpQIY4SZKk\nAhniJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAIZ4iRJkgpkiJMkSSqQIU6SJKlAhjhJkqQCGeIkSZIK\nZIiTJEkqkCFOkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAIZ4iRJkgpkiJMkSSqQ\nIU6SJKlAhjhJkqQCGeIkSZIKZIiTJEkqkCFOkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIkqUCG\nOEmSpAIZ4iRJkgpkiJMkSSrQgkFtOCKeAqwGNgMPB16TmbcOan+SJEmjZJA9cQuAV2bm84F1wJED\n3JckSdJIGViIy8wNwB4RsQ44CrhqUPuSJEkaNQMdE5eZP8jMo4FPA2cOcl+SJEmjpPGYuIg4lWqM\n23mZubpt/iHAGuARwAPAhZl5RUScD3wpM78G/BQ4ZC4bLkmSNMoahbiIWAvsDWwEJtrmLwSuAc7M\nzKsjYhlwQ0TcCFwO/FVEbAYWAyfPdeMlSZJGVdOeuEsyc309vq3dMcBEZl4NkJm3RsRngRdn5rnA\n8XPY1ikdsP/jlgBP2ln7G7JWx1TdtTqm6q7VMVV3rY6pumt1TNVbq2Oq7lod01FzS68FjUJcZq7v\nsWg58L0uO1vZrF1z50XPP+E04LSdvd8h+8KwG1AI69SMdWrGOjVjnZqzVs2Map3Gei2Y7XPiFgH3\ndsy7r56/U33sE5+++E1nnb5mZ+93SFpUJ/OzgPGhtmR+a2GdmmhhnZpoYZ2aaGGdmmphrZpoYZ26\nmm2IuwvYs2PeIqoH/O5Ut/3ox5uYostxFzXO6B3zTIxjnZoYxzo1MY51amIc69TUONaqiXGs03Zm\n+4iRjew4Dm0FsGGW25UkSdIU+g1xY2x/bXYdsCUiVgFExIHAscCVc9I6SZIkdTXt5dSI2A24m+rR\nIrsDh0fEBcDlmXlKRJwArI2Ic6jGw70yM78/yEZLkiSNumlDXGZuBfaYYvkG4Ii5bJQkSZKmNtCv\n3ZIkSdJgGOIkSZIKZIiTJEkqkCFOkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAIZ\n4iRJkgpkiJMkSSqQIU6SJKlAhjhJkqQCGeIkSZIKZIiTJEkqkCFOkiSpQIY4SZKkAhniJEmSCmSI\nkyRJKpAhTpIkqUCGOEmSpAIZ4iRJkgpkiJMkSSqQIU6SJKlAhjhJkqQCGeIkSZIKZIiTJEkqkCFO\nkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAIZ4iRJkgpkiJMkSSqQIU6SJKlAhjhJ\nkqQCGeIkSZIKZIiTJEkqkCFOkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAIZ4iRJ\nkgpkiJMkSSqQIU6SJKlAhjhJkqQCGeIkSZIKZIiTJEkqkCFOkiSpQIY4SZKkAhniJEmSCmSIkyRJ\nKpAhTpIkqUCGOEmSpAIZ4iRJkgpkiJMkSSqQIU6SJKlAhjhJkqQCGeIkSZIKZIiTJEkqkCFOkiSp\nQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAIZ4iRJkgpkiJMkSSqQIU6SJKlAhjhJkqQC\nGeIkSZIKZIiTJEkqkCFOkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAIZ4iRJkgpk\niJMkSSqQIU6SJKlAhjhJkqQCLRjUhiNiMXAZsBV4JHBaZt48qP1JkiSNkkH2xD0ZuDwzXwisAV4+\nwH1JkiSNlIH1xGXmN9t+PB64alD7kiRJGjUDC3EAEbE38D7gc5n5lUHuS5IkaZQ0DnERcSqwGjgv\nM1e3zT+E6nLpI4AHgAsz84qIWAhcDrw5MzfObbMlSZJGW6MQFxFrgb2BjcBE2/yFwDXAmZl5dUQs\nA26IiBuBo4AVwAURAfDNzHzH3DZfkiRpNDXtibskM9dHxLqO+ccAE5l5NUBm3hoRnwVenJnnAhfP\nYVslSZJUaxTiMnN9j0XLge91zLsFWDmbRs3EAfs/bgnwpJ293yFpdUzVXatjqu5aHVN11+qYqrtW\nx1S9tTqm6q7VMR01t/RaMNsbGxYB93bMu6+ev1O96PknnAactrP3O2RfGHYDCmGdmrFOzVinZqxT\nc9aqmVGt01ivBbMNcXcBe3bMWwRsnuV2+/axT3z64jeddfqanb3fIWlRnczPAsaH2pL5rYV1aqKF\ndWqihXVqooV1aqqFtWqihXXqarYhbiNwVse8FcCGWW63b7f96MebmKLLcRc1zugd80yMY52aGMc6\nNTGOdWpiHOvU1DjWqolxrNN2+v3GhjG279ZbB2yJiFUAEXEgcCxw5Zy0TpIkSV1N2xMXEbsBd1M9\nWmR34PCIuIDqK7VOiYgTgLURcQ7VeLhXZub3B9loSZKkUTdtiMvMrcAeUyzfABwxl42SJEnS1Pq9\nnCpJkqR5wBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBXI\nECdJklQgQ5wkSVKBDHGSJEkFMsRJkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBD\nnCRJUoEMcZIkSQUyxEmSJBXIECdJklSgBcNuwFzY+sAvuf/eOx89Nja2ss+XfndiYuKegTRKkiRp\ngHaJELd50+088Rkves3iJUtf0/Q1d226nZuuvehgYP0AmyZJkjQQu0SIA1i8ZCn77Lds2M2QJEna\nKRwTJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBXIECdJklQgQ5wkSVKBDHGSJEkFMsRJkiQVyBAnSZJU\nIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBXIECdJklQgQ5wkSVKB\nDHGSJEkFMsRJkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQUy\nxEmSJBXIECdJklQgQ5wkSVKBDHGSJEkFMsRJkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQ\nJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBXIECdJklQgQ5wkSVKBDHGSJEkFMsRJkiQVyBAnSZJUIEOc\nJElSgQxxkiRJBTLESZIkFWjBsBswLFu33A+wfGxsrN+XfndiYuKeuW+RJElScyMb4u698w4OOv6M\njy5esrTxa+7adDs3XXvRwcD6wbVMkiRpeiMb4gAWL1nKPvstG3YzJEmS+uaYOEmSpAIZ4iRJkgpk\niJMkSSqQIU6SJKlAhjhJkqQCGeIkSZIKZIiTJEkqkCFOkiSpQIY4SZKkAhniJEmSCjSwr92KiIcA\nZwJnA0/NzDsGtS9JkqRRM8ieuEcD3wQ2DnAfkiRJI2lgPXGZ+RPgJxExqF1IkiSNLMfESZIkFahx\nT1xEnAqsBs7LzNVt8w8B1gCPAB4ALszMKzpePjYHbZUkSVKtUYiLiLXA3lTj2yba5i8ErgHOzMyr\nI2IZcENE3AjsA5wFPBW4NCKuzcw1c30AkiRJo6hpT9wlmbk+ItZ1zD8GmMjMqwEy89aI+Czw4sw8\nF7huDtsqSZKkWqMQl5nreyxaDnyvY94twMrZNGo+W7Vq1QHA5iE3o9UxVXetjqm6a3VM1V2rY6ru\nWh1T9dbqmKq7Vsd01NzSa8Fs705dBNzbMe++ev4u6fTTT79m2G1o84VhN6AQ1qkZ69SMdWrGOjVn\nrZoZ1Tr1vK9gtiHuLmDPjnmLGH5P1cCsWbPm9y+99NKbh9yMFtXJ/CxgfKgtmd9aWKcmWlinJlpY\npyZaWKemWlirJlpYp65mG+I2Ut280G4FsGGW2523LrvsstsuvfTSnl2bO9k4U3SzaptxrFMT41in\nJsaxTk2MY52aGsdaNTGOddpOv8+JG2P7br11wJaIWAUQEQcCxwJXzknrJEmS1NW0PXERsRtwN9Wj\nRXYHDo+IC4DLM/OUiDgBWBsR51CNh3tlZn5/kI2WJEkaddOGuMzcCuwxxfINwBFz2ShJkiRNza/d\nkiRJKpAhTpIkqUCGOEmSpAIZ4iRJkgpkiJMkSSqQIU6SJKlAhjhJkqQCGeIkSZIKZIiTJEkqkCFO\nkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAItGHYDSrJ1y/0Ay8fGxpq+ZI96el+f\nu/ruxMTEPX2+RpIkjRBDXB/uvfMODjr+jI8uXrK00fr//sNvsdc++9F0fYC7Nt3OTddedDCwfobN\nlCRJI8AQ16fFS5ayz37LGq27edPt7N3H+pIkSU05Jk6SJKlAhjhJkqQCGeIkSZIKZIiTJEkqkCFO\nkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAIZ4iRJkgpkiJMkSSqQIU6SJKlAhjhJ\nkqQCGeIkSZIKZIiTJEkqkCFOkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIkqUCGOEmSpAIZ4iRJ\nkgpkiJMkSSqQIU6SJKlAhjhJkqQCGeIkSZIKtGDYDdDsjY2N7QUs7/Nl352YmLhnEO2ZqRkeB8zD\nY5EkadAMcbuG5Qcdf8a3Fi9Z2mjluzbdzk3XXnQwsH6wzepbX8cB8/pYJEkaKEPcLmLxkqXss9+y\nYTdj1naV45AkadAcEydJklQgQ5wkSVKBDHGSJEkFMsRJkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLE\nSZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBXIECdJklQgQ5wkSVKBDHGSJEkFMsTNM1u33A+w\nfGxsbGWvfyeddNKT169fz0knnfTksbGxlcDyITdbkiTtZAuG3QBt79477+Cg48/46OIlS3uuc+sD\n8Kfv/QrwtGuOfOlq/v2H39pp7ZMkSfODIW4eWrxkKfvst6zx+ps33T7A1kiSpPnIy6mSJEkFMsRJ\nkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJUoEMcZIkSQUyxEmSJBXIECdJ\nklQgQ5wkSVKBDHGSJEkFMsRJkiQVyBAnSZJUIEOcJElSgQxxkiRJBTLESZIkFcgQJ0mSVCBDnCRJ\nUoEWDGrDEbEncDmwFdgTeFVm/mJQ+5MkSRolg+yJewVwXWb+EVWYO2OA+5IkSRopgwxxBwLr6/++\nEVg5wH1JkiSNlEGPiZvc/hgwMeB9SZIkjYzGY+Ii4lRgNXBeZq5um38IsAZ4BPAAcGFmXgH8H+Bg\n4CvAIcA3567ZkiRJo61RiIuItcDewEbaetQiYiFwDXBmZl4dEcuAGyLiRuBK4LKI+Hi9+qvntOWS\nJEkjrGlP3CWZuT4i1nXMPwaYyMyrATLz1oj4LPDizDwXeMkctlWSJEm1RiEuM9f3WLQc+F7HvFvw\nJoZ5beuW+zn00EOPOumkkw7o53WnnnrqDw477LD7BtWuVatWHXDrA/29ZqpjiYjHHnfccXzxi1/8\nncx88uT8zZs37z42Nja2aNGiXzbZR7/rTxp0veZQq2Oq7lodU3XX6piqt1bHVN21Oqaj5pZeC8Ym\nJprfb1D3xH0mM99b//xm4BmZ+dy2dc4Gjs3MY2feXkmSJE1ltnen3kX1IN92i4DNs9yuJEmSpjDb\nELcReFLznW9YAAAEcUlEQVTHvBXAhlluV5IkSVPoN8SN1f8mrQO2RMQqgIg4EDiW6s5USZIkDci0\nY+IiYjfgbqpHi+xO9V2oW4HLM/OUOritBfYF7gPekpnXDLTVkiRJI66vGxskSZI0Pwz6a7ckSZI0\nAIY4SZKkAhniJEmSCtT0a7c0D0REC/gBkB2LjsjMTTu/RfNLRJwKrAbOy8zV9bxHAn8NPAX4FfD3\nwOszc6QHg/ao1TjV3ef3tK16RmZ+fqc3cMgi4hjgbcA+wG7A2sz8S8+nHU1Rq3E8n7aJiGcDb6X6\nHvIJ4IOZ+X7Pqe1NUadxPJ92YIgrUGauGHYb5puIWEv1S7+R6hd/0geB2zPzhIjYC/gqcCrwgZ3f\nyvlhilpNAC/PzH8eSsPmiYh4NPAp4HmZuS4ingDcFBHfAM7C82mbaWrl+VSr6/Rx4LjMvD4iHk9V\np/XAn+I5BUxbJ8+nLrycql3FJZn5cqrH4QAQEYuBE4D3AmTmPcCHgJcNpYXzxw61ajPWZd6o2QK8\nLDPXAWTmD4CbgUPxfOrUq1ZPr5d7PlV+BbwkM68HyMwfUn3v+EF4TrXrVaen1Ms9nzrYE1egiLgc\n+A2q5/K9LzNH/uHKmbm+y+wn1stubZvX/j+EkdSjVpPOiIj3UH193jXA+Zn5wM5p2fyQmb8APj35\nc0QsA54K3Fgv93yqTVGr6+pZI38+AWTmHcBnJn+OiN8GDgC+Xi/3nGLKOv0j8EY8n3ZgT1xZ7qIa\nO/GezHwaVTf8hyLiyOE2a95aBNzfMe/eer529Amqh3gfAhxH1UPwxuE2abgiYinVh8o761meTz20\n1yozN+L5tIOIeE5E3EZ1yfA0/H9UV511qnt4PZ+6MMQVJDP/IzNfnZnfrn++jmoQ7POG27J5azOw\nsGPeonq+OmTm6zPzk/V/3w6sYYTPrYhYSdVTcmlmvhXPp5661MrzqYvM/FxmHgAcQXUzyDPxnNpB\nZ50i4qWeT90Z4goSEQ+PiCd2zN6NHf+SU+UWYGtHzVYAG4bUnnkrIhbWX6HXbmTPrTqUfBZ4XWa+\nu57t+dRFt1p5Pm0vIp4UEc+d/Dkzv0v1B/hKPKe2maJOfxgRT+9YfWTPp3aGuLIcDvxLRBwAEBFP\nBZ5NdXeYKmP1PzLzbqou+HMAIuJhwB8Dlw6tdfPLtloBi4GvR8RzoPqDATgZ+OSQ2jY0EbEH1WWc\nP2n/HmjPpx31qhWeT52WAH8bEU+DbefO7wD/gudUu151ug643vNpR353amEi4n8Cf0J1u/V9wIWZ\nefVwWzVcEbEb1Z2WE8DuwNb63+XAG4BLqO4C2wr8bWaeP5yWDt80tfoY8C6qx4/8iurD+c8z81fD\nae1wRMSLgSuoBpi3+1vg/Xg+bTNNra6jGks40ufTpIg4ETiXqgdpjGpg/huAh+I5tU2POr0ROArP\npx0Y4iRJkgrk5VRJkqQCGeIkSZIKZIiTJEkqkCFOkiSpQIY4SZKkAhniJEmSCmSIkyRJKpAhTpIk\nqUCGOEmSpAL9fxgya+GAqYF8AAAAAElFTkSuQmCC\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde3b6f1110>"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAHFCAYAAACdPq/GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X20b3VdJ/D3EQQUbihopCHekckvZApBgEkmDpFipUun\nLBvF61PSGGO41EpHtDR1OSJjOKhJXsKHmagRyzG0SanQKWbwIs3C5YcHvSlp2UTFs8D1zB/7d/Xc\nH+f5nN8553vP67XWXT/Odz999v7ty3nf7/7uvaemp6cDAEBf7rfeBQAAsHRCHABAh4Q4AIAOCXEA\nAB0S4gAAOiTEAQB0SIgDAOiQEAcA0KF917sAWCuttSuSnJzk1Kq6fGzaG5K8vKoevMR17pvkF5I8\nP8nRSfZJcn2SDyf5raq6a8a8hyR5c5KfTPKQJDcmOa+qLlzuPrF3a609PMn7k3wtyYuqytPZN4jW\n2kuSnJLkL6rqva21qSRPr6o/XN/K2EyEODaF1tq/SvKEJDuSPDfJ5bPMtqRfkK21fZL8YZITkrw+\nyf9Mcm+SJyZ5Y5JntdZOrarbR4t8JMmDk/xchl/K25L8dmvtpqr6xFL3abW01g5I8tYkX01ycJJU\n1TlLWP7hGQLrTy9mfa21luEY3JPkUUk+X1XvGlvnVIbv6fFV9bIl1PL4JI+sqt+bZ54l7W9r7UFJ\nzhrVu3+Sb1bVWxc7fWxdexyrUdvDRsvfL8nxST5RVeeOJt8/yV9W1a8vt/7RMos6nnPUN+eyy6xl\nvv2dt5aFzFH/or6fOZadc/+q6n2ttT/J8Pc4VTXdWptqrZ1RVRcvtmZYCZdT2Syel+SaJO9M8m9b\na/vPMs/UEtf5y0menOSUqnp3Vd1QVTur6gMZAuORGcJcWmuPTHJMkpdV1Weq6kujXwbXJ3nW8nZp\n1fxmkluq6txRTY9urb18Ccv/pySHLGF9H07y51X15iRnJ3l7a+15uye21n5+tM6zkjxgifuyf5ID\nFphnqft7TpK3V9VbR2Hq9tbai5YwfaY9jtUoIL0pyW9U1a8meXaSV7XWfmW16l/i8Ryvb6Fll1rL\nUvZ3/LxajNmWWez3M9uyS9q/qvpokie21rYusW5YFiGOzeJ5SX4vyaUZejeevgrrPCvJRVX1hfEJ\nVfW1JP85yYtba/tV1d9U1YOr6jNjs04l2bUKtSzLqKfhJUn+YEbzRzLqXVjE8k/MEJymlrC+byV5\nbJJU1a1J/inJD++eWFUfrqpXJrk2Sw/WC9W7nP398STfnPHzp5Ict4Tpu7e9x7Ea+ddJTkpyVJJU\n1T8l+WSS3T1eU2PrWHL9iz2es9U337LLPJYL7e+ctSxknmUW/H5mW3YFfzfOT/K6xdYNKyHEsddr\nrT0hw2W7D1XVbUk+luHy0ErW+YgkRyS5Yp7Z/iTJQRkuGY0vf0Br7VVJDkvy3pXUskKPy1Djl2e0\n/U2Sx40uQ81pdDn5qRmO56LXV1UnVNX5o3UcmOS7k1w1yyZWNcAttr5Z3C/JH7TWDh39/Kzs+Yt9\noelzHaskuTvDOXDkjLZ/THJoZrfs7yvzB7i56ptv2eXUsuD+LqKW+1hgmXm/n3mWXdaxrqq/TnLi\n6NyGiRLi2Ayel+Hy3U2jnz+Y5KmjGw2W63tHn1+ZZ57d0w6f2dhauzbJ7UlemuQpVfX5+TbUWvuR\n1tonZ/y8f2vthtbaQUsv+z4eMfq8fUbbrRl+aX/PAstuyzDofuYv+KWu78VJLquq988ybTmD+BcK\nfsvZ37My9OZ8obX2jiTXjd0Ys9D0ZPZjlVEP7UOr6r/PaD4hyZ+P/nv8GKzk+5rveM5a3wLLLrmW\nRezvYmqZzXzLLPT9zLXsSo71VRmGWsBEubGBvVprbb8kP5vkV0d3kibD5ZRbRu3vXuEm7pln2gPn\naH9qht6nM5J8orV2elX95TzreUaGsXO7nZRk31Gv4reNLv+cn4X/Xk8neU1V/V2GcU67qupbM6bv\nvvT0XXOtoLX2kCTfVVU3ji5F7bao9bXWHpfk32T45XrWAvXOVcMBGcYxzdzfhyfZMrrBYbfpJG+o\nqm8str4xVyT53QyX4H45yUdba5+oqlsWM32eYzXbPj1+tJ77XI4dWdb3tcA2F13fatcyvr/LqWUR\ny8z5/Syw7Er278tJjk3yPxazD7BcQhx7u59K8qAk7xn9mem5WX6I+9ro81FJ/vcc8+z+l/xXZzZW\n1VdHbZ8b3fDwlgyPKpjLKRnukNvtSUn+bHym0eNMXjJ/2ffxz7O07e7hu2uWabv9QpJ3LHd9o0tO\nf91a257k6tbaG6tq+yLq/bbR/u4RAFtrT0qytap+d47FlrO/H07ym1V1dWvtFzN8FxflOzekLDR9\nrmO1h9Hlt3cl+emqqlWsfyGLqm+1a5ljf5dTy0LLzPf9zLfsSvbv5ozG/cEkuZzK3u55ST6R5IfG\n/jwvyQ8v9y6yqvpKhiD2s/PM9qQMPX47WmuPbK1tG92dN9MXMwz2ntVo7M0x2fORKD+aPS8/rcTX\nkuzTWpt55+GW0edXZ5k/rbXjk3xh5jPwlru+qvqXJB9P8ltz3DG82pZUX2vtR5LcXVVXJ0lVvTvD\n8T+9tfZdi5g+37GauZ37ZRgb+eqqumy16l/IYutb7Vpm29/l1LLQMgt8P8ctsL2VHOtvxu9X1sDE\ne+Jaaz+R4dk7Ry44M6yi0UDm05Nsq6odY5N3tNbeliHMvXGZm7ggyZtbaydW1R69ca21703y8iQX\nVtXdrbWjMoy7qSQzL50+JnsOnB53SpK/qaqbR+u9f4Y7OV/ahmfQfWrGNpdzOfWaDD0Oj8pwB2KS\nPDrJ9aM7B2fzpCQPba2dNPr5h5I8qrX25gw9HHOur7V2cpKPJnlhVe0eSH5XhkvP+2XPuwh317qa\nlrq/353kb2c2VNU1rbX/m+Gu4oWmz3estlfV7svkr0/y/qr6dJK01l5csz8Eejnf10zjx3Ox9c22\n7EpqGd/fl2QISIutZVH1Z/7v5yeTPGCeZVeyf4ck+fsF5oEVm2iIGw0cf27mH/wNk/KcDL945hqX\ncmmSf5flh7jzkjwtySdba6/P8KiEezKErN9M8qUMz6hKkj9NcnWS97fWXpbh78Qzk/xE5r9T9skZ\nHsGx2xkZeha+1Fp7dobxfUmWdzm1qna11i5J8jP5zi+qn8kQBpMkrbVtSY6uql8ZLbPH5ac2vO1i\n36p6zejn+dZ3e4bQ9g+jeacyjI37b6PHjcy0nLtT511mGfv7qSS/1lr73qr629H0o5JcVVW3t9bm\nnZ6xS3Xjx2rU9uIMY6z2a609ddR87HLqH/+uFjo2C32XCyy7mGP5/CTfP7OeOfb3mKr6pYVqWca5\n+I3M/f38xiK2N+/+zeOwDA8Wh4mamp6e3FtcWmvvyzDe53eqyp06rKnW2l8l+Yeq+qk5pj85Q7h6\nfIYw9vKqWtIdq6NLgK9J8vNJHpnhH0Y3ZBiH89ba87VbhyZ5W4YbFQ5Icl2Sd84zfiujHoN/yRBE\n78hw19urk/xVkk+P9wAuR2ttS5LfytBLeHCSe6vqdTOmn5fkR6vq+LHlpkbLPSXJQzM8h+/tGXog\n5lvfU5P8YIaB40ck+bskr6+qb46mPzNDL8kzR4t8NMnHqurSse0fkCFIz/zH6MMyjFsa70H6j6Mb\nG5a8v621o5O8KkOPzv0yBPW3zKh33ukLHKt9k/x17vsP6g9U1fNHYya31Z5vbJiz/tm+q8Ucz3nq\ne+x8yy7yWJ6R5BFVdccoQM25v/PVUlU3LPVcHC2z0Pc337IL7d99vp9R+2eTPKuq9MYxURMLca21\nn0ny0Kq6oLV2uRDH3m50qfCKJD9ZVX+8Cut7aIZfPA8djR1jk5krJPSktfaMJJfXd+7m3WvMEbIf\nlOSjVXXKuhXGprHoy6mttTOTnJvknJrxnrvW2gkZupcPzXf+hfOBDE/Ev7cNd58d1Vp7dVW9bVWr\nh1U2GnM214NWd9tVVf8w3lhVn22t/WWSd7XWXpDhwaBfGXtEwVI8OckOAY7OHb43Brh5vCzJbyw4\nF6yCRYW41toFGS5RXJsZg1tHl5IuTfKKqrqktXZkkqtaa1dX1cx3IX5agKMTJyf59ALz7Mww2Hk2\nz85w193HMgzSPzLDHarLcXSS31/msrDuRneHfm6965ig8VeRHZ7kYbtv2IBJW9Tl1NbacVW1o7V2\neYbxEO8YtT8tyXur6hEz5v1ghrvpXjupogE2g9bawzLc1fz1JC+qqskNYmZJRnfUnpLhbTC/PWp7\nQ5I3VdW961gam8iieuJmeTzDbkdlzwHEyTBYe66njQOwSFX19QyPyWGDqar3JXnfWNsb1qcaNquV\nPmLkwCR3jrXdNWpfqbuSrMXDPwEANqo5H5200hB3a4bHBMx0YJLbZpl3qbZmme8ChGXYmuE5b0/J\nMOYN1trWOAdZf1vjPOzGSkPctUleOdZ2dIYnXa/U343+wFramWFIAKyXnXEOsv52xnm44S313W5T\n2bNb7/IMjxHZliSttWOSnJbkg6tSHQAAs1rw7tTW2j4ZXpUzneHdhrtGfy6uqpeOgtsFGZ50fVeG\nJ69fOtf6YIN6dIansrf41yfrwznIRuA87MiCl1OraleGVwTNNf2aDM/WAgBgjSz1cioAABuAEAcA\n0CEhDgCgQ0IcAECHhDgAgA4JcQAAHRLiAAA6JMQBAHRIiAMA6JAQBwDQISEOAKBDQhwAQIeEOACA\nDglxAAAdEuIAADokxAEAdEiIAwDokBAHANAhIQ4AoENCHABAh4Q4AIAOCXEAAB0S4gAAOiTEAQB0\nSIgDAOiQEAcA0CEhDgCgQ0IcAECHhDgAgA4JcQAAHRLiAAA6JMQBAHRIiAMA6JAQBwDQISEOAKBD\nQhwAQIeEOACADglxAAAdEuIAADokxAEAdEiIAwDokBAHANAhIQ4AoENCHABAh4Q4AIAOCXEAAB0S\n4gAAOiTEAQB0SIgDAOiQEAcA0CEhDgCgQ0IcAECHhDgAgA4JcQAAHdp3vQuYy9TU1APnmXzv9PT0\n3WtWDADABrNhQ9zjTvulG+aa9vXrPvOnSc5Yw3IAADaUDRvijnjsjz1srmk3/+21u9ayFgCAjcaY\nOACADglxAAAdEuIAADokxAEAdEiIAwDokBAHANAhIQ4AoENCHABAh4Q4AIAOCXEAAB0S4gAAOiTE\nAQB0SIgDAOiQEAcA0CEhDgCgQ0IcAECHhDgAgA4JcQAAHRLiAAA6JMQBAHRIiAMA6JAQBwDQISEO\nAKBDQhwAQIeEOACADglxAAAdEuIAADokxAEAdEiIAwDo0L6TWnFr7TFJzk1yW5IHJ/mFqrpxUtsD\nANhMJtkTt2+SF1bVTye5PMkTJ7gtAIBNZWIhrqquSXJAa+3yJKck+fCktgUAsNlMdExcVX2pqp6c\n5A+TvGKS2wIA2EwWPSautXZmhjFu51TVuTPaT0hyfpJDk9yT5C1V9YHW2huSfKqqrkjy9SQnrGbh\nAACb2aJCXGvtgiQHJbk2yfSM9v2TXJrkFVV1SWvtyCRXtdauTnJxkv/SWrstyZYkL17t4gEANqvF\n9sRdWFU7RuPbZjo1yXRVXZIkVXVja+3jSZ5TVa9Ncvoq1vpthzz4Qd+V5NGTWDeb1taxT1hrW8c+\nYT1sHftk/V0314RFhbiq2jHHpKOSXD/Lxo5bXF3Lc+qPnvSsJM+a5DbYtD653gWw6TkH2QichxvH\n1FwTVvqcuAOT3DnWdteofWI+9RdXfiTJr01yG2w6WzP8T+spSXauayVsVlvjHGT9bY3zsBsrDXG3\nJnnAWNuBGR7wOzE3/9M/35J5uhdhBXbGucX62hnnIOtvZ5yHG95KHzFybe47Nu3oJNescL0AAMxj\nqSFuKntem708yb2ttW1J0lo7JslpST64KtUBADCrBS+nttb2SXJ7hkeL7JfkCa21NyW5uKpe2lp7\nRpILWmuvyTAe7oVVdcMkiwYA2OwWDHFVtSvJAfNMvybJyatZFAAA85voa7cAAJgMIQ4AoENCHABA\nh4Q4AIAOCXEAAB0S4gAAOiTEAQB0SIgDAOiQEAcA0CEhDgCgQ0IcAECHhDgAgA4JcQAAHRLiAAA6\nJMQBAHRIiAMA6JAQBwDQISEOAKBDQhwAQIeEOACADglxAAAdEuIAADokxAEAdEiIAwDokBAHANAh\nIQ4AoENCHABAh4Q4AIAOCXEAAB0S4gAAOiTEAQB0SIgDAOiQEAcA0KF917uApdp1zzdz123/eMjU\n1NRx88z2xenp6TvWrCgAgDXWXYi77eabcvhjTn360U98/tNnm37rzTfl85edd3ySHWtcGgDAmuku\nxCXJlkMOz8GHHbneZQAArBtj4gAAOiTEAQB0SIgDAOiQEAcA0CEhDgCgQ0IcAECHhDgAgA4JcQAA\nHRLiAAA6JMQBAHRIiAMA6JAQBwDQISEOAKBDQhwAQIeEOACADglxAAAdEuIAADokxAEAdEiIAwDo\nkBAHANAhIQ4AoENCHABAh4Q4AIAOCXEAAB0S4gAAOiTEAQB0SIgDAOiQEAcA0CEhDgCgQ0IcAECH\nhDgAgA4JcQAAHRLiAAA6JMQBAHRIiAMA6JAQBwDQISEOAKBDQhwAQIeEOACADglxAAAdEuIAADok\nxAEAdEiIAwDokBAHANAhIQ4AoENCHABAh4Q4AIAOCXEAAB0S4gAAOrTvpFbcWtuS5KIku5I8JMkv\nVdUXJrU9AIDNZJI9cd+f5OKqenaS85OcMcFtAQBsKhPriauqK2f8eHqSD09qWwAAm83EQlyStNYO\nSvLOJH9cVX82yW0BAGwmiw5xrbUzk5yb5JyqOndG+wkZLpcemuSeJG+pqg+01vZPcnGS11XVtatb\nNgDA5raoENdauyDJQUmuTTI9o33/JJcmeUVVXdJaOzLJVa21q5OckuToJG9qrSXJlVX11tUtHwBg\nc1psT9yFVbWjtXb5WPupSaar6pIkqaobW2sfT/KcqnptknetYq0AAIwsKsRV1Y45Jh2V5PqxtuuS\nHLeSolZi171358QTTzzlBS94wRFzzXPmmWd+6aSTTrprLetiw9s69glrbevYJ6yHrWOfrL/r5pqw\n0hsbDkxy51jbXaP2dXHnLd/I9KEnn3vjPYfPOv3Wm2/K/e9//zWuio58cr0LYNNzDrIROA83jqm5\nJqw0xN2a5AFjbQcmuW2F612RLYccnoMPO3LO6eeff/4zt2/f7sHDzLQ1w/+0npJk57pWwma1Nc5B\n1t/WOA+7sdIQd22SV461HZ3kmhWud6Iuuuiir2zfvn3O7kk2tZ2Zp+sa1sDOOAdZfzvjPNzwlvrG\nhqns2a13eZJ7W2vbkqS1dkyS05J8cFWqAwBgVgv2xLXW9klye4ZHi+yX5AmttTdleKXWS1trz0hy\nQWvtNRnGw72wqm6YZNEAAJvdgiGuqnYlOWCe6dckOXk1iwIAYH5LvZwKAMAGIMQBAHRIiAMA6JAQ\nBwDQISEOAKBDQhwAQIeEOACADglxAAAdEuIAADokxAEAdEiIAwDokBAHANAhIQ4AoENCHABAh4Q4\nAIAOCXEAAB0S4gAAOiTEAQB0SIgDAOiQEAcA0CEhDgCgQ0IcAECHhDgAgA4JcQAAHdp3vQtYa7vu\nvTtJjpqamppvti9OT0/fsTYVAQAs3aYLcXfe8o0ce/rZH9pyyOGzTr/15pvy+cvOOz7JjrWtDABg\n8TZdiEuSLYccnoMPO3K9ywAAWDZj4gAAOiTEAQB0SIgDAOiQEAcA0CEhDgCgQ0IcAECHhDgAgA4J\ncQAAHRLiAAA6JMQBAHRIiAMA6JAQBwDQISEOAKBDQhwAQIeEOACADglxAAAdEuIAADokxAEAdEiI\nAwDokBAHANAhIQ4AoENCHABAh4Q4AIAOCXEAAB0S4gAAOiTEAQB0SIgDAOiQEAcA0CEhDgCgQ0Ic\nAECH9l3vAjaaXffenSRHTU1NzTfbF6enp+9Ym4oAAO5LiBtz5y3fyLGnn/2hLYccPuv0W2++KZ+/\n7Lzjk+xY28oAAL5DiJvFlkMOz8GHHTnrND11AMBGIMQtkZ46AGAjEOKWYb6eOgCAteDuVACADglx\nAAAdEuIAADokxAEAdEiIAwDokBAHANAhIQ4AoENCHABAh4Q4AIAOCXEAAB0S4gAAOiTEAQB0SIgD\nAOiQEAcA0CEhDgCgQ0IcAECHhDgAgA4JcQAAHRLiAAA6JMQBAHRIiAMA6JAQBwDQISEOAKBDQhwA\nQIf2ndSKW2v3S/KKJK9O8gNV9Y1JbQsAYLOZZE/c9yS5Msm1E9wGAMCmNLGeuKr6WpKvtdYmtQkA\ngE3LmDgAgA4tuieutXZmknOTnFNV585oPyHJ+UkOTXJPkrdU1QfGFp9ahVoBABhZVIhrrV2Q5KAM\n49umZ7Tvn+TSJK+oqktaa0cmuaq1dnWSg5O8MskPJNneWrusqs5f7R0AANiMFtsTd2FV7WitXT7W\nfmqS6aq6JEmq6sbW2seTPKeqXpvks6tYKwAAI4sKcVW1Y45JRyW5fqztuiTHraSo3m3btu2IJLet\ndx0sydaxT1hrW8c+YT1sHftk/V0314SV3p16YJI7x9ruGrVvWmedddal610Dy/bJ9S6ATc85yEbg\nPNw45ryvYKUh7tYkDxhrOzCbvBfq/PPPf+b27du/sN51sCRbM/xP6ylJdq5rJWxWW+McZP1tjfOw\nGysNcddmuHlhpqOTXLPC9Xbtoosu+sr27dvn7P5kQ9uZebquYQ3sjHOQ9bczzsMNb6nPiZvKnt16\nlye5t7W2LUlaa8ckOS3JB1elOgAAZrVgT1xrbZ8kt2d4tMh+SZ7QWntTkour6qWttWckuaC19poM\n4+FeWFU3TLLojWzXvXcnyVFTU/M+Gu+L09PTd6xNRQDA3mjBEFdVu5IcMM/0a5KcvJpF9ezOW76R\nY08/+0NbDjl81um33nxTPn/ZeccnmeuOXwCABU3s3amb2ZZDDs/Bhx253mUAAHsx704FAOiQEAcA\n0CGXU9fYIm58cNMDALAgIW6NzXfjg5seAIDFEuLWgRsfAICVMiYOAKBDQhwAQIeEOACADglxAAAd\nEuIAADokxAEAdEiIAwDokBAHANAhIQ4AoEPe2LCBLOK9qol3qwIAEeI2lPneq5p4tyoA8B1C3Abj\nvaoAwGIYEwcA0CEhDgCgQ0IcAECHhDgAgA4JcQAAHXJ3akcW8Ry5A0afdy1zerJBn0M3NTX1wCRH\nLTDbhqwdACZBiOvIQs+R+/svfy4PPPiwLHf6Bn8O3VHHnn725zqtHQBWnRDXmfmeI3fbzTfloBVM\n3+g8Qw8AvsOYOACADglxAAAdEuIAADokxAEAdEiIAwDokBAHANAhIQ4AoENCHABAh4Q4AIAOCXEA\nAB0S4gAAOiTEAQB0SIgDAOiQEAcA0CEhDgCgQ0IcAECHhDgAgA4JcQAAHRLiAAA6JMQBAHRIiAMA\n6JAQBwDQISEOAKBDQhwAQIeEOACADglxAAAdEuIAADokxAEAdEiIAwDokBAHANAhIQ4AoENCHABA\nh4Q4AIAOCXEAAB0S4gAAOiTEAQB0SIgDAOjQvutdAHuPqampByY5aoHZvjg9PX3HMpZdaL3raiX7\nDgDLIcSxmo469vSzP7flkMNnnXjrzTfl85edd3ySHUtd9u+//LnVq3IyVrLvALBkQhyrasshh+fg\nw45c9WVvu/mmlZS1Jlay7wCwVMbEAQB0SIgDAOiQEAcA0CEhDgCgQ0IcAECHhDgAgA4JcQAAHRLi\nAAA6JMQBAHRIiAMA6JAQBwDQISEOAKBDQhwAQIeEOACADglxAAAdEuIAADokxAEAdEiIAwDokBAH\nANAhIQ4AoEP7TmrFrbUHJLk4ya4kD0jyoqr6f5PaHgDAZjLJnrjnJ/lsVf1chjB39gS3BQCwqUwy\nxB2TZMfov69OctwEtwUAsKlMekzc7vVPJZme8LYAADaNRY+Ja62dmeTcJOdU1bkz2k9Icn6SQ5Pc\nk+QtVfWBJP8nyfFJ/izJCUmuXL2yAQA2t0WFuNbaBUkOSnJtZvSotdb2T3JpkldU1SWttSOTXNVa\nuzrJB5Nc1Fr7/dHsL1nVygEANrHF9sRdWFU7WmuXj7WfmmS6qi5Jkqq6sbX28STPqarXJvn5VawV\nAICRRYW4qtoxx6Sjklw/1nZd3MTQpV333p0TTzzxlBe84AVHzDXPmWee+aWTTjrprtmmbdu27Ygb\n75l/G9u2bTsiyW3LWXYhc607Sa688soD3vOe9zxqrmUf/vCHP/JpT3tarrjiih+rqu+fbZ6V7PtC\nx3a+da/UQvt+22237Tc1NTV14IEHfnOueSZZ33wWqj1Zv9omYOvY57paz2O/yb73JVmDY7N17LMb\ne/F5c91cE6ampxd/v8GoJ+5jVfWO0c+vS/L4qvqJGfO8OslpVXXa8usFAGA+K7079dYMD/Kd6cDM\n0RsCAMDqWGmIuzbJo8fajk5yzQrXCwDAPJYa4qZGf3a7PMm9rbVtSdJaOybJaRnuTAUAYEIWHBPX\nWtsnye0ZHi2yX4Z3oe5KcnFVvXQU3C5I8tAkdyV5fVVdOtGqAQA2uSXd2AAAwMYw6dduAQAwAUIc\nAECHhDgAgA4t9rVbsFdqrW1N8qUkNTbp5Kq6ee0rYjNprZ2Z5Nwk51TVuaO2hyT5nSSPSfKtJH+U\n5FVVZQAzEzHHebgzw9Mo7pgx69lV9Yk1L5A5CXGQpKqOXu8a2FxaaxckOSjD8zZnBrT3JLmpqp7R\nWntgkj9PcmaSd699lezt5jkPp5OcUVV/sS6FsSgupwKsjwur6owMj3BKkrTWtiR5RpJ3JElV3ZHk\nvUmeuy4Vshnc5zycYWqWNjYQPXGQpLV2cZIfzPCsw3dWlQdWM1FVtWOW5u8bTbtxRtv1GS6twqqb\n4zzc7ezW2tszvE7z0iRvqKp71qYyFkNPHJvdrRnGH729qh6b5JeTvLe19sT1LYtN6sAkd4+13Tlq\nh7X0Bxke6n9Ckh/P0EP8q+tbEuP0xLGpVdU/JnnJjJ8/21r7oyRPT3LFuhXGZnVbkv3H2g4ctcOa\nqapXzfhTBkPCAAABFUlEQVTvm1pr5yd5cZI3rl9VjNMTx6bWWntwa+37xpr3yX17Q2AtXJdk19g5\neXSSa9apHjah1tr+o1dqzuT/ixuQEMdm94Qkn2mtHZEkrbUfSPLUJB9d16rYTKZGf1JVt2e4jPWa\nJGmtPSjJLybZvm7VsVl8+zxMsiXJ/2qtPS0Z/rGboRfuI+tUG3Pw7lQ2vdbaf0jy7zPcUn9XkrdU\n1SXrWxV7s9baPhnuBpxOsl+SXaM/Fyf5lSQXJjl21PZfq+oN61Mpe7MFzsPfS/K2DI8f+VaS30/y\n61X1rfWpltkIcQAAHXI5FQCgQ0IcAECHhDgAgA4JcQAAHRLiAAA6JMQBAHRIiAMA6JAQBwDQISEO\nAKBD/x8NLjhI3Hr2KwAAAABJRU5ErkJggg==\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde3b99e250>"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAHFCAYAAACdPq/GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+8ZXVd7/HXgQkGhgEd9JI64tEhPoNKEMSPQAPjcpG0\nfFhqaSIDalBGBg+1hCtwE8NSJEUJryQEioUV/siISqcumtCFgdELlw8/JyM1NOzyc4AZz/1jraN7\nNufsH+ecPed85ryej8d5bPb6rr3Xd+3POpz3fNd3rT02MTGBJEmSatluvjsgSZKk4RniJEmSCjLE\nSZIkFWSIkyRJKsgQJ0mSVJAhTpIkqSBDnCRJUkGGOEmSpIKWzHcHpFGJiGuBw4GjMnNtV9vZwFsz\n86lDvucS4FeB44F9gO2BO4ArgA9l5sZpXrcr8H+B2zPzJUPuihaJiHgm8HHgm8AbM9O7sRcREW8G\njgT+V2Z+NCLGgJ/PzM/Ob8+0LTPEaZsUEc8FDgPWAa8H1k6x2lB/ICNie+CzwEHAWcDfAZuAFwPv\nBn4hIo7KzIenePk5wNOAHGaboxARS4H3Av8K7AaQmWcO8fpn0gTWV7XPnwKcAjwB7Ag8lpnv7Vi/\nZ3u7zhhNnQ7NzLcM0ZdDgedk5p/1WOcZ7fa3Aw4E/iYzz+ux/juApcCn2/6uAa7OzGva9p1o6vkd\nms/v25n5wY7XB/DL7f4+D7g5Mz88YPuPAF/NzP/Rsf7Q9er1efba/iC16nifLY6DmfSn374N05+O\n13wc+DxwM/Dd9rW0j3tNt+8D9mfa9sz8WET8Lc3xQmZORMRYRLwhMy/r9xlJM+HpVG2rjgPWAx8E\nfjEidpxinbEh3/O3gJcAR2bmH2XmnZm5ITMvpwmMq2jC3BYi4ieBE2lG64bd5ii8B3ggM89r/wDt\nHRFvHeL17wNWdDw/E3h/Zr63DR8PR8QbB22PiNe173kKsNOQ+7IjTeCaUhsezgF+NzN/B3gN8PaI\n+O0e77kzcDZwC/BPwLcmA1zrT4D72v15J/DqiHhZR/sVwD9m5u8BpwLvj4jjhmjvNlS9Bvg8e23/\nLHrXslP3cTCT/vTbt37H1lSeD/wFcBfw/4BH2p/fAj7ZY98H6c9QtcjMzwAvjojxPn2WZsQQp23V\nccCfAVfRjG78/By85ynApZl5a3dDZn4T+EPgTRGxw+TydvTuo8AfABvmoA+z0o4kvBn4847Ff0k7\nejDA619ME5w6w+h/Ax7reP5F4IBB2zPzisx8G01omuuQuxdwCLC63db3gGuAXqN9EzSnyg8D9sjM\n359siIgfA14F/H3H+v8InNDx/PvAvu32HgS+B/zUEO0/MJN6DfB59tr+0fSu5WS/pjoOhurPgPvW\n79iayu3AT9PU71DgCOBTwPk0tZ1y3/v1Zxa/OxcA7+qzjjQjhjhtcyLiMJpTJZ/MzIdoTq28fpbv\n+WxgT+DaHqv9LbALzSm7Sb8BLAPOZWGMwv04TR/v6Vj2L8CPt6euptUG0pfSfJ6dtgP+PCJ2b5//\nAlv+oevXPmkUn8/jwB40o6ST/gPYferVG9m4rv1D32n/9vH+jmX/TjNCO/nagzLzAoCIWAb8F+CG\nQdu7zLheTPN59tl+31r1OA766e7PIPs26LEz2bclwBWZ+eW2fv9MM0/t7Zn5/T773q8/M6pFZn4N\nOLjdnjSnnBOnbdFxNKdM7m2ffwL4i4hYkZn393hdL89qH7/RY53JtpUAEfEs4HeBV2bmE81UpP4i\n4kXAuzLzmPb5jjSjGPu3oXQ2nt0+ds7be5DmD+yPAv/Z47VraCbdv7hr+Sk0cwVvjYhPAtd1XUjS\nr33STCbx9wx+mfkvwNO7Fh9EM3o2rYg4iWbE6tnA45l5Ttv0+BSrLwGeGhE7Z+YjXW1voplP9/Fp\nNtWvfTb1GuTz7N7+ILVaw9THQT/d/Rlk3wY9dgDIzE3A30w+j4hjgNvakfJu3fverz+zqcUNNEH/\nr3qsIw3NEKdtSnsq85eA32n/VQ7NKZgH2uV/NMtNPNGjbeeu5x8CPpeZX2qfDxpSXkFzxeukQ4Al\n3QGuPb1zAf1/jyeA0zPz2zRzkjZn5vc72idPV+063RtExNOAXTPzrvZUWqdraeaJHUAz7+gzEfE3\nmfnAgO0Daff3fWy5v88ElrcXOEyaAM7OzPumeI9D2370OiV3NfB/JgNZRKyNiO9l5keAr9JczPJ0\nfjgiM5nOd6WZe0VE/DjwMzSnA0+Zoh892zvMqF799Nh+z1r1OQ6GNci+zfjYaY+Xt2Tmz3ctn27f\n+/VnNrW4h2YU1xCnOWWI07bm54CnABe1P51ez8xD3OS/5J8H/PM060z+S/1fI+LlNPNyXtDRPujp\nwiNproCbdATwD90rZXM7kzcP+J6Tphot2KV9nPL2KK1fBT4wTdsVwHsy86aI+DWavl9Kc+prkPaB\ntPu7ReCJiCOA8cz8k36vb09nfRh4VWZOe5Vwewqu07U0p8U/kpn3RcTv08yL++c21KykGbW7v+M9\nvgZ8LSIuAW6KiHdn5iWDtneYab166rH9frXqdRwMa5B9m82x8wbga90Le+x7v/7Mphb3087LlOaS\nc+K0rTmO5nTKT3b9HAf81EyvEsvMb9DcVuCXeqx2BM2I303AL9JcufdvEfFERDxBM7n5iPb5lKMY\n7dya/djylig/TZ/Tf0P4JrB9e5uMScvbx3+dpk8HArfmFPfAa0/9Pp6ZNwFk5h+1/T02Inbt1z5H\n+9RXRGxHc4HJOzLz6h7r7RQRZ3bMwYImfD9n8klmvgu4JSJOobkQ4BqaW1U86VRrZv4/4AvAh6a6\nQrpfOzOo1zC6tt+vltMeBzPUc9/m4Ng5geYihylN8dn3+6xnU4vH8O+tRmDkI3HtpfcfysxVfVeW\nZqH9w3sssCYz13U1r4uIP6AJc0+6DciALgR+LyIO7h6taee/vRW4ODMfi4gzaE79dXoLTaA8gemv\nVD0S+JfJuXsR8SM0V8+dFM096L7Ysc2ZnE5dTzOi8DyaeXYAewN3tFduTuUI4OkRcUj7/CeB50XE\nuTRX9/1b58qZuT4ivg5sppk4Pl37pmn6OgpnAR+fPLUdEW/KzIunWG8f4B009wD8arvsGcBtkytE\nxKuBv8/Mf2uf/ylwefvfhwOfAU7MzMmJ/xtpTrXvEM3tZqZtn6I/M6lXpy0+zx79W9Zuo1ctpzsO\nfg+4JDM7pwAM0p+e+xYRwx47nfu5a9u/7w6w75Offb/+PNCrvc9+r6C5AEaaUyMNcRGxguYUVq/J\n4NJceS3NH4np5p1cBfwKMw9x5wM/C1wTEWfRjMA8QROy3gPcTXNfq8lbjmwxmToivgM8klPcoqTD\nS2iC0aQ30IxG3B0Rr6GZ30e7jaFPp2bm5oi4Eng1P/xD9GqaMDjZzzXAPpn52+1rtjh9Fs23XSzJ\nzHe2I4d/FxHP6gg1q4EbMvPhiPgi8M5p2rsvApjJ1al9XxMRb6KZs7RDRLy0Xbx/R/safri/64EP\nZOZX27adaeZOdd4L7CM0gfzTEbEfzSjdmrbtYZpg8J329WM086/+NDMfjIh+7Vvcd61fvbprNcBn\n89A02/8UzQUEp0xXS7pOo3YcB6d3LDseeP4g/RngWOx77PTY/+fQfJtK56jhdPv+p9lehdyrP4P8\n7vSwB82Nx6U5NTYxMbpvdYmIj9HcWuGP068a0ohFxHXAdzLz56ZpfwnN/b0OpQljb83Mvjcr7XqP\nHYHTgdfR/KFYAtxJM3fnvb1ONbXB74jM/Jke63yd5galf0UzSf4GmpGh64AvTTFfa2gRsZzmoouk\nuev8pvYU4WT7+cBPZ+aBXa8ba193DM3E/j8D3k9zH76304yabEcTbM/NzMfa1+3Tp/2VwMuBV7ab\n+gzw+cy8qmv7S2mCdOc/Pp9BMy+pcxRoAvjv7fy11TTzorr/wXp5Zh4/1f5GRNBcufgYzXy3z2Xm\nX3b045dpbii7ud3+2e0o52T7S4GfoJkIvyfwbeCsjv2dtj0inkMzktz5jQ3T1muqWvX7PPtsv2et\n2tdPeRxk5p1tf94APLsjaE3bnwGOxX7HznTH6iqauYwvysy7h6hNv/70a39S/drlXwF+ITMdjdOc\nGlmIa085PD0zL4yItYY4bWva0zPXAi/PzL+eg/d7Os0fq6e383W0yEwXAiqJiFcAa3PIq4+3BdOE\n8KcAn8nMI+etY9pmDXw6NSJOBs4DzsyO7x2MiINohpN354f/Srqc5g75m6K5Amh1RLwjM/9gTnsv\nzVI756znjV9pbivwne6FmfmViPgq8OGIOIHmxp/fyC1vQTCMlwDrDHAqbuViDHA9vIXmfpHSnBso\nxEXEhTSnLG6hY2Jqe2rpKuC0zLyyHcK+ISJuyszjOtb7kgFOC9ThwJf6rLOBZjLzVF5Dc9Xj52lO\nv62iuUJ1Jvah+dJ1qaT2itIb57sf82iLeX8RsRJ4Rv7wXpHSnBrodGpEHJCZ6yJiLc1chg+0y38W\n+GhmPrtj3U/QXF13xqg6LUnbooh4Bs23IXwLeGNmjm7SsuZURLyZ5uryf8zM/9kuOxs4J5tvkpDm\n3EAjcVPcrmHSaracUAzNfXn6fUGxJKlLZn6L5jY5KiYzPwZ8rGvZ2fPTGy0Ws73FyDLg0a5lk/cc\nmq2NwFQ3v5QkSVospr2V0mxD3IM0l2p3WkZzP57ZGmcW3w2orW6c5r5pxzD9jWy1MI1j7aoax9pV\nNo71q2qcBVC72Ya4W4C3dS3bh+aGmbP17fZHtWygx1fdaEHbgLWragPWrrINWL+qNjCPtRv2u9zG\n2HJYby3NbUTWALR3Lz8a+MSc9E6SJElT6jsSFxHb03yVzATN98sdFhHnAJdl5kntjR0vjIjTaeax\nnZiZd46y05IkSYtd3xCXmZuBpT3a19Pca0uSJElbybCnUyVJkrQAGOIkSZIKMsRJkiQVZIiTJEkq\nyBAnSZJUkCFOkiSpIEOcJElSQYY4SZKkggxxkiRJBRniJEmSCjLESZIkFWSIkyRJKsgQJ0mSVJAh\nTpIkqSBDnCRJUkGGOEmSpIIMcZIkSQUZ4iRJkgoyxEmSJBVkiJMkSSrIECdJklSQIU6SJKkgQ5wk\nSVJBhjhJkqSCDHGSJEkFGeIkSZIKMsRJkiQVZIiTJEkqyBAnSZJUkCFOkiSpIEOcJElSQYY4SZKk\nggxxkiRJBRniJEmSCjLESZIkFWSIkyRJKsgQJ0mSVJAhTpIkqSBDnCRJUkGGOEmSpIIMcZIkSQUZ\n4iRJkgoyxEmSJBVkiJMkSSrIECdJklSQIU6SJKmgJfPdgensfehrrh103f/897vuve+eG187yv5I\nkiQtJAs2xMXhv/KiQde97cuXrx1lXyRJkhYaT6dKkiQVZIiTJEkqyBAnSZJUkCFOkiSpIEOcJElS\nQYY4SZKkggxxkiRJBRniJEmSCjLESZIkFWSIkyRJKsgQJ0mSVJAhTpIkqSBDnCRJUkGGOEmSpIIM\ncZIkSQUZ4iRJkgoyxEmSJBVkiJMkSSrIECdJklSQIU6SJKkgQ5wkSVJBhjhJkqSCDHGSJEkFGeIk\nSZIKMsRJkiQVZIiTJEkqyBAnSZJUkCFOkiSpIEOcJElSQYY4SZKkggxxkiRJBRniJEmSCjLESZIk\nFWSIkyRJKsgQJ0mSVJAhTpIkqSBDnCRJUkGGOEmSpIKWjOqNI+IFwHnAQ8BTgV/NzLtGtT1JkqTF\nZJQjcUuAEzPzVcBa4MUj3JYkSdKiMrIQl5nrgaURsRY4ErhiVNuSJElabEY6Jy4z787MlwCfBU4b\n5bYkSZIWk4HnxEXEyTRz3M7MzPM6lh8EXADsDjwBnJuZl0fE2cAXM/Na4FvAQXPZcUmSpMVsoBAX\nERcCuwC3ABMdy3cErgJOy8wrI2IVcENE3ARcBnwkIh4ClgNvmuvOS5IkLVaDjsRdnJnr2vltnY4C\nJjLzSoDMvCsivgC8NjPPAI6dw75Oa+edlu4E7L01tqVpjXc9qo7xrkfVMd71qFrGux5Vx3jX4yjd\nPl3DQCEuM9dN07QauGOKjR0wWL/mxr7P3+tQILfmNjWta+a7A5oxa1eXtavN+tW1NWo3Nl3DbO8T\ntwx4tGvZxnb5VvP1W++8Djh+a25TTzJOczAfA2yY155oWONYu6rGsXaVjWP9qhpnAdRutiHuQWCn\nrmXLaG7wu9U88ujGR+kx3KitagPWoqoNWLuqNmDtKtuA9atqA/NYu9neYuQWnjwXbR9g/SzfV5Ik\nST0MG+LG2PLc7FpgU0SsAYiI/YCjgU/MSe8kSZI0pb6nUyNie+BhmluL7AAcFhHnAJdl5kkR8Qrg\nwog4nWY+3ImZeecoOy1JkrTY9Q1xmbkZWNqjfT1w+Fx2SpIkSb2N9Gu3JEmSNBqGOEmSpIIMcZIk\nSQUZ4iRJkgoyxEmSJBVkiJMkSSrIECdJklSQIU6SJKkgQ5wkSVJBhjhJkqSCDHGSJEkFGeIkSZIK\nMsRJkiQVZIiTJEkqyBAnSZJUkCFOkiSpIEOcJElSQYY4SZKkggxxkiRJBRniJEmSCjLESZIkFWSI\nkyRJKsgQJ0mSVJAhTpIkqSBDnCRJUkGGOEmSpIIMcZIkSQUZ4iRJkgoyxEmSJBVkiJMkSSrIECdJ\nklSQIU6SJKkgQ5wkSVJBhjhJkqSCDHGSJEkFGeIkSZIKMsRJkiQVZIiTJEkqyBAnSZJUkCFOkiSp\nIEOcJElSQYY4SZKkggxxkiRJBRniJEmSCjLESZIkFWSIkyRJKsgQJ0mSVJAhTpIkqSBDnCRJUkGG\nOEmSpIIMcZIkSQUZ4iRJkgoyxEmSJBVkiJMkSSrIECdJklSQIU6SJKkgQ5wkSVJBhjhJkqSCDHGS\nJEkFGeIkSZIKMsRJkiQVZIiTJEkqyBAnSZJUkCFOkiSpIEOcJElSQYY4SZKkggxxkiRJBRniJEmS\nCjLESZIkFWSIkyRJKsgQJ0mSVJAhTpIkqSBDnCRJUkGGOEmSpIIMcZIkSQUZ4iRJkgoyxEmSJBVk\niJMkSSrIECdJklSQIU6SJKkgQ5wkSVJBhjhJkqSCDHGSJEkFGeIkSZIKMsRJkiQVtGRUbxwRy4FL\ngc3A04DfyMxbR7U9SZKkxWSUI3HPBy7LzNcAFwBvGOG2JEmSFpWRjcRl5vUdT48FrhjVtiRJkhab\nkYU4gIjYBfgg8NeZ+Q+j3JYkSdJiMnCIi4iTgfOAMzPzvI7lB9GcLt0deAI4NzMvj4gdgcuAd2Xm\nLXPbbUmSpMVtoBAXERcCuwC3ABMdy3cErgJOy8wrI2IVcENE3AQcCewDnBMRANdn5nvntvuSJEmL\n06AjcRdn5rqIWNu1/ChgIjOvBMjMuyLiC8BrM/MM4MNz2FdJkiS1BgpxmblumqbVwB1dy24HDphN\np4a1805LdwL23prb1JOMdz2qjvGuR9Ux3vWoWsa7HlXHeNfjKN0+XcNsL2xYBjzatWxju3yr2ff5\nex0K5NbcpqZ1zXx3QDNm7eqydrVZv7q2Ru3GpmuYbYh7ENipa9ky4KFZvu9Qvn7rndcBx2/NbepJ\nxmkO5mOADfPaEw1rHGtX1TjWrrJxrF9V4yyA2s02xN0CvK1r2T7A+lm+71AeeXTjo/QYbtRWtQFr\nUdUGrF1VG7B2lW3A+lW1gXms3bDf2DDGlsN6a4FNEbEGICL2A44GPjEnvZMkSdKU+o7ERcT2wMM0\ntxbZATgsIs6h+UqtkyLiFcCFEXE6zXy4EzPzzlF2WpIkabHrG+IyczOwtEf7euDwueyUJEmSehv2\ndKokSZIWAEOcJElSQYY4SZKkggxxkiRJBRniJEmSCjLESZIkFWSIkyRJKsgQJ0mSVJAhTpIkqSBD\nnCRJUkGGOEmSpIIMcZIkSQUZ4iRJkgoyxEmSJBVkiJMkSSpoyXx3YC58f/MT242NjR0w5Mtum5iY\neGQkHZIkSRqxbSLEPfbwf+68/7Gn3rh8xcqB1n/w/nu5+erzDwTWjbZnkiRJo7FNhDiA5StWstse\nq+a7G5IkSVuFc+IkSZIKMsRJkiQVZIiTJEkqyBAnSZJUkCFOkiSpIEOcJElSQYY4SZKkggxxkiRJ\nBRniJEmSCjLESZIkFWSIkyRJKsgQJ0mSVJAhTpIkqSBDnCRJUkGGOEmSpIIMcZIkSQUZ4iRJkgoy\nxEmSJBVkiJMkSSrIECdJklSQIU6SJKkgQ5wkSVJBhjhJkqSCDHGSJEkFGeIkSZIKMsRJkiQVZIiT\nJEkqyBAnSZJUkCFOkiSpIEOcJElSQYY4SZKkggxxkiRJBRniJEmSCjLESZIkFWSIkyRJKsgQJ0mS\nVJAhTpIkqSBDnCRJUkGGOEmSpIIMcZIkSQUZ4iRJkgoyxEmSJBVkiJMkSSrIECdJklSQIU6SJKmg\nJfPdgfmwedPjAKvHxsaGedltExMTj4ymR5IkScNZlCHu0QfuY/9jT/3k8hUrB1r/wfvv5earzz8Q\nWDfankmSJA1mUYY4gOUrVrLbHqvmuxuSJEkz4pw4SZKkggxxkiRJBRniJEmSCjLESZIkFWSIkyRJ\nKsgQJ0mSVJAhTpIkqSBDnCRJUkGGOEmSpIIMcZIkSQUZ4iRJkgoyxEmSJBVkiJMkSSrIECdJklSQ\nIU6SJKkgQ5wkSVJBhjhJkqSCDHGSJEkFGeIkSZIKMsRJkiQVtGRUbxwR2wGnAe8AXpiZ941qW5Ik\nSYvNKEfifhS4HrhlhNuQJElalEY2EpeZ3wS+GRGj2oQkSdKi5Zw4SZKkggYeiYuIk4HzgDMz87yO\n5QcBFwC7A08A52bm5V0vH5uDvkqSJKk1UIiLiAuBXWjmt010LN8RuAo4LTOvjIhVwA0RcROwG/A2\n4IXAJRFxdWZeMNc7IEmStBgNOhJ3cWaui4i1XcuPAiYy80qAzLwrIr4AvDYzzwC+Mod9lSRJUmug\nEJeZ66ZpWg3c0bXsduCA2XRqWEuX7rh01NtYs2bNnsBDo95OYeNdj6pjvOtRdYx3PaqW8a5H1THe\n9ThKt0/XMNurU5cBj3Yt29gu32r23uu5+446XZ1yyilXjXgT24pr5rsDmjFrV5e1q8361bU1ajft\ndQWzDXEPAjt1LVvGVh6xuv3Oe77+zBfEvqPcxgUXXPDKSy655NZRbqO4cZqD+Rhgw7z2RMMax9pV\nNY61q2wc61fVOAugdrMNcbfQXLzQaR9g/SzfdygbNz62cdTbuPTSS79xySWXTDukqR/YQI+hXy1o\nG7B2VW3A2lW2AetX1QbmsXbD3idujC2H9dYCmyJiDUBE7AccDXxiTnonSZKkKfUdiYuI7YGHaW4t\nsgNwWEScA1yWmSdFxCuACyPidJr5cCdm5p2j7LQkSdJi1zfEZeZmYNqrPzNzPXD4XHZKkiRJvfm1\nW5IkSQUZ4iRJkgoyxEmSJBVkiJMkSSrIECdJklSQIU6SJKkgQ5wkSVJBhjhJkqSCZvvdqZrC2NjY\nzsDqIV9228TExCOj6I8kSdr2GOJGY/X+x5564/IVKwda+cH77+Xmq88/EFg32m5JkqRthSFuRJav\nWMlue6ya725IkqRtlHPiJEmSCjLESZIkFWSIkyRJKsgQJ0mSVJAhTpIkqSBDnCRJUkGGOEmSpIIM\ncZIkSQUZ4iRJkgoyxEmSJBVkiJMkSSrIECdJklTQkvnuQAWbNz0OsHpsbGzQl6weXW8kSZIMcQN5\n9IH72P/YUz+5fMXKgdb/93tuHHGPJEnSYmeIG9DyFSvZbY9VA6370P33jrg3kiRpsXNOnCRJUkGG\nOEmSpIIMcZIkSQUZ4iRJkgoyxEmSJBVkiJMkSSrIECdJklSQIU6SJKkgQ5wkSVJBhjhJkqSCDHGS\nJEkFGeIkSZIKMsRJkiQVZIiTJEkqyBAnSZJUkCFOkiSpIEOcJElSQYY4SZKkggxxkiRJBS2Z7w4I\nNm96HGD12NjYMC+7bWJi4pFR9GdsbGxnYPUwr7nuuus2HXLIIaPojiRJmoIhbgF49IH72P/YUz+5\nfMXKgdZ/8P57ufnq8w8E1o2oS6v3P/bUG4fpz0UXXfRKQ5wkSVuPIW6BWL5iJbvtsWq+u/EDw/fn\neyPriyRJejLnxEmSJBVkiJMkSSrIECdJklSQIU6SJKkgQ5wkSVJBhjhJkqSCDHGSJEkFGeIkSZIK\nMsRJkiQVZIiTJEkqyBAnSZJUkCFOkiSpIEOcJElSQYY4SZKkggxxkiRJBS2Z7w5o8RkbG9sZWD3k\ny26bmJh4ZBT9kSSpIkOc5sPq/Y899cblK1YOtPKD99/LzVeffyCwbrTdkiSpDkOc5sXyFSvZbY9V\n890NSZLKck6cJElSQYY4SZKkggxxkiRJBRniJEmSCjLESZIkFWSIkyRJKsgQJ0mSVJAhTpIkqSBD\nnCRJUkGGOEmSpIIMcZIkSQUZ4iRJkgoyxEmSJBVkiJMkSSrIECdJklSQIU6SJKkgQ5wkSVJBhjhJ\nkqSCDHGSJEkFGeIkSZIKWjKqN46InYDLgM3ATsAbM/O7o9qeJEnSYjLKkbjjga9k5i/ThLlTR7gt\nSZKkRWWUIW4/YF373zcBB4xwW5IkSYvKqOfETb7/GDAx4m1JkiQtGgPPiYuIk4HzgDMz87yO5QcB\nFwC7A08A52bm5cD/Bg4E/gE4CLh+7rotSZK0uA0U4iLiQmAX4BY6RtQiYkfgKuC0zLwyIlYBN0TE\nTcAngEsj4tPt6m+e055LkiQtYoOOxF2cmesiYm3X8qOAicy8EiAz74qILwCvzcwzgNfNYV8lSZLU\nGijEZea6aZpWA3d0LbudrXwRw9KlOy7dmtubb5s3Pc7BBx985AknnLDnIOs/9NBDO4yNjY0tW7bs\nsUHWP/jgg583bJ8i4pntf473W3fNmjV73vXEcO+/Zs2aPYGHBln3+uuvX3rRRRcNtQ8nn3zy3Ycc\ncsjG4Xo1uIXYpw7jXY8L3gL/PLem8a5H1TI++egxXc541+Mo3T5dw9jExODXG7QjcZ/PzA+0z98F\nHJqZL+tY5x3A0Zl59Mz7K0mSpF5me3XqgzQ38u20jAFHTCRJkjQzsw1xtwB7dy3bB1g/y/eVJElS\nD8OGuLHflc0YAAADyElEQVT2Z9JaYFNErAGIiP2Ao2muTJUkSdKI9J0TFxHbAw/T3FpkB5rvQt0M\nXJaZJ7XB7ULg6cBG4KzMvGqkvZYkSVrkhrqwQZIkSQvDqL92S5IkSSNgiJMkSSrIECdJklTQoF+7\nJT1JRJwMnAecmZnntcueBvwx8ALg+8DngLdnppMvF4iIOAp4D7AbsD1wYWb+obVb+CLipcC7ab7L\negK4KDM/ZO3qiIin0Nye628z8wRrt7BFxDhwN5BdTYfTDITNa+0cidOMRMSFwGE0/zPqPGAvAu7N\nzL2A/YEjgJO3fg81lYj4UeAzwDszcx/gpcDvRsShWLsFra3dp4HfbGv3MuDdEfEirF0lHwQe5Yf/\n37R2BWTmPl0/97MAameI00xdnJlvoLn9DAARsRx4BfABgMx8BPgo8Pp56aGmsgl4fWauBcjMu4Fb\ngYOxdgvd94HXZeZXATLzHprvrt4fa1dCRLwceC7wSWAsInbB2pW0UP7eeTpVM5KZ66ZY/GNt210d\ny+6gGWrWApCZ3wU+O/k8IlYBLwRuatut3QKVmfcBn598HhE/A+wJ/FPbbu0WsIh4KnA+zej3ce3i\nvcHaVRARlwE/QXM/3A/S/ON33mvnSJzm0jLg8a5lj7bLtcBExEqaUPD77SJrV0BE/GxEfIPm1Opv\n4O9dFR8EPtz+0Z88lboz1m6he5Bm3tv7M3Nf4LdoRtx2YQHUzpE4zaWHgB27li1rl2sBiYgDaObG\nXZCZ74uIn8DalZCZfw3sGRGraUL4n2DtFrSI+DngOcDx7aLJr698GGu3oGXmfwBv7nj+lYj4HHAW\nC6B2jsRpLt0ObI6IH+tYtg+wfp76oym0Ae4LwFsz833tYmu3wEXE3hHxssnnmXkbzdVwB2DtFrrX\nAHsBd0fEPcBbgVfRjPBssnYLV0Q8tas+0FzVv54F8HtniNNsjbU/ZObDwJ8Dp8MPLqX/NeCSeeud\nthARS2lOw/1653ccW7sSVgCfioh94Qc1+q/Al7F2C1pmHpeZz8rM52bmc4E/BD6dmQcAf4G1W8gO\nA74cEXsCRMQLaeY1fooF8Hvnd6dqaBGxPc1pgAlgB2Bz+3MZ8NvAxTRXzG0GPpWZZ89PT9UtIl4L\nXE4zAbfTp4APYe0WtIg4DjiDZiRgDLiK5nduV6xdGRFxFvCczDyx/eNv7RawiPhN4Ndp/uZtBM7N\nzCsXQu0McZIkSQV5OlWSJKkgQ5wkSVJBhjhJkqSCDHGSJEkFGeIkSZIKMsRJkiQVZIiTJEkqyBAn\nSZJUkCFOkiSpoP8PH/5TDAgC/bwAAAAASUVORK5CYII=\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde3bd7f8d0>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "plot_outliers(bf, \"rho\", 6)",
"execution_count": 1206,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHFCAYAAABy/MT4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu4nHV97/33KBEMRCBq8ZDiEsTvAjc2Qo2KG0Gt2vTy\n8Ohj1VawST0Uq3lK9n487u5q66Huh1Nr1MYtmnhAqts2Hkux7dZKraWbxFAr5QtEVm20QGuKJCQY\nEtbzx30PTiaz1po1s9aa+a15v64r12Tu42/Wb83MZ92/w92YnJxEkiRJ5XjAoAsgSZKk2THASZIk\nFcYAJ0mSVBgDnCRJUmEMcJIkSYUxwEmSJBXGACdJklQYA5wkSVJhjhh0AaS5EBHXAE8Hnp2ZX2tb\n907gtzLz+Fke8wjgdcCvAacCDwRuBj4NvD8z72nbfglwMbAOWJuZH+/t1UiHi4hHAR8Dfgi8OjOd\nhX1IRcRrgXOBb2Tmh+tlDeCFmfmFQZZNi4cBTsWLiMcCZwHbgPOAr3XYbFZfdhHxQOALwJOBdwB/\nARwAzgbeBbwkIp6dmXfX2z8C+F/Asb2cb1hExFHA+4B/oX4tmfk7c7VPHULen5kv7WbfiHgkVSB+\nAHAm8OeZeUmXr+WpwGMy8zNzUfaWfRpUv2dPzcw3zOX6iDiO6vXeCxwJ/CQz31evXgJ8KzN/d7ry\nzVD2Wb/eln0Pqbt62ceALwHbgX+vyw1wb2YenKn+Ztq/3/JHRACvqI97ErA9Mz8wi/LPtP+bgaOo\n3vtHAmuAqzLzIxHx1fo5dTknI6IREa/KzE9MVWapWzahajE4H7ge+EPg/46IIzts05jlMS8Engmc\nm5l/lJm3ZOZEZn6SKiyeTBXkml4BTADPmW3hh8x7gLsy85L6i/HxEfFbc7jPRcDybvatg867gd/L\nzLcCLwPeFBFv6fK1HEn15TpXZScifrV+DeuAB8/1euB3gIsz8311ULs7Il49w2uYjV7qt6m97gBO\nA/4E2AH8GNhb/2sec6b6m2n/fsv/aeCvM/O9wHrg4og4fxbnn2n/pcA7ge8Cfwv8a2ZePVVhMvPz\nwNkRMTZNmaWuGOC0GJwPfAbYQnWV4oVzcMx1wObMvKF9RWb+EPgD4DUR8aB68Wcz83zgJ3Nw7oGo\nr268Fvhcy+I/peUqQj/7RMTZVKGq0eW+jwOeAowDZOZ/AFcDh13V6kUvrzczP52Z/y/VF/ZhfxT0\nux54Lof+Dv0VcMaML6YLvbzeln0PqbsWNwHPoPqj5qnAOcCVwGURcQoz19+U+89R+e8DTq/Pvxv4\nD+Bpszj/TPtPUnWvOAs4ITP/xzRladoA/PcutpOmZYBT0SLiLKqmjSsycw9Vc8h5fR7zZ4ETgWum\n2eyrwDFUzULNUFe6J1K9pltblv0z8MS6aa/nfeom6V+kqp9u990PnEB1tbPpR8BDZ/GaptPL622a\n6Ypur+sfAHwuIpqv8SUcGlj60dPrnaLumn1EP52Zf5OZf5eZf0/V7+tNdf+8aeuvi/37Ln9mPjkz\nN9TnOxr4GeC6bs8/3f4t58h6/92df4KHlekfgFX18aSe2QdOpTufqoljZ/38U8CfRMTyzNzV4zEf\nXT9+f5ptmutW9HgOACLiPwP/PTOfVz8/kurqzMo6kC6kn60f725ZtpsqbDwCuLOPfdZQdcA/u9t9\nM/NG4OFt53sy8NczvI6mmUJUL6+3aaY+jr2uX0fV9/KGiLgC+Lv2QTl96PX1ruHwuiMzDwB/3nwe\nEc8Dbmz+MZOZ/8w09TfT/nNY/qbXUPVP+1iP5z9k/5b9foPqSt3PAvsz890zlAOqEPhM4MtdbCt1\nZIBTsermy5cDb63/moaqyemuevkf9XmKe6dZt7TPYze9iGpka9NTgCPaw1vdfLSBmd+zk8DbM/O2\nHsryYOBgZt7XsqzZnPeQXveJiIcBD8nMHXVTXE/nqwclnEGHJsX653MRh/58HgUsq/drmgTemZl3\nzPb8C+Qa4ONUr/FC4PMR8eeZedccHHvWr3eaumvf7ijgDZk5ZfeFLupv2v17KX997CcCz6Jqnl43\n2/LPsP9VwD9m5t56269FxH9k5geneR1QXUVciQFOfTDAqWQvAI4DNtb/Wp1H7wGu+Rf4ScDfT7FN\n82rAv/R4jqZzqUbVNZ0DfL19o3rKktf2ea6ZdLqCcUz9eE+Hdd3u8zrg0n7OVzc3fQB4aWZm+071\nz2dd2z7nAGM59XQuvbze+fZp4D2Z+e2IeD3V78ZmqqbUfvXyeqequ3avAv5hqpUz1d9M+9d6qq+6\nyfIfImIT8O2IeFdmbur2/NPtXze7troGeCPwQaa/AryLum+g1CsDnEp2PlUTyG+3LT8V+GREjGXm\nxGwPmpnfj4h/obqK98dTbHYO1ZW+bbM9flPdb+fnOHTak2dQfYnPiYhYWx9zOt/NzIupgusDI+LB\nmbmvXresfpwqqE67T0ScCdyQbXPmdbNvy2t4APBh4M2Z+b9neC2z0cvrnTd1c/r+zPw2QGb+UUT8\nLfB3ETHVFbJ5q98Z6q7dWqb4g6nL+pty/xZ91Vdm/jgivgK8PyI+nZmtg0VmPH/7/lT9Fd8EfDAz\nf1Rv1gAeM1NZqK4c2gddfTHAqUh1J+/VwJrMbA9R2yLi/6MKeO86bOfufAh4b0Ssav8rOyIeTTXN\nwOWZub/H40N19e2fm331opoI+GnAb0Q1x9xftZyzpybU+kpB+9WGqVxPdZXjJKp+eACPB26uRxDO\nep/6KtjDI+Ip9bqfB06KiPdSXVnq5nzvAD7W/PKPiNdk5uVdvqbp9PJ6W811P7ifAX7QuiAzr4+I\n71DNQXiYea7f6epuU2beDFCHy5+nmketk2nrr4v9eyp/RDwd+Dzw65nZHIBxD1X3hwdRN79Odf4u\n9j8FeDPVHJHfqtc/ErhxhtcB1XQst3exnTQlA5xK9StUX4BT9SHZAryS3gPcZcAvAVdHxDuopj+4\nlypgvQf4HtWcXQBExEqq5txmk86pEXEuQGZ+fYpzPJNqWoKmV1FdgfleRLyMqj8f9THmvQk1q4lL\nPwv8Mj/9gvxlquAIQESsAU7NzLd0s09mHtL8FtVdMY7IzLfXz2c632uo+jc9KCJ+sV68ssuXNO0g\nhl5eb7fH7nH9XwFvi4hHZ+YP6vOPA9dl5t6ImOGQ05vt652p7lo8huouJYddqeuy/jruHxG/BpzW\n7e9ae/mpBjvcA/xbva5B1Zftj9tGjE5V/j3T7R8R1wOXZua36vVLqfrJNeeQmy7An0AfV+8l6DLA\nRcQFwCXA72Q9i3ZEnAS8n2qI+BKqZqA3ZuZP6kvmF/HT+bi+S3Xrlx8ddnCpN+cBfzHN0P0/AV4f\nEU+m+iCd1Z0RMnN/RDwXeDtV36qLqd4vt1BdOXpfW9PSZVRXLKjP9Zb63yTVl0MnzwJ+HBFvpZo8\n9DrgG/XzuWwqnI03UTURvZVqpvvrsmXmeaom3/Ymu5n2aX75vR94HtVVnY1UP9Mp963Dy4eofu6t\nk7V+sr3Q9RXKyzj0M+2RwDF102TTJPDb9SCGWb/eiHgx8Hzqz7aoZ/LPzC39rq+b6F4FvCsifkDV\nxHYv1QSyc2XW9TtV3WXmLfUme4HbqCaybt2v2/rruD9V0HtVRPxuc5DAbMqfmdujuqXVMyPil6im\nBvoLqiuCM56/vvo55f51oLwiIi6iupq3AriwWdczeArQzZxx0pQak5PTf69FxIeoriqMU/3lcWm9\nfCvVB8876788vg78aWa+LyLeSHX/yGdk5r6I+CDwsMx8+Ty+Fmne1M0p1wDPz8w/m4PjPZyquezh\nmfnjfo+nxS8iHkPVZaDnW2mVJiJeBHxtjkbhLqip6qvu+/r5zDx3IAXTotHNFbjLM3NbRNzf0br+\ni+y9VM1K1Jf3v0Y9YzVVU9DGlo6ml1HNa9Ta+VRaUHUfs5kmgT2Ymf/WvjAzvxkR3wI+UHcc/2fg\n+21TGszGM4FthjdpWitKDG8zeAPwe4MuhMo3Y4Dr0EGcrGap/pPm86gmH/0lqqHTAEF1i5Km71E1\nBzyeqiOqNAhPZ+amyQmqTtKdvIxqNN2XqJpMTqYaidqLU6lugC2pg7rpe+ugy9GHw/o5RsQK4JFz\nPJpaI6rvQQx1eLuCqjnof9aLjwbuv9KWmfdFxE/q5dJA1IMJeh66X3csf/4clWVkmsE0Z/YDT637\nzb06O99uatHIzL8ZdBl6VfedO5fD7xryGqoJmqW+9RXgopqlewvwr8ALW5qT9lDNmt3c7oFUN0Je\n6FsDSdKikJn/SjV1joZcZn4E+EiH5e9c+NJoseo5wEXE8VTD3r/SYVj5d6kGPTRvBh5U8xh1moG7\nk3uoAp8kSdKomnJKotkEuEbbgT5IdRPx9vAG1TQLb4yIz1DdbPhtwJVtM19PZ4zB3YtwKmNUgzae\nx+HD3TUcxrCOht0Y1tGwG8M6GnZjWEclGGMe62naAFc3fd5NNXfSg4CzIuLdVPP4vAKYiIjntOyy\nIzOfn5kfqeeJu44q9P0f4DdnUa7b6n/DaIJDB2ho+ExgHQ27CayjYTeBdTTsJrCOSjDBPNTTtAEu\nMw8CR02x+nUz7Ps2qitvkiRJmkPeTFeSJKkwBjhJkqTCGOAkSZIKY4CTJEkqjAFOkiSpMAY4SZKk\nwhjgJEmSCmOAkyRJKowBTpIkqTAGOEmSpMIY4CRJkgpjgJMkSSqMAU6SJKkwBjhJkqTCGOAkSZIK\nY4CTJEkqjAFOkiSpMAY4SZKkwhjgJEmSCmOAkyRJKowBTpIkqTAGOEmSpMIY4CRJkgpjgJMkSSqM\nAU6SJKkwBjhJkqTCGOAkSZIKY4CTJEkqjAFOkiSpMAY4SZKkwhjgJEmSCnPEoAsgaW41Go2lwHjb\n4hsnJyf3DqI8kqS5Z4CTFp/xlavXb122fAUAu3ftZPtVl50JbBtssSRJc8UAJy1Cy5av4NgTTh50\nMSRJ88Q+cJIkSYUxwEmSJBXGACdJklQYA5wkSVJhHMQg6TBTTEUCTkciSUPBACepk0OmIgGnI5Gk\nYWKAk9SRU5FI0vCyD5wkSVJhDHCSJEmFMcBJkiQVxgAnSZJUGAOcJElSYQxwkiRJhTHASZIkFcYA\nJ0mSVBgDnCRJUmEMcJIkSYUxwEmSJBXGACdJklQYA5wkSVJhDHCSJEmFMcBJkiQVxgAnSZJUmCO6\n2SgiLgAuAX4nMy+plz0M+CjwBOA+4IvAmzJzMiIeAFwEvLA+xHeBV2fmj+a4/JIkSSNnxitwEfEh\n4CyqEDbZsmojsDMzHwesBM4BLqjX/SbwDOCJmXkK8APgQ3NYbkmSpJHVTRPq5Zn5KuDu5oKIWAa8\nCLgUIDP3Ah8Gzqs3eRWwMTP31c8vA14cEQ+eq4JLkiSNqhkDXGZu67D4lHrdjpZlN1M1pwIEcFPL\nuu/V53p8b8WUJElSU1d94Do4Gtjftmxfvby5vnn1jcy8LyJ+0rJ+Jo8AHtJj2ebLWNujhs9Y2+NI\nWrNmzYk77j18GbCnn2P0cpxrr732qI0bN57UfB4Rj3ruc5/LcccdFyeddNJ0u2pwxtoeNXzG2h41\nnMbaHntx01Qreg1we4Aj25YdzU8/2PcA9zeXRsQD6+27/eCf6HD8YXH1oAugGY10Ha1bt44LL/16\n+7It/R6jl+MsWbKE7bcfz7LlKwDY8Y/wmW98io+++7wvzuY4GoiRfh8VwjoqQz/11JhqRa8B7ibg\nYESckpk318tOBa6v//9dYBy4pn4ewAEguzz+GMN5Be5q4HlUAVPDZwzriA0bNpwGp29pW/biTZs2\n3dDPMXo9zrLlp2859oSTD1n+1a9+9Q1nnHHGX3Z7HC2oMXwfDbsxrKMSjDGP9TSbANeo/5GZd0fE\n54C3A2sj4jjg9cDF9babgTdGxGeA3cDbgCsz8yddnuu2+t8wmmCaS5oaChOMcB1t3rz5mLNfeUn7\nsu9v2rSp659Jp2PM5XEy84eMcB0VYgLraNhNYB2VYIJ5qKdpA1zd9Hk31fQhDwLOioh3A58A3gBc\nHhG3AAepAtrHATLzIxFxEnAdVej7P1RTi0haYAcP7AcYbzQOuRJ/VP14T8uyGycnJ/cuVLkkSb2b\nNsBl5kF++kHfyUun2fdtVFfeJA3QvrvuYOXq9Vc0+6EB3H7rVpYee8L9fdN279rJ9qsuOxPoNOpc\nkjRkeu0DJ6kgy5avoLUf2p5dOzmmbZkkqRzeC1WSJKkwBjhJkqTCGOAkSZIKY4CTJEkqjAFOkiSp\nMAY4SZKkwhjgJEmSCmOAkyRJKowBTpIkqTAGOEmSpMIY4CRJkgpjgJMkSSqMAU6SJKkwBjhJkqTC\nGOAkSZIKY4CTJEkqjAFOkiSpMAY4SZKkwhjgJEmSCmOAkyRJKswRgy6ApDI1Go2lwHiHVTdOTk7u\nXejySNIoMcBJ6tX4ytXrty5bvuL+Bbt37WT7VZedCWwbXLEkafEzwEnq2bLlKzj2hJMHXQxJGjn2\ngZMkSSqMAU6SJKkwBjhJkqTCGOAkSZIKY4CTJEkqjAFOkiSpMAY4SZKkwjgPnKQ5c/DAfoDxRqPR\nXNTpTg2SpD4Z4CTNmX133cHK1euvaN6d4fZbtw64RJK0OBngJM2p1rsz7Nm1c8ClkaTFyQAnaUEd\nPLCfG26+4aRGo3FGy+IbJycn9w6sUJJUGAOcpAW17647mHzo0y85+5UvB2D3rp1sv+qyM4Ftgy2Z\nJJXDACdpwbU2s0qSZs9pRCRJkgpjgJMkSSqMAU6SJKkwBjhJkqTCOIhBKlij0VjK4Xc78O4HkrTI\nGeCkso2vXL1+a/POB+DdDyRpFBjgpMK1T8nh3Q8kafGzD5wkSVJhDHCSJEmFMcBJkiQVxgAnSZJU\nGAOcJElSYQxwkiRJhTHASZIkFcZ54KQhMcVdFW6cnJzcO4jyDJI/C0mangFOGh6H3FVh966dbL/q\nsjOBbYMt1kD4s5CkaRjgpCHSfleFUebPQpKmZh84SZKkwhjgJEmSCtNXE2pEPAO4CHgIcAD4SGa+\nPyIeBnwUeAJwH/BF4E2ZOdlneSVJkkZezwEuIpYCXwDOz8wvR8QJwHciIoHXAjsz80X1dn8NXAD8\n0VwUWtLicfDAfoDxRqPRuni8i23AkamSRlQ/V+BOBI4FrgbIzNsj4nrgycCLqD+AM3NvRHwYWIsB\nTlKbfXfdwcrV669ojjgFuP3WrTNu48hUSaOsnwB3M3ATcB6wKSJOBk4H3gK8IzN3tG37hD7OJWkR\nax9xumfXzhm3kaRR1vMghsw8SHVV7aKI+DcggQ3A0cD+ts331cslSZLUp376wD0S+BLwq5n51Yh4\nKPBnVKHwyLbNjwb2zOLwj6AaGDFMxtoeNXzG2h6H1rXXXnvUxo0bT2pdtmrVqpPat1uzZs2JTPPe\nWbNmzYk77u2/PAcP7GfVqlXnrl279sSpytLNNgttpp+PejLW9qjhM9b2qOE01vbYi5umWtFPE+rT\ngTsz86sAmfmjiPgS8AzgQESckpk319ueClw/i2NPcHgIHBZXD7oAmtHQ19GSJUvYfvvxtPbpuvOI\n/ZzQtt26deu2THecdevWceGlX++7PPvuuoPJhz79kh33rpiyLN1ss9Bm+vmoL0P/PpJ1VIh+6umw\nkVtN/QS4G4BHR8TPZ+Z19WjT51CNOP034O3A2og4Dng9cPEsjj3GcF6Buxp4HlXA1PAZo5A62rBh\nw2nLlp++ZaZ+Xxs2bHjxpk2bbpjuOHD6nISY1j5mncrS7TYLaaafj3oyRiHvoxE2hnVUgjHmsZ56\nDnCZeUNEvBr4aEQcSZUS/xJ4L3AUcHlE3AIcBK7MzI/P4vC31f+G0QTTXNLUUJhgyOto8+bNx5z9\nyku62e77mzZtmvK1dHucxejggf1svmLz0s2bNx/TsthpRebOBEP+PpJ1VIgJ5qGe+prINzM/DXy6\nw6p7gJf2c2xJmk771CJOKyJplHgze0nFcmoRSaPKe6FKkiQVxgAnSZJUGAOcJElSYQxwkiRJhTHA\nSZIkFcYAJ0mSVBgDnCRJUmEMcJIkSYUxwEmSJBXGACdJklQYA5wkSVJhDHCSJEmFMcBJkiQVxgAn\nSZJUmCMGXQBJmg+NRmMpMN5h1Y2Tk5N7F7o8kjSXDHCSFqvxlavXb122fMX9C3bv2sn2qy47E9g2\nuGJJUv8McJIWrWXLV3DsCScPuhiSNOcMcNKQOnhgP8B4o9FoX2UToCSNOAOcNKT23XUHK1evv8Im\nQElSOwOcNMRsApQkdeI0IpIkSYUxwEmSJBXGACdJklQYA5wkSVJhDHCSJEmFMcBJkiQVxgAnSZJU\nGAOcJElSYQxwkiRJhTHASZIkFcZbaUkF6XCD+/HBlaY8HX5+ADdOTk7uHUyJJKk3BjipIO03uL/9\n1q0DLlFZ2n9+u3ftZPtVl50JbBtsySRpdgxwUmFab3C/Z9fOAZemPK0/P0kqlX3gJEmSCmOAkyRJ\nKowBTpIkqTAGOEmSpMIY4CRJkgpjgJMkSSqMAU6SJKkwzgMnaVHwLhWSRokBTtKi4F0qJI0SA5yk\nRcO7VEgaFfaBkyRJKowBTpIkqTAGOEmSpMIY4CRJkgpjgJMkSSqMAU6SJKkwBjhJkqTCOA+ctAAa\njcZSDr0zgHcJkCT1zAAnLYzxlavXb/UuAZKkuWCAkxaIdwmQJM0V+8BJkiQVxgAnSZJUGAOcJElS\nYfrqAxcRy4EPA08B7gU2Z+a7IuJhwEeBJwD3AV8E3pSZk32WV5IkaeT1ewVuE3BbZp5IFeJ+ISJO\nATYCOzPzccBK4Bzggj7PJUmSJPoIcBHxKGA18E6AzPz3zDwHuA14EXBpvXwv1VW68/otrCRJkvpr\nQl0J3AH8ekScT9VUuhH4e4DM3NGy7c1UzamSJEnqUz8B7njgZ4B7MvOJEXE6cA1wMbC/bdt9wNGz\nOPYjgIf0Ubb5MNb2qOEz1vY4MNdee+1RGzduPKn5fNWqVSdNt70GZ82aNScCewZdjiEy1vao4TPW\n9qjhNNb22IubplrRT4C7E5gEPgCQmd+JiK8AzwKObNv2aGb3ATnR4RjD4upBF0AzGngdLVmyhO23\nH0/zzgt3HrGfEwZcJnW2bt26LYMuw5Aa+PtIM7KOytBPPTWmWtFPgLsFWAIcA+xuWX4d8PSIOCUz\nb66XnQpcP4tjjzGcV+CuBp5HFTA1fMYYkjrasGHDacuWn77FOy8Mvw0bNrx406ZNNwy6HENkjCF5\nH2lKY1hHJRhjHuup5wCXmRkR3wTeDrwtIsaoBjW8CHh0vXxtRBwHvJ6qabVbt9X/htEE01zS1FCY\nYMB1tHnz5mPOfuUlgyyCurR58+bvb9q0yff04Sbws27YTWAdlWCCeainfu+Fej7w0YiYAO4G3pqZ\n10TEd4DLI+IW4CBwZWZ+vM9zSX1pNBpLgfG2xTdOTk7unc02kiQNWl8BLjMngGd3WH4n8NJ+ji3N\ng/GVq9dvbfZL271rJ9uvuuxMYNsst5EkaaD6vQInFWXZ8hU0+6X1s40kSYPkvVAlSZIKY4CTJEkq\njAFOkiSpMAY4SZKkwhjgJEmSCmOAkyRJKowBTpIkqTAGOEmSpMIY4CRJkgpjgJMkSSqMt9KSNLIO\nHtgPMN5oNNpX3Tg5Obl34UskSd0xwEkaWfvuuoOVq9dfsWz5ivuX7d61k+1XXXYmsG1wJZOk6Rng\nJI20ZctXcOwJJw+6GJI0K/aBkyRJKowBTpIkqTAGOEmSpMIY4CRJkgpjgJMkSSqMAU6SJKkwBjhJ\nkqTCGOAkSZIKY4CTJEkqjAFOkiSpMAY4SZKkwhjgJEmSCmOAkyRJKowBTpIkqTAGOEmSpMIY4CRJ\nkgpjgJMkSSqMAU6SJKkwBjhJkqTCGOAkSZIKc8SgCyCVrtFoLAXG2xa3P5ckac4Y4KT+ja9cvX7r\nsuUr7l9w+61bB1gcSdJiZ4CT5sCy5Ss49oST73++Z9fOAZZGkrTYGeCkWerQZGpzqSRpQRngpNk7\npMnU5lJJ0kIzwEk9aG0ytblUkrTQnEZEkiSpMF6Bk6QWBw/sBxhvNBrNRUfVj/e0bXrj5OTk3oUq\nlyS1MsBJUot9d93BytXrr2jt47j02BNonSZm966dbL/qsjOBbQMqpqQRZ4CTpDbtfRyPaZsmRpIG\nzQAnTaNDcxo4bYgkacAMcNI02pvTwGlDJEmDZ4CTZuBdFiRJw8YAJ0l96nB3jiZHqkqaFwY4Serf\nIXfnAEeqSppfBjhJmgPtTe2SNJ+8E4MkSVJhDHCSJEmFMcBJkiQVxgAnSZJUGAcxaGR5lwXNpyl+\nv5xWRNKcMMBpZHmXBc2n9t8vpxWRNJfmJMBFxHHAd4GvZubaiHgY8FHgCcB9wBeBN2Xm5FycT5or\n3mVB88mpRSTNl7nqA/eHwD6gGdA2Ajsz83HASuAc4II5OpckSdJI6zvARcTzgccCVwCNiDgGeBFw\nKUBm7gU+DJzX77kkSZLUZ4CLiOOBy4C1/PTq2+MBMnNHy6Y3UzWnSpIkqU/9XoH7Q+ADdVhrBril\nwP627fYBR/d5LkmSJNHHIIaIeAHwGODX6kXNsfJ3A0e2bX40sGcWh38E8JBeyzZPxtoeNXzG2h4P\nsWbNmhN33LtgZdEit2bNmhOpP9e6/d1q3WeIjbU9aviMtT1qOI21PfbipqlW9DMK9WXA44DvRQTA\ncfXxfg44EBGnZObN9banAtfP4tgTHB4Ch8XVgy6AZtSxjtatW8eFl359gYuixWrdunVbWv7f1e9W\n6z4F8LNu+FlHZeinnhpTreg5wGXm+a3PI+IdwGMy89cj4grg7cDaeoqR1wMXz+LwYwznFbirgedR\nBUwNnzGmqaMNGzacBqeX9AWqIbZhw4YXb9q06Yb6/139brXuM8TG8LNu2I1hHZVgjHmsp/mayPcN\nwOURcQtwELgyMz8+i/1vq/8NowmmuaSpoTDRaDR2cvhdFZae/cpLBlEeLUKbN2/+/qZNm26q/39M\nN79brfsUYAI/64bdBNZRCSaYh3qaswCXmb/b8v87gZfO1bGlHoyvXL1+q3dZkCQtRt5KS4uWd1mQ\nJC1Wc3WQJ67RAAAPuElEQVQnBkmSJC0QA5wkSVJhDHCSJEmFMcBJkiQVxgAnSZJUGAOcJElSYQxw\nkiRJhTHASZIkFcYAJ0mSVBgDnCRJUmEMcJIkSYUxwEmSJBXGACdJklQYA5wkSVJhDHCSJEmFMcBJ\nkiQVxgAnSZJUGAOcJElSYQxwkiRJhTHASZIkFeaIQRdAkkpz8MB+gPFGo9FcND640kgaRQY4SZql\nfXfdwcrV669YtnwFALffunXAJZI0agxwktSDZctXcOwJJwOwZ9fOAZdG0qixD5wkSVJhDHBaFBqN\nxtK1a9eetm3bNtauXXsa9kmSJC1iNqFqsRjffvvxWy689OvA6Vsef9avDro8kiTNGwOcFg37JEmS\nRoVNqJIkSYUxwEmSJBXGACdJklQY+8Bp6DUajaV0HlV64+Tk5N6FLo8kSYNmgFMJxleuXr+1Oes9\nwO5dO9l+1WVnAtsGVyxJkgbDAKcitI4wlSRp1NkHTpIkqTBegZOkBXDwwH6A8Uaj0Vx0VP14T8tm\nnZbZ11PSYQxwkrQA9t11BytXr7+i2Zfz9lu3svTYE2jt29m+zL6ekqZigJOkBdJ+t5Bj2vp2dlom\nSZ3YB06SJKkwBjhJkqTCGOAkSZIKYx84SRpSHUauNjkyVRpxBjhJGlLtI1fBkamSKgY4SRpi3oVE\nUif2gZMkSSqMAU6SJKkwBjhJkqTCGOAkSZIKY4CTJEkqjAFOkiSpMAY4SZKkwjgPnIZOo9FYCoy3\nLBqfaltJkkaRAU7DaHzl6vVbm7PP337r1gEXR5Kk4WKA01BqnX1+z66dAy6NJEnDxT5wkiRJhTHA\nSZIkFcYAJ0mSVJi++sBFxLOB9wDHAg8EPpSZfxARDwM+CjwBuA/4IvCmzJzss7ySJEkjr+crcBHx\nCODzwNsy81TgF4Hfi4inAhuBnZn5OGAlcA5wwRyUV5IkaeT104R6ADgvM78GkJnfA24AVgEvAi6t\nl+8FPgyc119RJUmSBH00oWbmvwNfaD6PiJOB/wR8u16/o2Xzm6maUyVJktSnOZkHLiJWAF8C/ke9\naH/bJvuAo2dxyEcAD5mDos2lsbZH9eDaa689auPGjSe1Lrvgggu+95SnPOWe5vM1a9acuOPe6Y9z\n8MB+Vq1ade7atWtPBFi1atVJ0+8hLR5r1qw5EdjTzzGmeS8+on461s/xNa/G2h41nMbaHntx01Qr\n+g5wEXEGVV+4DZl5UUQ8CTiybbOjmd2HzUSHYwyLqwddgJItWbKE7bcfT/MuC7t37WTJkiWHbLNu\n3TouvPTr0x5n3113MPnQp1+y497qOHcesZ8T5qXE0vBZt27dln6P0cV70c+64WcdlaGfempMtaLf\nUahnAF8BfjMzmx8oNwEHI+KUzLy5XnYqcP0sDj3GcF6Buxp4HlXAVA82bNhw2rLlp29p3mWhXvbi\nTZs23dC6DZw+4xeUd2vQqGp/z/R4jKnei3vxs27YjWEdlWCMeaynngNcRBwF/C8ODW9k5t0R8Tng\n7cDaiDgOeD1w8SwOf1v9bxhNMM0lTU1v8+bNx5z9ykval31/06ZNN023jaSfan/P9HiMqd6LzdaS\nCfysG3YTWEclmGAe6qmfK3AvBh4DvDci3tuy/ErgDcDlEXELcBC4MjM/3se5tEgdPLAfYLzROOQq\n8fhgSiNJUhn6GYV6JVVYm8pLez22Rse+u+5g5er1VzT74QDcfuvWAZZIkqThNyejUKV+tPZlA/uz\nSZI0E++FKkmSVBgDnCRJUmEMcJIkSYWxD5wkFazRaCyl88jtGycnJ/cudHkkLQwDnCSVbXzl6vVb\nW0dy7961k+1XXXYmsG1wxZI0nwxwklS49pHckhY/+8BJkiQVxitw6on9biRJGhwDnHplvxtJkgbE\nAKee2e9GkqTBMMBp3kzRzOqN6qV5dvDAfoDxRqPRutjuDdIiYoDTfDqsmdUb1Uvzb99dd7By9for\nmu89uzdIi48BTvPKG9VLg2EXB2lxcxoRSZKkwhjgJEmSCmOAkyRJKox94DRnOox8c8SpJEnzwACn\nOdM+8s0Rp5IkzQ8DnOZU68g3R5xKkjQ/7AMnSZJUGK/ASVJB7GsqCQxwklQU+5pKAgOcJBXHvqaS\n7AMnSZJUGAOcJElSYQxwkiRJhbEPnGg0Gks5fCTbjZOTk3un2caRb5IkDYgBTgDjK1ev39oc1bZ7\n1062X3XZmcC2qbZx5JskSYNjgBNw6Ki2brZx5JskSYNjHzhJkqTCGOAkSZIKY4CTJEkqjAFOkiSp\nMA5iGEFOCSJJUtkMcKPJKUEkSSqYAW5EOSWIJEnlsg9cwRqNxtJGo3FGh39LB102ScPj4IH9AOOt\nnxO0dZ1obrN27drTtm3bxtq1a0/z80QaXl6BK9shTaEw5V0UJI2wfXfdwcrV669o/axo7zrR3GbH\nvSu48NKvA6dvWbl6vZ8n0pAywBWumzsoSFL7Z0WnrhN+nkjlsAlVkiSpMF6BW2Ra+rq0Lr5xcnJy\nb5/HcKoRacR1mIIIZvn5ImluGOAWmfa+Lr30ieumv4ykkXRIv1v73EqDY4BbhOaiH0s3/WUkjR77\nyUnDwQAnSeqoQ3cKu1JIQ8IAJ0nqqL07hV0ppOFhgJMkTcm7tkjDyQA3AFOM5DqqfrynZVnfo7sc\nUSppkBby804aJQa4wTjsDgq337qVpceewFyP7nJEqaQBW7DPO2mUGOAGpNMoz2PmaXSXI0olDdJC\nft5Jo8I7MUiSJBXGK3ALoEMfkJ76oM3VcSRpLkzRxxbszybNOwPcwjikD0gffdDm6jiS1LdOfWzt\nzyYtDAPcApmrofgO6Zc0TLwzgzQYBrg+dTlE3qZOSZrCsDfFTvE5D0NSPo0mA1z/Zhwib1OnJE2t\ngKbYwz7nh6x8GkHzFuAi4snABuChwL3A72fmJ+frfIM00xB5mzolaXrD3hQ77OXT6JmXABcRRwJb\ngP+SmZ+NiJOB6yLi25n5j7M51hSXrhfksnXrudesWXPiunXr2LBhw2mbN2/e6WVzSTpch+bQnrqQ\nTNGseshnf4fvh/buK53u+DCwu0DYFKu5NF9X4J4NTGbmZwEyc0dEfAX4FeC/zbTz45/28m82/3/C\n455y/CNPOevUAc3Yff9l8x33woWXfp3du47fAnjZXJI6aG8O7bULSftxpvjsP2xkfnv3ldbnnZYN\n6julyaZY9Wq+Atw4cHPbspuAM7rZOc761bOa///BjddwzPGPGtilay+bS9LszMeo+27P1d59pf2O\nD4O+C4TfKZor83UnhqOBfW3L7qmXS5IkqQ/zdQVuN/DgtmVHA3u62fnWrVtueOADGg8A2HXbjmMm\nJ3/+/uvNu3ftZNWqVeeuXbv2xDkr7RRWrVp10u62vx7bz99pm7t/fDuTs3jeaVmn19l+rm6O08s2\n83XchdzG8i3u8i2G1zDs5Ru219DLZ2Kvx23XzXdBN6Y6zpo1a06ky+/H2ljbo4bTWNtjL26aakVj\ncrL917t/EfEcYFNmrmhZ9lnghsx855yfUJIkaYTMVxPq14ADEbEGICJ+DngO8Kl5Op8kSdLImJcr\ncHB/aPsQ8HCq/m/vyMwt83IySZKkETJvAU6SJEnzY76aUCVJkjRPDHCSJEmFMcBJkiQVxgAnSZJU\nGAOcJElSYebrTgzFi4g3A6+mCrnfB16bmd+bYZ8PARdkpsF4gXRbTxHxcOAPgScBS6huHP36zPzR\nAhZ3ZETEk4ENwEOBe4Hfz8xPdtjuVcBbqerkR8AbM/O6hSzrqJpFHf0/wOuovi/2Am/OzL9cyLKO\nqm7rqGX7pwLfBH49Mz++MKUcbbN4H60ENvLTqdXelplf7OfcBo0OIuL5wBuAp2fmKcDVwJUz7PMs\nqsmKnZdlgcyynjZS3Z/3NGAceBDwnoUo56iJiCOBLcCldb28AHh/RPyntu2eSBWqX1BvdynwpxGx\nZKHLPGpmUUcvAN4CPDczx4HfBz4XEQ9a6DKPmm7rqGX7o4DLgX/B76EFMYv30dHAnwEXZ+bJwG8A\nvxURfWUwA1xnrwI+kZn/Xj//APCkiHhcp40j4hiqSYvXA42FKaKYXT19DPhvmTmZmQeowt4TF6ic\no+bZwGRmfhYgM3cAXwF+pW2784Av1+upt28A5y5cUUdWt3V0C/DLmfnD+vmXgYcAj1mogo6wbuuo\n6d3AF4Bb8XtooXRbRy8Ebs/Mz9Xb/U1mPjsz7+vn5Aa4zoKWG8hm5l5gJ/CEKba/CPg48I/zXzS1\n6LqeMvMrmXkbQEQ0gP8L+MYClXPUjAM3ty27icPr5ZD6q93cYTvNva7qKDP/KTP/tmXRS6jeY9N2\nJ9Gc6PZ9REScRRUmfrde5BW4hdFtHT0JmIiIyyMiI+IbEXF2vycf2T5wEfEKqnbrdj+uH/e1Ld8H\nHN3hOM8GzqBqyjtxLsuouaunluM1gD8AfobqL1bNvaM5vF7u4fB66bTdPmDpPJVLP9VtHd0vIs6l\navJ+eWYenL+iqdZVHUXEg4H/CbwqM/dHxAIVT3T/PjoeeBZVV4TX1H1/vxgRj+unH/bIBrjM/GPg\njzuti4jtwIPbFh8N7GnbbhlV0+lLMvM+3zhzby7qqWX7pcAnqTqbPjMzO26nvu2mu3rZw+Fhbcr6\n05zqto6A+webXAS8LDP/9zyXTZVu6+jdwOczc1vLMptQF0a3dXQn8PeZeS1AZn4iIn4feBpVt4Se\n2ITa2XepLo0C9we1RwPfadvubGA58OWIuBW4pt7+1oh42gKVdZR1W0/NzqZfoHpj/UJm3rlQhRxB\n3wUe37bsVOD6Dtvd/1dPfXV0HPiHeS2doPs6IiJeDbwDOMfwtqC6raOXAOfX3zu3Ak8FLo6ISxag\njKOu2zq6meoqXKtJ4EA/JzfAdbYZ+LWIeHT9/K3A32Tmra0bZeafZebDM/OxmflY4D/Xyx+bmd9a\n0BKPps10UU+1dwB3A2vqQQyaP18DDkTEGoCI+DmqEdqfatvuU8AvtYzYeg3VX7T2TZx/XdVRRJwG\nvA94dmbeuNCFHHFd1VH9ffOYlu+hvwP+a2b+14Uu8Ajq9rPuM8DjI+J59XYvAo4C+soJjclJ+zp2\nEhEXAhdQhdybgNc1R2JFxD9RNZv+U9s+Y8COzHzgAhd3ZHVbTxFxD3AHVYhruiczn7TQZR4F9QfZ\nh/jpnEfvyMwtEfFe4O7MfE+93SuA36aa1uWHwG9m5g0DKvZImaGO9mTmeyPiw8ArqOqm1frM/POF\nLfHo6fZ91LbP14BNmfmJhS3taJrFZ90vUPW/Popqzsv/kpnf7OfcBjhJkqTC2IQqSZJUGAOcJElS\nYQxwkiRJhTHASZIkFcYAJ0mSVBgDnCRJUmEMcJIkSYUxwEmSJBXGACdJklSY/x8h/idOW1fUnwAA\nAABJRU5ErkJggg==\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde3a9279d0>"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHFCAYAAABy/MT4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2cnXV95//XURAIRCTVxpsURxA+Ay4aySoWfwhWW01X\nZXXV2io6qdpiNavZ/ekW16pbFe3KTXWs4opmvEHUuo03VYrbVrvUql0TQ11jPgEktdGSqFFJSDAk\nzP5xXQMnJ2dmzu2cc515PR+PeZzMda7rOp9rrjln3rm+3+v7rU1PTyNJkqTquM+gC5AkSVJ7DHCS\nJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFXMUYMuQOqniLgBeCLwlMz8\ncsNzbwZenZkntbnPo4DfA14CnAHcF7gJ+Djw7sy8s27dY4E3As8HlgPbgLdm5oZOj0mjLSIeCnwI\n+CHw0sx0tPUhFREvBy4A/ndmvr9cVgOelZmfHWRtGn0GOI2siHgEcC6wCXgR8OUmq7X1xzEi7gt8\nFngc8CbgfwEHgfOAtwDPiYinZOYd5SbvAX4TeBmQ5eOfR8S5mfmPbR9Uj5TB8h3AvwAnAmTmG7vZ\npvzD9SLgCZn5yoZtHwCsBe4CjgF+kZnvmOV1HkoRhJ/b4rE8AXh4Zn6y09pn2Wau45l3f3Nt37Be\n4/EeDXwtM//bXPXNU3tbxxsRAbyA4vycAmzOzPe0WO/M8qbHGxGvA44F/pzi3E8A12Xm9b2qf776\nujlfEXEc8FbgR+W2t2Xmu8p9fCAivlQeE+Wy6YioRcSLM/MjrdQsdcImVI2yi4AbgXcB/yEijmmy\nTq3Nfb4GeDJwQWa+LzNvzsztmflRirB4KkWQIyJOpLhK94bM/GJm3pKZl1D8Efmtzg6pZ94G3J6Z\nl5d/yE6PiFd3uk1E/A7wToqQdlyTbd8IXJaZ7yiDyR0R8dJZXuedwLI2juUYioDQUe3NtHA8c+6v\nhe3rtXu8rWj3/H4c+LvMvBRYB1wWERfNsu4R9c5zvEuANwPfAf4B+Ne5wluH9c9Z33z7m6f+DwO7\nyt/dS4DnRcS/m6uAzPwMcF5EjLVYs9Q2A5xG2UXAJ4ENFFc1ntWDfa4FpjJzS+MTmflD4E+Bl0XE\n/TLz58BDgGsaVt0F/FIPaulIeTXi5cCn6xb/BXVXEdrdJjM/npn/P8Uf6Wah+DeAX9R9/zfA2U1e\n5zyKQNZusJ5VJ8c71/G0sr8Wfh4z+xqK4wXuBs4CyMw9wE+BX22y76b1znO80xRdDc4Flmfmn/Sh\n/lnr6+Z8RcRpwHOBv67b9u+ANfPVAkwCf9TCelJHDHAaSRFxLkVT0DWZuRf4PEXzSDf7/BXgZOCG\nOVb7EnACsAogM3+cmfcEl7J559HAwJpPy9c/Abi1btk/A48umzq72Wa2IHIf4NMRMRNcn8Phf1Bn\nmqefTnGueqmT453R7Hja2d9c4W1ojjczH5eZk2VdxwO/DHyzg3qbHm8Wvl6Gw57XP0993ZyvleXj\n7rplOymuws8pM/8JeHz585R6zgCnUXURRZPQjvL7jwFPj4humqoeVj5+f451Zp5b0fhE+QdmPXBb\n+TiriPj/IuL6uu+PiYibI+KE9kpu6lfKxzvqlu2h+OP14C63ma1P4VqKq3BbIuIKYFvjTSUUV0Q+\nRPtXo+Zbv5PjndHseNrZ31x9LCfo7Hjn083xQtFP87rM/FDD8gnmr7fp8UbE70fEyyPijyPiDfO8\nfqf1z1ZfN+frQJPXOQo4KSKWzFHLjG/SQtiTOuFNDBo5EXE/ij5mf1jeMQpFk93t5fL3dfkSd83x\nXNMP9bKOjwPnAE/OzP3zvMaFFHe2zjgHOKq8mli/32Mpmmrmey9PA6/PzNso+vgcysy7656fuUp4\n/1m272SbejdQ9CU6m6If4Wci4q8y8/byOB4I3D8zbymbwZoqj/edHH68DwWWljczzJgG3pyZu3pQ\ne6Ou99fq8Xaoo/oi4tHAr1EE7bU9rPc64P9m5r5yX1+OiJ9m5p/1qv556uvmfH2N4ialB3HvFbyo\n23bfPNvfSnEV7y/nWU9qmwFOo+iZwAOAq8qvei+i8wD3w/LxFGZvAp353/6/zCwoA+WnKO5U/Y3M\n/FYLr3UBxV1zM84HvtK4Ujlkyctb2F+9nzVZNnNl784mz3W6Tb2PA2/LzG9FxCsojm2KoikVimFZ\nrphvJ+XxNoaL84GxzPzwLJt1W3s/9tfS8Xaoo/rKJr9/ioj1wLci4i2ZOXOluON6m9xtfQPwKmC2\nANdJ/XPV1/H5ysxdEfEnFP3g/rEMiiso+gzunmvb0m5gvIX1pLYZ4DSKLgL+CmhsqjkD+GhEjGXm\n9nZ3mpnfj4iZO0g/Mctq51Nc6dtUt+yDFB3CL8jMb8/3OmW/nMdw+LAnT6IIQb3wQ+C+EXFc3ZXA\npeXjv/RwG6BoDgYOzATXzHxfRPwD8PWIuD9wGrClfvy8Huu49n7sLyJW0ebxRsQait+BuXwnMy/r\ntr7M/HlEfAF4d0RcCzyq3Xrr6j4OeC3wZ5n5k3JxDXj4HJu1VX8LP89ufx5/FBEviYi1wI+B6ylu\nxmjWvNroF9hVSX1igNNIKTvJrwYmMnNTw9ObIuK/UwS8t3T4Eu8FLo2IxzdeWYiIhwGvBq6e+XAv\nP/SfDZzXSngrXQD8c2buLvdxNEUA/P0oxpj7m7rX7KQJ9UaKqxKnUNx1B3A6cFNm/nSW7dvZprEf\n0S8DP6hfkJk3RsS3gUMUofdBEXFO+fS/BU6JiEuB9Zl5E93p5HjrNR5Pu/tr3H7O46VJv6vyStic\n/SY7rS8ingh8BvjdzJy5AeBOiu4A95uv3ibnp/54zwBeRzFe4tfKZQ8Btvaq/vnq62B/h52viHge\n8NeZ+YPy+08AH52j/nrLKG56kHrOAKdR89sUH8Cz9TnZALyQzgPclRQD814fEW+i+N/4XRQB623A\n9yjGPKO84eCPKULfv0ZEfYfpQ5n5o1le48kUwzjMeDHFFazvRcTzKfrzAZ01oWbmoYj4FPA87v2D\n9jyKIEhZ+wRwRmb+l1a3KTXr4P43wCUR8bC6P4LjwDezGPD4sKavKGbIOCozX9/iIc15E0AnxzvX\nvtv4Wcy2/ZzHGxFzXZ2aVwfHewdFYPtR+VyNoi/cJ8o+iu2cn8bjvRG4IjO/Vm67hKKPXf0YbC8B\nzmznd62+/vl+nuWyjs8XRVPvKykG4H4MxdXDiSbrNbOcw6/GSz1Tm56efyD6iLgYuBx4Y2ZeXi47\nBXg3xcClR1M097wqM38REfeh6Gg8M+7WdyimhPnJETuXeigivg78KDOfOcvzT6YY0+kJFEHs1ZnZ\n1p2pUQwI/Hrgdyg+zI8CbqZo4nzHTFNO2Ter2ewPANsz85RZ9v9t4OcUIXQfxZ1srwO+Dvxtkz5F\nbYuIpRTv36QYXf5gZv5R3fNXAk/KzFWtbBMRzwaeQXG1EYorOp/PcsqwiDiDointBxRNSncBb28Y\nYqVW7v9pFJ3GP0kx+O/NdescSxGi6//z+RCKPk31V4KmKQZQ3tXJ8bZwPPPtb87t5zre8mczkd3N\nxNDu8T4deCxFh/+TKe6UflOr52eu442IoLiz9RcU/cc+l5l/0VDLi4FfqbvRoZPfz7nq6/h8RcQL\ngDMprhY/hOLmmNvqtn04s5yviPgq8JzM9Cqcem7eABcR76X4cByn+B/ZFeXyjRS/4G8u/1f1FeAv\nMvMdEfEqihHon5SZ+yPiz4AHZuagR5+XeqpsfroBeEZmfrEH+3sQRch5UBYDAWuRmSsQjKqIuBD4\ncnnFr1JmO19lX9bPZOYFAylMI6+VJtSrM3NTRNxzJaH8n86lFM1HZOa+8vmzylVeDFxV12H0Sorx\nn+o7kUpDoexjNt/MCE2bPDPzqxHxNeA9ZUfzfwa+3zBkQTueDGwyvGmRWVHF8DaPV1J0oZD6Yt4A\n16QjOJk5DfzPme/LJqXf5N7bwgPYVrfJ9yiaTU6n6BMhDZMnAn87zzrbKTpBN/N84P0UI8D/gqJb\nQad/jM6gmPRbWhTKu5Q3DrqOLhzRby4iVgAPycz5PlekjnV9E0MZ3q6haPb5H+Xi44F7rrRl5t0R\n8YtyuTRUMvMrdHGrf9kx/xk9qmXRNJtpVgeAJ0TEhyj6Ds/fUbnCMvPvB11DpyLi5RR3jf9dw1Mv\noxiwWuqbrgJcFIMabgD+FXhWXbPRXorOsDPr3ZdiguG9R+xEknSPzPxXiqFwNOQy8wPAB5osf/PC\nV6PFpuMAFxEnUQwP8IUmt5N/h+Kmh5lJv4NiOpJscfd3UgQ+SZKkxWrWYZLaCXC1hh39GcVk4c3G\nApoCXhURn6SYNPgS4Nr6W9LnMUZncxTqSGMUN5s8jaIfl0bLGJ7fUTaG53eUjeH5HWVj9PH8zjmM\nSNn0eQfFmEr3oxgH5xDFKNQvKwuqD2W3ZOYzym3fDvwHitD3f4Dfz8w9vT4Azet0iiufjTeWqAJq\ntdoSjpxLcev09PTMJNqe39Hm+R1tnt/R1tfzO+cVuMw8BBw7y9O/N8+2l1BceZPUufGVq9dtXLps\nBQB7du9g83VXrsLR3SVpUXMqLWnILV22ghOXnzroMiRJQ6TjoRMkSZI0GAY4SZKkijHASZIkVYwB\nTpIkqWIMcJIkSRVjgJMkSaoYA5wkSVLFGOAkSZIqxgAnSZJUMQY4SZKkijHASZIkVYwBTpIkqWIM\ncJIkSRVjgJMkSaoYA5wkSVLFGOAkSZIqxgAnSZJUMQY4SZKkijHASZIkVYwBTpIkqWIMcFKFfeMb\n3zh206ZNrFmz5sxarXZ23deSQdcmSeqfowZdgKTOXXXVVads3nkSS5edteG8F14OwJ7dO9h83ZWr\ngE2DrU6S1C8GOKnili5bwYnLTx10GZKkBWQTqiRJUsUY4CRJkirGACdJklQxBjhJkqSKMcBJkiRV\njAFOkiSpYgxwkiRJFWOAkyRJqhgDnCRJUsUY4CRJkirGACdJklQxBjhJkqSKMcBJkiRVjAFOkiSp\nYgxwkiRJFWOAkyRJqhgDnCRJUsUY4KQKOXTwAMB4rVY7u1arnb1ly5ZTBl2TJGnhHTXoAiS1bv/t\nu1i5et01S5etAGDnrRtZPuCaJEkLzwAnVczSZSs4cfmpAOzdvWPA1UiSBsEmVEmSpIoxwEmSJFWM\nAU6SJKliDHCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFWMAU6SJKli\nDHCSJEkVY4CTJEmqmKNaWSkiLgYuB96YmZeXyx4IfBB4FHA38DngtZk5HRH3Ad4JPKvcxXeAl2bm\nT3pcvyRJ0qIz7xW4iHgvcC5FCJuue+oqYEdmPhJYCZwPXFw+9wfAk4BHZ+ZpwA+A9/awbkk9VKvV\nltRqtbObfC0ZdG2SpCO1cgXu6szcFBFfnlkQEUuBC4FxgMzcFxHvB9YA7wNeDFyVmfvLTa4EtkTE\ncXXLJA2P8ZWr121cumzFPQv27N7B5uuuXAVsGlxZkqRm5g1wmdnsw/u08rlb6pbdRNGcChDAtrrn\nvkdxte904MaOKpXUV0uXreDE5acOugxJUgta6gPXxPHAgYZl+8vlM8/fc6UtM++OiF/UPT+fBwP3\n77A2HW6s4VEVMjExcfItd3W2HbC329dpdz/qubGGR42WsYZHjZaxhsdObJvtiU4D3F7gmIZlx3Pv\nB/1e4LiZJyLivuX6rf4h2N5k/+rO9YMuQO1bu3Ytr7niK51st6EXr9PuftQ3vn9Hm+d3tHVzfmuz\nPdFpgNsGHIqI0zLzpnLZGdzbPPodiv5xN5TfB3AQyBb3P4ZX4HpljOKX52kUwVgVMjk5eSac1XaI\nmpycfPb69eu3dPs67e5HPTeG799RNobnd5SN0cfz206Aq5VfZOYdEfFp4PXAmoh4APAK4LJy3Sng\nVRHxSWAPcAlwbWb+osXXuq38Uu9sZ45LsRpOU1NTJ5z3wss72e7769evb/l8z/Y67e5HfbMd37+j\nbDue31G2nT6c3zkDXNn0eQfF8CH3A86NiLcCHwFeCVwdETcDhygC2ocBMvMDEXEK8E2K0Pd/KIYW\nkSRJUpfmDHCZeQg4do5VnjvHtpdQXHmTJElSDzmVliRJUsUY4CRJkirGACdJklQxBjhJkqSKMcBJ\nkiRVjAFOkiSpYgxwkiRJFWOAkyRJqhgDnCRJUsUY4CRJkirGACdJklQxBjhJkqSKMcBJkiRVjAFO\nkiSpYgxwkiRJFWOAkyRJqhgDnCRJUsUcNegCJFVDrVZbAow3eWrr9PT0voWuR5IWMwOcpFaNr1y9\nbuPSZSvuWbBn9w42X3flKmDT4MqSpMXHACepZUuXreDE5acOugxJWvTsAydJklQxXoGTRsyhgwcA\nxmu1Wv1i+6lJ0ggxwEkjZv/tu1i5et01M33V7KcmSaPHACeNIPuqSdJoM8BJQ2KWYTqaDdshSVrk\nDHDS8DhimI6dt24cYDmSpGFlgJOGSGPT597dOwZYjSRpWDmMiCRJUsUY4CRJkirGACdJklQxBjhJ\nkqSK8SYGaUCaDBsyVEOGNJnRYajqk6TFzAAnDc5hw4YM25AhjTM6DFt9krSYGeCkAaofNmQYhwwZ\n9vokabGyD5wkSVLFGOAkSZIqxgAnSZJUMfaBk7Sgmtx9O2Pr9PT0voWuR5KqyAAnaaEddvctwJ7d\nO9h83ZWrgE2DK0uSqsMAJ2nB1d/dKklqn33gJEmSKsYrcNKIazKjwgz7nElSRRngpBHXOKMC2OdM\nkqrOACctAvY5k6TRYh84SZKkijHASZIkVYwBTpIkqWIMcJIkSRVjgJMkSaoYA5wkSVLFGOAkSZIq\nxnHgpEWoyewM44OrRpLULgOctAg1zs6w89aNA65IktQOA5y0SNXPzrB3944BVyNJaod94CRJkirG\nACdJklQxXTWhRsSTgHcC9wcOAh/IzHdHxAOBDwKPAu4GPge8NjOnu6xXkiRp0ev4ClxELAE+C7wl\nM88Angq8ISKeBlwF7MjMRwIrgfOBi3tQryRJ0qLXTRPqycCJwPUAmbkTuBF4HHAhcEW5fB/wfuBF\nXVUqSZIkoLsAdxOwjTKYRcSpwFnAFwEy85aGdR/VxWtJkiSp1HGAy8xDwBrgnRHxIyCBSeB44EDD\n6vvL5ZIkSepSxzcxRMRDgM8Dv5OZX4qIX6K4+nYf4JiG1Y8H9rax+wdT3Bih7o01PGpITExMnHzL\nXYOuonsTExMn08b7e7bjrt/PN77xjWOvuuqqU+qfv/jii793zjnn3NldtZUz1vCo0TLW8KjRMtbw\n2Iltsz3RzV2oTwR+lplfAsjMn0TE54EnAQcj4rTMvKlc9wyK/nGt2s6RIVDduX7QBehwa9eu5TVX\nfGXQZXRt7dq1G9pcv+lx1+/n6KOPZvPOk5iZKWLP7h0cffTRXVZaab5/R5vnd7R1c35rsz3RTYDb\nAjwsIv5tZn6zvCv114G/A34EvB5YExEPAF4BXNbGvsfwClyvjFH88jyNIhhrSExOTp4JZ7UVfobR\n5OTks9evX7+ljfWbHnf9fiYnJ89cuuysDTMzRXTyOiNiDN+/o2wMz+8oG6OP57fjAJeZWyLipcAH\nI+IYipT418ClwLHA1RFxM3AIuDYzP9zG7m8rv9Q725njUqwW3tTU1AnnvfDyQZfRlUMHDzB1zdSS\nqampE+oWb52ent432zazHffU1NT3169fv222deqfX4S24/t3lG3H8zvKttOH89vVQL6Z+XHg402e\nuhN4bjf7ljT89t++i5Wr111T39S5+borVwGbBluZJI02J7OX1JWly1ZQ39QpSeo/50KVJEmqGAOc\nJElSxRjgJEmSKsYAJ0mSVDHexCD1Qa1WWwKMNyyec3gNSZJaZYCT+mN85ep1Gx1eQ5LUDwY4qU8c\nXkOS1C/2gZMkSaoYA5wkSVLFGOAkSZIqxgAnSZJUMQY4SZKkijHASZIkVYwBTpIkqWIcB05SXzWZ\nlaJxhgpJUpsMcJL67bBZKXbeunHA5UhS9RngJPVd/awUe3fvGHA1klR99oGTJEmqGAOcJElSxRjg\nJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFWMAU6SJKliHAdOalOTmQUAtk5PT+8bRD2SpMXHACe177CZ\nBfbs3sHm665cBWwabFmSpMXCACd1oH5mAUmSFpoBTurSoYMHAMZrtVr9YidslyT1jQFO6tL+23ex\ncvW6a2aaVMEJ2yVJ/WWAk3qgsUnVCdslSf3kMCKSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsabGKQ5\nzDLrgkOESJIGygAnze2wWRfAIUIkSYNngJPm4RAhkqRhYx84SZKkijHASZIkVYwBTpIkqWIMcJIk\nSRVjgJMkSaoYA5wkSVLFGOAkSZIqxnHgpDpNZl5w1gVJ0tAxwEmHO2zmBWddkCQNIwOc1KB+5gVn\nXZAkDSP7wEmSJFWMAU6SJKliDHCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDGOAyctgEMH\nDwCM12q1+sXO8iBJ6ogBTloA+2/fxcrV666ZmeEBnOVBktS5rgJcRCwD3g+cA9wFTGXmWyLigcAH\ngUcBdwOfA16bmdNd1itVVv0MD+AsD5KkznXbB249cFtmnkwR4p4aEacBVwE7MvORwErgfODiLl9L\nkiRJdBHgIuKhwGrgzQCZ+ePMPB+4DbgQuKJcvo/iKt2Lui1WkiRJ3TWhrgR2Ab8bERdRNJVeBfwj\nQGbeUrfuTRTNqZIkSepSNwHuJOCXgTsz89ERcRZwA3AZcKBh3f3A8W3s+8HA/buoTfcaa3jUHCYm\nJk6+5a5BV1FtExMTJwN7679v5Wdav12zbRr3u0iMNTxqtIw1PGq0jDU8dmLbbE90E+B+BkwD7wHI\nzG9HxBeAXwOOaVj3eNr74N3eZB/qzvWDLqAK1q5dy2uu+Mqgy6i0tWvXbmj4vqWfaf12zbZp3O8i\n4/t3tHl+R1s357c22xPdBLibgaOBE4A9dcu/CTwxIk7LzJvKZWcAN7ax7zG8AtcrYxS/PE+jCMaa\nw+Tk5Jlw1mIOCl2bnJx89vr167fUfd/Sz7R+u2bbNO53kRjD9+8oG8PzO8rG6OP57TjAZWZGxFeB\n1wOXRMQYxU0NFwIPK5eviYgHAK+gaFpt1W3ll3pnO3NcilVhamrqhPNeePmgy6i0qamp769fv35b\n3fct/Uzrt2u2TeN+F5nt+P4dZdvx/I6y7fTh/HY7kO9FwAcjYjtwB/CHmXlDRHwbuDoibgYOAddm\n5oe7fC1JmlWtVltC89kttk5PT+9b6HokqZ+6CnCZuR14SpPlPwOe282+JalN4ytXr9tYP9vFnt07\n2HzdlauATYMrS5J6z6m0JI2MxtkuJGlUGeC0aM3S5OYE85KkoWeA02J2RJObE8xLkqrAAKdFzQnm\nJUlV1O1k9pIkSVpgBjhJkqSKMcBJkiRVjAFOkiSpYgxwkiRJFWOAkyRJqhgDnCRJUsU4Dpyknjl0\n8ADAeK1Wq188sNktZqnHye0lVZ4BTlLP7L99FytXr7tmWGa3aKzHye0ljQoDnKSeGrbZLZzgXtIo\nsg+cJElSxRjgJEmSKsYAJ0mSVDH2gZO0aMxyVyp4Z6qkijHASVo0mt0l652pkqrIACdpUfGuVEmj\nwD5wkiRJFWOAkyRJqhgDnCRJUsUY4CRJkirGmxhUSbVabQlHTpLuUBCSpEXBAKeqGl+5et1GJymX\nJC1GBjhVlsNBSJIWKwOcRoIj7EuSFhMDnEaCI+xLkhYTA5xGhk2qkqTFwmFEJEmSKsYrcJIGrkkf\nxsYhYiRJdQxwkgausQ/jzls3DrgiSRpuBjhJQ6G+D+Pe3TsGXI0kDTcDnKShN8swMceWj3eWjza7\nSlo0DHCShl6zYWJ23rqRJScux2ZXSYuRAU5SJTQOE7N39w5OsNlV0iJlgNPImqXZzZkZJEmVZ4DT\nyGpsdnNmBknSqDDAaaQ5O4MkaRQ5E4MkSVLFGOAkSZIqxgAnSZJUMQY4SZKkijHASZIkVYwBTpIk\nqWIMcJIkSRXjOHBaNJrMzODk55KkSjLAadFonJnByc8lSVVlgNOistTJzyVJI8A+cJIkSRVjgJMk\nSaoYA5wkSVLFGOAkSZIqxgAnSZJUMQY4SZKkiunJMCIR8QDgO8CXMnNNRDwQ+CDwKOBu4HPAazNz\nuhevJ0mStJj16grcu4D9wExAuwrYkZmPBFYC5wMX9+i1JKln6mboOLvua8mg65KkuXR9BS4ingE8\nArgGODkiTgAupJymKDP3RcT7gTXA+7p9PUnqpcYZOvbs3sHm665cBWwabGWSNLuuAlxEnARcCTwd\nuKhcfDpAZt5St+pNFM2pkjR06mfokKQq6LYJ9V3Ae8qwNtN8ugQ40LDefuD4Ll9LkiRJdHEFLiKe\nCTwceEm5qFY+3gEc07D68cDeNnb/YOD+ndamw4w1PI6EiYmJk2+5a9BVaFRNTEycTHufWf0y1vCo\n0TLW8KjRMtbw2Iltsz3RTRPq84FHAt+LCIAHlPt7DHAwIk7LzJvKdc8Abmxj39s5MgSqO9cPuoBe\nWrt2La+54iuDLkMjau3atRsGXUODkXr/6gie39HWzfmtzfZExwEuMy+q/z4i3gQ8PDN/NyKuAV4P\nrCmHGHkFcFkbux/DK3C9Mkbxy/M0imA8EiYnJ8+Es4btj6xGxOTk5LPXr1+/ZdB1MKLvX91jDM/v\nKBujj+e3J+PANfFK4OqIuBk4BFybmR9uY/vbyi/1znbmuBQ7TMohHMYbFm+dnp7eN/PN1NTUCee9\n8PKFLUyLxtTU1PfXr18/TO+X7VTk/auObMfzO8q204fz27MAl5n/re7fPwOe26t9a9EZX7l63UaH\ndZAkqbl+XYGTuuKwDpIkzc65UCVJkirGACdJklQxBjhJkqSKMcBJkiRVjAFOkiSpYgxwkiRJFWOA\nkyRJqhgDnCRJUsUY4CRJkirGACdJklQxTqUlSXUOHTwAMF6r1Rqf2jo9Pb0PoFarLQHGm2x+zzqS\n1E8GOEkM2gIWAAAPG0lEQVSqs//2Xaxcve6apctW3LNsz+4dbL7uylXApnLR+MrV6zbOs44k9Y0B\nTpIaLF22ghOXn9r1OpLUL/aBkyRJqhgDnCRJUsUY4CRJkirGACdJklQxBjhJkqSKMcBJkiRVjAFO\nkiSpYgxwkiRJFWOAkyRJqhgDnCRJUsUY4CRJkirGuVAlaR6HDh4AGK/VajOLxgdXjSQZ4CRpXvtv\n38XK1euuWbpsBQA7b9044IokLXYGOElqwdJlKzhx+akA7N29Y8DVSFrs7AMnSZJUMQY4SZKkijHA\nSZIkVYx94DT0mtwBCN4FKElaxAxwGnqNdwCCdwFKkhY3A5wqof4OQPAuQEnS4mYfOEmSpIrxCpz6\nplarLaF5X7Wt09PT+xa6HmmQfD9I6iUDnPppfOXqdRvr+67t2b2DzddduQrYNLiypIHw/SCpZwxw\n6qvGvmvSYub7QVKv2AdOkiSpYgxwkiRJFWOAkyRJqhj7wGlBzTKrgnfhqfL83Za0kAxwWlCNsyp4\nF55Ghb/bkhaSAU4LzjvxNKr83Za0UOwDJ0mSVDEGOEmSpIoxwEmSJFWMAU6SJKliDHCSJEkVY4CT\nJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFWMAU6Shti+fftYs2bNmbVa7ey6ryWD\nrkvSYDmZvSQNsa1bt7J550kbznvh5QDs2b2DzddduQrYNNjKJA1SVwEuIp4CvA04Ebgv8N7M/NOI\neCDwQeBRwN3A54DXZuZ0l/VK0qKzdNkKTlx+6qDLkDREOm5CjYgHA58BLsnMM4CnA38cEU8ArgJ2\nZOYjgZXA+cDFPahXkirh0MEDAOMzzZ7A+IBLkjRCurkCdxB4UWZ+GSAzvxcRW4DHAxdSflhl5r6I\neD+wBnhfl/VKUiXsv30XK1evu2bpshUA7Lx144ArkjRKOg5wmflj4LMz30fEqcC/Ab5VPn9L3eo3\nUTSnStKiUd/0uXf3jgFXI2mU9OQmhohYAXwe+JNy0YGGVfYDx7exywcD9+9BaYKxhscFMzExcfIt\nd7W2HrC33e2kUdD4+99grINtVB1jDY8aLWMNj53YNtsTXQe4iDiboi/cZGa+MyIeCxzTsNrxtPdh\ns73JPtSd6xf6BdeuXctrrvhKK+tt6GQ7aRQ0/v73axsNtQX/fNaC6ub81mZ7otu7UM8GvgD8QWbO\nfKBsAw5FxGmZeVO57AzgxjZ2PYZX4HpljOKX52kUwXjBTE5OnglnzfuHZnJy8tnr16/f0u520iho\n/P1vMEaTD/95tlF1jDGgz2ctiDH6eH47DnARcSzw5xwe3sjMOyLi08DrgTUR8QDgFcBlbez+tvJL\nvbOdOS7F9sPU1NQJM2NXzbPe99evX7+t7vuWtpNGQePvf7+20VDbzgJ/PmtBbacP57ebK3DPBh4O\nXBoRl9YtvxZ4JXB1RNwMHAKuzcwPd/FaGlF1Qy3UL3a4BUmS5tDNXajXUoS12Ty3031r8WgcagEc\nbkGSpPk4lZYGrnGUeYdbkCRpbgY4daScTLtZU+fW6enpfQtdj1RFs3Qh8D0kaV4GOHVqfOXqdRvr\nmz6dZFtqT2MXAt9DklplgFPHnGBb6p7vI0mdMMCpJU2aTL1TVOqxxibViYmJk5/61KcOtCZJw8kA\np1Yd1mTqnaJS7zU2qd5yF/zDe7/I8kesGnBlkoaNAU4tc2Juqf+8K1tSK+4z6AIkSZLUHq/AqWdD\ngjQZEsF+clKPzTL0CNS9Xx3mRxp9BjhBj4YEaey/Yz85qfeazV7S5P3qMD/SiDPACejdUAb2k5P6\nr5X3q8OTSKPNPnCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFWMAU6S\nJKliDHCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDFHDboADadDBw8AjNdqtZlF44OrRpIk\n1TPAqan9t+9i5ep11yxdtgKAnbduHHBFkiRphgFOs1q6bAUnLj8VgL27dwy4GkmSNMMAtwjVarUl\nHN4kavOoJEkVYoBbnMZXrl630eZRSZKqyQC3SNk8KklSdTmMiCRJUsV4BU6SFoEmQwMdWz7eWbda\n47Jm62ydnp7e148aJbXOACdJi0CzoYGWnLicme+bLWv8fs/uHWy+7spVwKYFPwBJhzHASdIi0dj3\n9YS675sta7aOpOFgHzhJkqSKMcBJkiRVjAFOkiSpYgxwI6ZWqy2p1Wpnz3ytWbPmzH37vGFMGmV1\nd5ieXavVzsbZVaSR500Mo+ewWRY279zB1q1bOfvsswdclqR+aXaHqaTRZoAbQUu9a0xadJxdRVpc\nbEKVJEmqGK/ADUCtVltC8z4qbY1wPst+7PsiqS+azOYww9kZpAVmgBuMw/qpQccjnB+xH/u+SOqX\nxr524OwM0qAY4AakV/3UGvdj3xdJ/WQfW2k4GOC61KvmUEnSvfxsleZmgOter5pDJUn38rNVmoMB\nrgdsUpCk3vOzVZqdAa5CmjQpzHvH6aGDB/jud7/L5OTkmVNTUye0up0ktWKWO1Pbbubs5PNNWswM\ncNVyWJNCK3ec7r99F5dds4uly87acN4LL295O0lqReOdqV00c7b9+SYtZga4iulktHXvVJXUT/24\nq97PKWluzsQgSZJUMV6BqzPLbesDuWXdWRYkjYph+myVRoUB7nCH9cEY8C3rzrIgaVQM02erNBIM\ncA2G6bZ1+65JGhXD9NkqjQID3Bw6nbi5yXbHlo93lo9HNIU22cbmUkmVM8vn5ni76wwbm4E1bAxw\nc+h04ubG7XbeupElJy5nrtvjm20jSVXT7HOz8fOslXWGkM3AGip9C3AR8ThgEvgl4C7g7Zn50X69\nXr90etm/8Xb4E1q4Pd5b6CWNgla6f1Sxi4jNwBomfQlwEXEMsAH4T5n5qYg4FfhmRHwrM/9vO/tq\n5bJ1k3UamyxnW9b25W+bOiVpMFqZ9WG+vxmzPH/Efvql/vUnJiZOXrt2LXfdddex55xzTr9fWiOm\nX1fgngJMZ+anADLzloj4AvDbwH+db+PTf/W3vjrz7+WPPOekh5x27hnzXLY+YgTv+ibLZss6vfxt\nU6ckDUaLsz7M19R5xB3+C9wces/r33IXvPQNH2Pl8p+ecs455/zTAry2Rki/Atw4cFPDsm3A2a1s\nHOf+zrkz//7B1hs44aSHznvZeq4my9mWdcqmTkkajFaaMedbZ9BNoUe+/k8HVouqq18zMRwP7G9Y\ndme5XJIkSV3o1xW4PcBxDcuOB/a2svGtGzdsue99avcB+OnO750wPb3qnmvde3bv4PGPf/wFa9as\nOXlm2eMf//hT9tRdCbvj5zuZbthn47Je7aeTdfq134VcZ9jr8xhGa51hr89jGMw6rXyON67T+Pxs\n+2k0335b1Ww/8aR4KHB6O/tRJYw1PHZi22xP1KanG98i3YuIXwfWZ+aKumWfArZk5pt7/oKSJEmL\nSL+aUL8MHIyICYCIeAzw68DH+vR6kiRJi0ZfrsDBPaHtvcCDKPq/vSkzN/TlxSRJkhaRvgU4SZIk\n9Ue/mlAlSZLUJwY4SZKkijHASZIkVYwBTpIkqWIMcJIkSRXTr5kYNEAR8TrgpRQB/fvAyzPze03W\nexDwLuCxwNEUEzm/IjN/soDlqgUR8ThgEvgl4C7g7Zn50SbrvRj4Q4rz+RPgVZn5zYWsVe1r4/z+\nR+D3KD679wGvy8y/Xsha1Z5Wz23d+k8Avgr8bmZ+eGGqVKfaeO+uBK7i3qHVLsnMz3Xz2l6BGzER\n8QzglcATM/M04Hrg2llWv4piztozgXHgfsDbFqJOtS4ijgE2AFeU5/SZwLsj4t80rPdoikD+zHK9\nK4C/iIijF7pmta6N8/tM4L8Av5GZ48DbgU9HxP0Wuma1ptVzW7f+scDVwL/AETOJaci08d49Hvgi\ncFlmngr8PvDqiOgqgxngRs+LgY9k5o/L798DPDYiHtlk3Q8B/zUzpzPzIEXYe/QC1anWPQWYzsxP\nAWTmLcAXgN9uWO9FwF+Wz1OuXwMuWLhS1YFWz+/NwPMy84fl938J3B94+EIVqra1em5nvBX4LHAr\nxXtXw63V8/ssYGdmfrpc7+8z8ymZeXc3L24T6ugJ4PMz32TmvojYATyK4g8Adc994Z6NImrAvwf+\n9wLVqdaNAzc1LNsGnN2wLIDG5tKbKM79/+pPaeqBls5vZn63YZ3nADuAI7pHaGi0+t4lIs6lCATn\nUPxn2itww6/V8/tYYHtEXA2cB+ykuHhyQzcvboCroIh4AUWbe6Ofl4/7G5bvB46fY3814E+BX6b4\nH6CGy/EceU7v5Mhz2my9/cCSPtWl3mj1/N4jIi6gaC7/rcw81L/S1KWWzm1EHAf8D+DFmXkgIhao\nPHWp1ffuScCvUXR/eFnZV/lzEfHIbvqcG+AqKDM/AXyi2XMRsRk4rmHx8cDeWdZfAnyUogPmkzOz\n6XoaqD20dk73cmRYm/Xca2i0en6Be25UeSfw/Mz82z7Xpu60em7fCnwmMzfVLbMJdfi1en5/Bvxj\nZn4DIDM/EhFvB36VoitER+wDN3q+Q3FZF4CIWAo8DPh244plB8zPUvyyPTUzf7ZQRaot3wFOb1h2\nBnBjk/Xu+a97eWV1HPinvlanbrV6fomIlwJvAs43vFVCq+f2OcBFEXFrRNwKPAG4LCIuX4Aa1blW\nz+9NFFfh6k0DB7t5cQPc6JkCXhIRDyu//0Pg7zPz1ibrvgm4A5gob2LQcPoycDAiJgAi4jHArwMf\na1jvY8Bv1t0B9TKK/yHar3G4tXR+I+JM4B3AUzJz60IXqY60dG4z8xGZ+fDy8RHA14H/nJn/eaEL\nVlta/Wz+JHB6RDytXO9C4Fjga928eG162n6SoyYiXgNcTBHQtwG/N3PnWkR8F3hOZn43Iu4EdlGE\nuBl3ZuZjF7pmza38YHgv944h9KbM3BARlwJ3ZObbyvVeALyBYkiYHwJ/kJlbBlS2WjTP+d2bmZdG\nxPuBF1Cc13rrMvOvFrZitarV927DNl8G1mfmRxa2WrWrjc/mp1L0NT+WYozO/5SZX+3mtQ1wkiRJ\nFWMTqiRJUsUY4CRJkirGACdJklQxBjhJkqSKMcBJkiRVjAFOkiSpYgxwkiRJFWOAkyRJqhgDnCRJ\nUsX8P0OSGxCViT4IAAAAAElFTkSuQmCC\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde3b8be0d0>"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHFCAYAAABy/MT4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXHd95/t3gYWNbGEsDCag2I0Xvm0zBmEHQSDGJiY4\nmoH4mgsJCZhIARITRwOaGTLBgUAGMGS8BZpFDAaJxRAIE7Eb+5IAIVziXCRMEoS/XnAHNFxLJBoj\ny5KRJff8cU7L1aWq7lq6q+p0vV/Po6fUZ6vf6V8tnz7ne36nNjU1hSRJkqrjIYNugCRJkjpjgJMk\nSaoYA5wkSVLFGOAkSZIqxgAnSZJUMQY4SZKkijHASZIkVYwBTpIkqWKOGHQDpIUUEd8AngWcn5lf\nbZj3ZuA1mXlch9s8Avhd4LeB04GHArcBHwfelZn31S27HLgceD5wPHAHcE1mXtvtPmlxi4jHAR8C\nfgy8IjMdbX1IRcSrgPOAv83M95fTasCvZeZnB9k2LX4GOC1aEfEE4JnAVuBlwFebLNbRl2NEPBT4\nLPA04E3A/wMcAM4B3gK8MCLOz8x7y1X+CjgOeAnFF/Ia4H9ExPbM/HKn+zRfIuIo4B3Aj4BjATLz\nT7pdZ67tRcTDgbcCPynn35WZ76ybHxS/o/uBk4GbM/Pdbe7LM4CTMvOT87y/NYrXzTMy89JO5kfE\nI4F15f4cCfwsM9/RZnuWAN/KzD+drX1ztL3j/a1b93EUf4i8qN3ttdG/48BrgEmK38cXMnPrfLV/\nrtfPXO1rY/+b9nVmfiAibqR4X09Pm4qIWkS8PDM/0qrNUq88harF7GLgu8A7gf87Io5sskytw22+\nFngOcF5mvi8zb8/Mycz8KEVYPIUiyBERJwFPAS7NzL/LzB+UX0K3AS/sbpfmzduA3Zl5VdmmJ0bE\na3pYZ67tfRjYmZnvyMzXAy+OiP9QN//jwNcz83JgPXBlRFzc5r4cCRzVQ9sPExG/BVxBEcIe3ul8\n4E+AK8v9/VPg3oh4Rbft6UIv278CWN7h9lr2b/mH1MeBP87MPwMeQ/H7mc/2z/X6mev113L/2+jr\nw2TmZ4BzImKsneWlbhjgtJhdDHwS2ExxVOPX5mGb64BNmbmtcUZm/hj4c+CVEfGwzPyXzDwuM/+u\nYdEacHAe2tKV8ujGq4BP103+K+qOInSyThmMW24vIk4DXgR8pW7+14G1dT8/AJwJkJn3AP8b+MX2\n96q1bvY3Mz+emf8F+B5NQv5c84HnAT+r+/mvgbPabE+nf1TM0M3+1q17DkUgrtVNm3V7bfTvn1G8\nZ3aVP38MePs8t7/l66fN19/0cx+2/230dSsTwBs7WF7qiAFOi1JEPJPiVMp1mbkH+DzFKZBetvnz\nwInAN2ZZ7EbgGODsJusfFRGvA04A3t9LW3r0ZIo23lk37V+AJ5en/jpap43trSyn7aqbv4PiSCYA\nmfm0zJwAiIijKY7SfLuz3Wqpm/2dNtcXdqv5DwE+HRGPKn9+IQ8Gkrna02vNW1f7W5YH/CrFe6WT\n7bXs33L+RRSBCYDM/PvMvGk+2z/H62fO11+5Xqv9n9ZRsM7MfwRWle2R5p0BTovVxRSnVLaXP38M\n+NXyooJuPb58/OEsy0zPW1E/MSK+B9wL/B5wQWbePNsTRcQvRcQNdT8fGRG3R8QxnTf7MD9fPt5b\nN+0eii+ox3axzq/Msb39TbZ3BHBcRCxtMu+VwPWZ+aFWO9Bgri/WbvZ32lxhqtX8dRRH4bZFxNXA\nrXUX0fTSnnZ0u/01FBdPNP4+59pey/4Fnk1xkc8pEfGKiHhDRLw1Imb77un199P4+mn39beG5vs/\nrZtg/W0agqI0X7yIQYtORDwM+A3gj8orRqE4hbW7nP6+Hp/i/lnmNQskUPxl/xjg5cCXI2J1Zn5r\nlu1cSFErN+3pwBHl0cRDytNNE8z9Xp4CLsvMuyjqeA5m5gN186dP9z2ixfqzrVObY3vforjQ49E8\neFQl6ubvLfflycAvUwSfdc0aUe7vFczc38cBy8qLGer3982ZubPL/e3VNyjqrs6iqJv8TER8OTN3\nt9GefT0+d8f7GxHHA4/IzDvK04idbG+2/p3+gyMy8+3lc30I+G/AG+ar/eV2W71+5nz9zbH/vbiT\n4gjgF+ZxmxJggNPi9ALgkcCG8l+9l9F9gPtx+Xgy8A8tlpk+evCj+omZ+aNy2pby4oa3Uww/0Mp5\nFFfhTTsX+FrjQuWQJa+avdmHubvJtOkv2vuazJtrnWYObS8zd0bEn1HUIf1D+WW5gqJu6dBprfKU\n0z9GxEbgOxHxlszcWL/Rcn9nhLuIOBcYy8wPd9H2Vvvbq48Db8vM70TEqyn6chPFqdSFbk832/9d\n4OputjdH/+4ul/vrunW3UAyt0yrAdfX7afX6afP1N9v+92IXML4A25U8hapF6WLgy8AvNPy7GPjF\nbq8My8wfUoSw35hlsXMpvrS2RsRJEbGmHIKg3i3Aqa02UNb5PIWZw548m7o6oh79GHhoObTCtGXl\n44+aLD/XOtfPtb3MfCPwvYhYR3HK9QaKoR4OO72VmT8Fvgi8q8WVw53qZn+7FhG/BOzPzO8AZOb7\nKPpvdUQ8opv2RMTaiNg4x7//Ui7e0fYj4mxgW9aNX9hgzu216l+K2jWAf61bdx/FEdPju32+2TR7\n/cz2+mtj/3vxM/ye1QLxCJwWlbJofDWwpsk4U1sj4r9TBLm3dPkU7wUuj4hVmTnjKFxEPJ5irKtr\nyy+GcYqamqQ4jTPtScws0G50HvAv01ftRcQSiivqfi+KMeYOHc3o8hTqdymOcpxMcWUdwBOB2zLz\nf7dYv+U6FF/Us24vIl4MfCUz/1f5818AHy3//yzgM8DvZOZ0Afl9FKejH8bMqzm70c3+1uu0Du4x\nwP+qn5CZ342If6I4lTdreyLi2MYnKI9Ebmyc3kKn+3su8OiIeHr58y8AJ0fE5eVzzrm9Vv2bmf8U\nETvL38kPynWPKbdXf1FB1+1v5/Uz2+tvrv3PzPpShk7r4JZTXDAhzTsDnBab36T4kG1Vc7IZeCnd\nB7hrgH8P3BARb6L4S/5+ioD1Noovqekxrr4CfAf4UERcSnGBw0XAf2D2K2KfQzEMwrSXUxzR+UFE\n/Dp1p6O6OYWamQcj4lPAi3nwC/LFFEEQgIhYA5yemf91rnUy84G5tge8B7gU+MuIeApwEg8OC3Ev\nxRfuT8rnrlHUMv1FOSTEXGa9iKGb/W132y3m/zXw+oh4fF1gGAe+nZnT9X6ztaenq1A73d/MnHHq\nMIo7lByRmZfVTeulf6+leN3/ffnzcyhfN+W2fxs4o53XWrP2097rp2X72tn/UjfDu5xAMZC4NO9q\nU1Nzf1ZExCXAVcCfZOZV5bTjgQ9SHE14APgc8LosRqF+CEWh8fS4W9+juCXMv83/LkgPioi/B36S\nmS9oMf85FMHqGRRB7DWZ2dGVqeVpmcuA36L4IjgCuJ2i7ukdOfNWWo8C/jvFRQlHAbcC75ylXovy\nSM1PKULoXoor2f6Q4gvwbxqP/HUjIpYB76I4OngscKA8zTQ9/xrg2Zl5djvrtLG9lwBnUIx/93MU\nFxjcVTf/V4GnUhSwnwjcBbwpM2ccfSuPOF7DzD8+f47iqE7jkZI3lBcxdLy/EXERxe3PLioX+Qzw\n+czc3Ob804HXURyJewhFyH/79P7M8bs8ieIIci93Yuimf2vlOhdQFPx/kmIw4tt76d8oLiS6giJk\nHQn8tH7fyra8HPj5uoDbaX/N+vqZ6/U32/5TjC83W1+37K+I+Cbwwsz0KJzm3ZwBLiLeS/HhOE7x\nF83V5fRPAzsy89IoLsX+OvChzHxfRPwBxX0in52Z+yLiPcDxmTlb7ZBUOeXpm28Az8/ML83D9h5N\n8aX/6LKWRyNmPgJc1UTEhcBXy6t0K6VVf5W1rJ/JzPMG0jAteu2cQr02M7dGxKGC6vKvowspr67J\nzL0R8X6Kka3fR/HX1IbMnL4c/hqK8ZAeXjdNGgpljdmj5ljsYGb+pHFiZn4zIr4FvDsi1lIUbf+w\nYQiETjwH2Gp404hZUcXwNodLKYZLkRbEnAGuSSE4wGnlvDvqpt1GcToVijF2bq2b9wOK0whPpChQ\nlYbJs4C/mWOZSYqi6mZ+neLOCp+nKLg/hQeHT+jU6cBfdrmuVDnlVbtbBt2OHhxWGxcRK4Cfy8y5\nPlekrnV7EcPRHD669b5y+vT8Q0fayiLnn9XNl4ZGZn6NHi71LwvVnz9PbRmZ02ZqaT/wjCgGvH1F\nZvZ6a62hloffK7gyIuJVFFeNNw7x80qKAZylBdNtgNtDUYxa7+hy+vT8Q2P4RHGPuSPr5kuSmsjM\n/59iKBwNucz8APCBJtPf3P/WaNR0G+BuBQ5GxGl1Y+SczoOnR79HUR83fdPvoBj/KNvc/vTVSpIk\nSaOq5fA1nQS42vSGMvPe8irUy4C15dU2r6a45BqKW8b8QUR8kuImxK8HPtE4JMAsxnjwnndjFGNt\nXUBRh6ThMob9M6zGsG+G1Rj2zbAaw74ZVmPYN4fMGuDKU5/3Uoyp9DDgmRHxVuAjFFfYXBsRt1OM\nrfOJ6bGtMvMDEXEyxfhVNeD/A36/g3bdVf6rN8nMCyM0XCaxf4bVJPbNsJrEvhlWk9g3w2oS+2b2\nAJeZBykGH23lRbOs+3qKI2+SJEmaR95kV5IkqWIMcJIkSRVjgJMkSaoYA5wkSVLFGOAkSZIqxgAn\nSZJUMQY4SZKkijHASZIkVYwBTpIkqWIMcJIkSRVjgJMkSaqYWe+FKml01Wq1pcB4w+Rbpqam9g6i\nPZKkBxngJLUyvnL1+i3Llq8A4J5d27n5+mvOBrYOtlmSJAOcpJaWLV/BsSecMuhmSJIaWAMnSZJU\nMR6Bk0aENW2StHgY4KTRYU2bJC0SBjhphFjTJkmLgzVwkiRJFWOAkyRJqhgDnCRJUsUY4CRJkirG\nACdJklQxBjhpkajVaktrtdpZ0//Wrl17xt69DvEmSYuRw4hIi8eMcd5u3rGdW265hbPOOmvAzZIk\nzTcDnLSIOM6bJI0GT6FKkiRVjEfgJLXl4IH9AOO1Wq1xlvdTlaQ+M8BJasu+3TtZuXr9ddM1duD9\nVCVpUAxwktpmjZ0kDQdr4CRJkirGACdJklQxBjhJkqSKMcBJkiRVjAFOkiSpYgxwkiRJFWOAkyRJ\nqhgDnCRJUsUY4CRJkirGACdJklQxBjhJkqSKMcBJkiRVjAFOkiSpYgxwkiRJFWOAkyRJqhgDnCRJ\nUsUY4CRJkirmiEE3QNLiVavVlgLjDZNvmZqa2juI9kjSYmGAk7SQxleuXr9l2fIVANyzazs3X3/N\n2cDWwTZLkqrNACdpQS1bvoJjTzhl0M2QpEXFGjhJkqSK8QicNKIOHtgPMF6r1eonW58mSRVggJNG\n1L7dO1m5ev111qdJUvUY4KQRZn2aJFWTNXCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDFe\nhSoNAe8ZKknqhAFOGg7eM1SS1DYDnDQkHJNNktQua+AkSZIqxiNwkvrG+69K0vwwwEnqG++/Kknz\nwwAnqa+s9ZOk3lkDJ0mSVDEGOEmSpIoxwEmSJFWMAU6SJKlierqIISKeDVwBPAI4AHwgM98VEccD\nHwSeBDwAfA54XWZO9dheSZKkkdf1EbiIWAp8FnhLZp4OPBd4Q0RcAGwAtmfmqcBK4FzgknloryRJ\n0sjr5RTqicCxwA0AmbkD+C7wNOBC4Opy+l7g/cDLemqpJEmSgN4C3G3ArZTBLCJOAc4EvgSQmXc0\nLPukHp5LkiRJpa4DXGYeBNYCV0TET4AEJoCjgf0Ni+8rp0uSJKlHXV/EEBE/B3we+K3MvDEiHkVx\n9O0hwJENix8N7Olg84+luDACYKzhUcNlrOFRXVizZs2Jd9x/+DRavG9uuummozZs2HBy/bRVq1bN\n+Pnggf18//vf58Ybb3xuZp7ROL9VO6afs1mb5lqn2by5tjHb+ovYWMOjhsdYw6OGx1jD4yi4tdWM\nXq5CfRZwd2beCJCZ/xYRnweeDRyIiNMy87Zy2dMp6uPaNcnhIfCGHtqqhWf/9GDdunW89uqvNU7b\n3Gr5JUuWcPOO45i+pyjA3Ufs54S6Zfbt3smV1+1k2fIV74EzD5vfoh2b6/5/WJvmWqfJvDm3Mdv6\nI8D3zfCyb4bXKPVNrdWMXgLcNuDxEfELmfnt8qrUXwG+DvwEuAxYGxGPBF4NXNnBtseYeQTuBuAC\nimCn4TKG/dOziYmJM+DMzQ3TLtq4ceO2VssvW37m5vp7iu7Ztf2w5ervO9psfpPtHnrOZm2aa51m\n7ZxrG7Otv4iN4ftmWI1h3wyrMeybQ7oOcJm5LSJeAXwwIo6kSIlfAS4HjgKujYjbgYPAJzLzwx1s\n/q7yX71JZjmUqIGbxP7p2qZNm44556VXNU774caNG5v+TpstP0/tOPSc7T5Hr+2cbf0RMInvm2E1\niX0zrCaxb3obyDczPw58vMms+4AX9bJtSZIkNeettCRJkirGACdJklQxBjhJkqSK6akGTtJoO3hg\nP8B4rTbjSvdbpqam9g6mRZI0Ggxwkrq2b/dOVq5ef930eHT37NrOzddfczawdbAtk6TFzQAnqSf1\nY81JkvrDACcJaHo6dHxwrZEkzcYAJwk4/HTojju3DLhFkqRWDHCSDun01luSpMFwGBFJkqSK8Qic\ntABqtdpSDq8hW/TDa1hHJ0n9YYCTFsb4ytXrt4za8BrW0UlSfxjgpAUyqsNrWEcnSQvPGjhJkqSK\n8Qic1KFRrW+TJA0PA5zUuZGsb5MkDQ8DnNSFUa1vkyQNB2vgJEmSKsYjcFIfNBkfDaybkyR1yQAn\n9UHj+GjWzUmSemGAk/rEujlJ0nyxBk6SJKliPAInVUCTsee8x6gkjTADnFQNM8ae8x6jkjTaDHBS\nRXiPUUnSNGvgJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFWMAU6SJKliDHCSJEkVY4CTJEmqGAOcJElS\nxRjgJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFWMAU6SJKlijhh0AyQd7uCB/QDjtVptetL44FojSRo2\nBjhpCO3bvZOVq9dft2z5CgB23LllwC2SJA0TA5w0pJYtX8GxJ5wCwJ5d2wfcGknSMLEGTpIkqWI8\nAicNgDVukqReGOCkAbDGTZLUCwOcNCDWuEmSumUNnCRJUsUY4CRJkirGACdJklQxBjhJkqSKMcBJ\nkiRVjAFOkiSpYgxwkiRJFWOAkyRJqhgDnCRJUsV4JwZpDrVabSkz71XqfUsXSJPfNcAtU1NTewfR\nHkkaVgY4aW7jK1ev3+J9S/tixu/6nl3bufn6a84Gtg62WZI0XAxwUhu8b2n/1P+uJUnNWQMnSZJU\nMR6Bk3p08MB+gPFarVY/2To5SdKCMcBJPdq3eycrV6+/brpuC6yTkyQtLAOcNA8a67ask5MkLSRr\n4CRJkirGI3CSFhXHkpM0CgxwkhYbx5KTtOgZ4CQtOo4lJ2mxswZOkiSpYjwCp5FjjdTwaDKGnuPn\nSVIbDHAaRdZIDYnGMfQcP0+S2mOA00iyRmp4eJ9ZSeqcNXCSJEkV09MRuIhYDrwfeDpwP7ApM98S\nEccDHwSeBDwAfA54XWZO9dheSZKkkdfrEbiNwF2ZeSJFiHtuRJwGbAC2Z+apwErgXOCSHp9LkiRJ\n9BDgIuJxwGrgzQCZ+a+ZeS5wF3AhcHU5fS/FUbqX9dpYSZIk9XYKdSWwE/idiLiY4lTpBuAfADLz\njrplb6M4nSpJkqQe9RLgjgMeA9yXmU+OiDOBbwBXAvsblt0HHN3Bth8LPKL8/1jDo4bLWMPj0Fuz\nZs2Jd9x/+DRgT7vLq39m65tWy3fSvwMy1vCo4THW8KjhMdbwOApubTWjlwB3NzAFvBsgM/8pIr4I\n/DJwZMOyR9PZh+dkk23c0F0z1SeV6Z9169bx2qu/1jhtcyfLq39m65sWy3fUvwNWmffNCLJvhtco\n9U2t1YxeAtztwBLgGOCeuunfBp4VEadl5m3ltNOB73aw7TFmHoG7AbiAIthpuIxRsf6ZmJg4A87c\n3DDtoo0bN25rd3n1z2x902L5jvp3QMao2PtmhIxh3wyrMeybQ7oOcJmZEfFN4DLg9RExRnFRw4XA\n48vpayPikcCrKU6ttuuu8l+9SWY5lKiBm6Qi/bNp06ZjznnpVY3Tfrhx48am7W+2vPpntr5psXxH\n/Ttgk1TkfTOCJrFvhtUk9k3Pw4hcDKyKiEngi8AfZeY3gEuBZRFxO3AT8D8z88M9PpckSZLocSDf\nzJwEzm8y/W7gRb1sW5IkSc15Ky1JkqSKMcBJkiRVTE+nUCVpIR08sB9gvFY77Er6W6ampvb2v0WS\nNBwMcJKG1r7dO1m5ev11y5avODTtnl3bufn6a84Gtg6uZZI0WAY4SUNt2fIVHHvCKYNuhiQNFWvg\nJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFWMAU6SJKlivApValCr1ZYC43WTxlstK0nSIBjgpMONr1y9\nfsv02GM77twy4OZIkjSTAU5qon7ssT27tg+4NZIkzWQNnCRJUsUY4CRJkirGACdJklQxBjhJkqSK\nMcBJkiRVjFehSlrUDh7YDzBeq9XqJ98yNTW1dzAtkqTeGeAkLWr7du9k5er1102P63fPru3cfP01\nZwNbB9sySeqeAU7Solc/rp8kLQbWwEmSJFWMAU6SJKliDHCSJEkVY4CTJEmqGAOcJElSxRjgJEmS\nKsYAJ0mSVDEGOEmSpIoxwEmSJFWMAU6SJKliDHCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYAJ0mS\nVDEGOEmSpIoxwEmSJFWMAU6SJKliDHCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDEGOEmS\npIoxwEmSJFXMEYNugCT1olarLQXG6yaNt1pWkhYLA5ykqhtfuXr9lmXLVwCw484tA26OJC08A5yk\nylu2fAXHnnAKAHt2bR9wayRp4VkDJ0mSVDEGOEmSpIoxwEmSJFWMAU6SJKliDHCSJEkV41WoqpQm\nY34B3DI1NbV3EO1R9Rw8sB9gvFar1U/2NSSpUgxwqpoZY37ds2s7N19/zdnA1sE2S1Wxb/dOVq5e\nf52vIUlVZoBT5dSP+SV1w9eQpKqzBk6SJKliPAKnSmunnsl7ZUqSFhsDnCqtzXom75UpSVpUDHCq\nvHbqmbxXpiRpMbEGTpIkqWI8AiepUprUPVrTKGnkGOAkVUpj3aM1jZJGkQFOUuVY0yhp1FkDJ0mS\nVDEegdPIs6ZKklQ1BjiNPGuqJElVY4CTsKZKklQt1sBJkiRVzLwcgYuIRwLfA27MzLURcTzwQeBJ\nwAPA54DXZebUfDyfJEnSKJuvI3DvBPYB0wFtA7A9M08FVgLnApfM03NJkiSNtJ4DXEQ8H3gCcB1Q\ni4hjgAuBqwEycy/wfuBlvT6XJEmSegxwEXEccA2wlgePvj0RIDPvqFv0NorTqZIkSepRrzVw7wTe\nnZl3RMR0gFsK7G9Ybh9wdAfbfSzwiPL/Yw2PGi5jDY8Las2aNSfecf/cywB7OllHo63xNdMHYw2P\nGh5jDY8aHmMNj6Pg1lYzug5wEfEC4CTgt8tJ06Og3gsc2bD40XT24TjZZBs3dNhE9Vdf+mfdunW8\n9uqvzbXM5k7X0WhrfM30kZ9rw8u+GV6j1De1VjN6OQL368CpwA8iAuCR5faeAhyIiNMy87Zy2dOB\n73aw7TFmHoG7AbiAIthpuIzRx/6ZmJg4A86c9ct2YmLioo0bN27rZB2NtsbXTB+M4efasBrDvhlW\nY9g3h3Qd4DLz4vqfI+JNwEmZ+TsRcR1wGbC2HGLk1cCVHWz+rvJfvUlmOZSogZukD/2zadOmY855\n6VVzLfPDjRs33lr385zraLQ1vmb6aBI/14bVJPbNsJrEvlmwgXwvBZZFxO3ATcD/zMwPL9BzSZIk\njZR5u5VWZv5p3f/vBl40X9uWJEnSg7yVliRJUsUY4CRJkirGACdJklQxBjhJkqSKMcBJkiRVjAFO\nkiSpYuZtGBFpGBw8sB9gvFabcfeR8cG0RpKkhWGA06Kyb/dOVq5ef92y5SsOTdtx55YBtkiSpPln\ngNOis2z5Co494ZRDP+/ZtX2ArZEkaf5ZAydJklQxBjhJkqSKMcBJkiRVjAFOkiSpYgxwkiRJFWOA\nkyRJqhgDnCRJUsUY4CRJkirGACdJklQxBjhJkqSKMcBJkiRVjAFOkiSpYgxwkiRJFWOAkyRJqhgD\nnCRJUsUY4CRJkirGACdJklQxRwy6AdJsarXaUmC8btJ4q2UlSRoVBjgNu/GVq9dvWbZ8BQA77twy\n4OZIkjR4BjgNvWXLV3DsCacAsGfX9gG3RpKkwbMGTpIkqWI8Aqe+alLTBnDL1NTU3kG0R2rUzWvU\n17WkfjPAqd9m1LTds2s7N19/zdnA1sE2Szqkm9eor2tJfWWAU9/V17RJw6ib16iva0n9ZA2cJElS\nxRjgJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFWMAU6SJKliDHCSJEkVY4CTJEmqGAOcJElSxXgnBkkj\n7eCB/QDjtVptetL4HPOnea9TSQNjgJM00vbt3snK1euvm76P6Y47t8w6H7zXqaTBM8BJGnn19zHd\ns2v7rPMlaRhYAydJklQxBjhJkqSKMcBJkiRVjAFOkiSpYgxwkiRJFeNVqBqoFmNsOb6WJEmzMMBp\noBrH2HJ8LUmS5maA08A5xpYkSZ2xBk6SJKliDHCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsarUDVv\narXaUmC8YXJHY7o1GReucXuSJI08A5zm0/jK1eu39DKmW+O4cDvu3LIgDZUkqcoMcJpX8zGmW/02\n9uzaPh/NkiRpUbEGTpIkqWI8AidJHbJWU9KgGeAkqUPWakoaNAOcJHXBWk1Jg2QNnCRJUsV4BE6S\n+uymm246asmSJUxMTJyxadOmY8rJh8ZMbDGm4oxlJI02A5wk9dmGDRtOvnnHcSxbfubmc156VbMx\nE2eMqQhkCXf3AAAN6ElEQVTdjasoafEywEnSAMw1ZuJ8jKkoafHqKcBFxPnA24BjgYcC783MP4+I\n44EPAk8CHgA+B7wuM6d6bK8kSdLI6/oihoh4LPAZ4PWZeTrwq8B/i4hnABuA7Zl5KrASOBe4ZB7a\nK0miqJOr1WpnNfxbOuh2SeqPXo7AHQBelplfBcjMH0TENmAVcCFlAW5m7o2I9wNrgff12F5JUqHn\new9Lqq6uA1xm/ivw2emfI+IU4N8B3ynn31G3+G0Up1MlSfPEOjlpdM3LOHARsQL4PPBn5aT9DYvs\nA46ej+eSJEkadT1fhRoRZ1HUwk1k5hUR8VTgyIbFjgb2dLDZxwKPKP8/1vCoAbnpppuO2rBhw8n1\n0974xjcePPnkkwHG1qxZs/SO+x+cd/DAflatWnXe2rVrT5yetmrVqhnrS4tRs9f+JZdc8oOnP/3p\n9wFExOPu+OeZ66xZs+ZEys/JNWvWnFj/Xmp3mfr56tpYw6OGx1jD4yi4tdWMXq9CPQv4IvD7mbm5\n7skORsRpmXlbOe104LsdbHqSw0PgDb20Vb1bsmQJxdhVD9bc3H333dOzb1i3bh2vvfprh5bft3sn\nU4961lV33P/gWFZ3H7GfE/rXZGkgGl/79+zazpIlSw7Nf97znseX/vlrM9ZZt27d5rr/z3gvtbtM\n/Xz1zO+c4TVKfVNrNaPrABcRRwF/yczwRmbeGxGfBi4D1kbEI4FXA1d2sPkxZh6BuwG4gCLYaUAm\nJibOWLb8zM31NTc33njjpWedddZ7gAsmJiaWwpkzvkAaa3S8Z6RGReNrf2Ji4qKNGzduA7jxxhuf\nCw97T/3y9fMnJibOaHwvtbNM/Xx1bQy/c4bVGPbNIb0cgbsIOAm4PCIur5v+CeBS4NqIuB04CHwi\nMz/cwbbvKv/Vm2SWQ4laeJs2bTrmnJdeNWNaZv64/O9ks/mSCps2bfrhxo0bbwXIzDPgzJbzW72X\n5lqmfr56NonfOcNqEvump6tQP0ER1lp5UbfbliRJUmvzchWqJEmS+scAJ0mSVDEGOEmSpIoxwEnS\nAjt4YD/A+PQ9S7dt2+Z4iJJ60vNAvpKk2e3bvZOVq9dfNz2G4o47tzgeoqSeGOAkqQ/qx4VzPERJ\nvfIUqiRJUsUY4CRJkirGACdJklQxBjhJkqSKMcBJkiRVjFehStKA1Y0TNz1pfHCtkVQFBjhJGrBm\n48RJ0mwMcJI0BBwnTlInrIGTJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDEGOEmSpIrxKlS1VKvVljJz\nPCrHppIGxLHiJNUzwGk24ytXr9/i2FTS4DlWnKR6BjjNyrGppOHh+1HSNGvgJEmSKsYAJ0mSVDEG\nOEmSpIoxwEmSJFWMAU6SJKlivApVhzjum7R4NXl/A9wyNTW1dxDtkdQbA5zqOe6btHjNeH/fs2s7\nN19/zdnA1sE2S1I3DHCawXGmpMWr/v0tqdqsgZMkSaoYj8CNiBb1L2ANjLQoNLlXKvj+lhYtA9zo\nmFH/AtbASItJ471SfX9Li5sBboRY/yItbr7HpdFhDZwkSVLFGODUtYMH9rNt27aTt27dytq1a8/A\nceMkSeoLT6Gqa/t272TqUc+66rVXfw04c/MTn/lbg26SJEkjwQCnnjhunCRJ/ecpVEmSpIrxCNwI\nazJulDVskiRVgAFuhDWOG+W9TyVJqgYD3Iizhk2SpOqxBk6SJKliPAK3SLS416n3QZQkaREywC0e\nM+516n0QJUlavAxwi4j3QZQkaTRYAydJklQxHoGTJLXFWltpeBjgJEntstZWGhIGOElS26y1lYaD\nNXCSJEkV4xE4SVKr+jbooMbNGjmpfwxwkiRoqG+DrmrcrJGT+sQAJ0kC5qe+zRo5qT+sgZMkSaoY\nj8BVRJPakqPKx/vKx2a1K5K0YA4e2A8wXqvVpif5OST1iQGuOmbUluy4cwtLjz2B+p8lqZ/27d7J\nytXrr/NzSOo/A1yF1NeW7Nm1nWMafpakfmv8XJLUH9bASZIkVYxH4AakjZo26GH8JGtTpNE212dA\nO58Rw/A5Mt9jy83HeHfSMDDADc6sNW29jp9kbYo02ub6DGjnM2JIPkfme2y5+RjvTho4A9wAzVbT\nthDblzRa5voMaOczYhg+R+Z7bDnHqtNiYA2cJElSxQz9EbibbrrpqCVLljAxMXHGpk2bjiknD7RW\noR/3+xuG2hNJmk9t1v7C/Ne4Wd+mRWfoA9yGDRtOvnnHcSxbfubmc1561bDUKiz4/f6GpPZEkubT\nrLW/MP81bkPynSHNu6EPcDCc9Qr9aNMw1J5I0nxa6NrfxueQFitr4CRJkiqmEkfgJEnVYy2vtHAM\ncJKkBWEtr7RwDHCSpAVjLa+0MBYswEXE04AJ4FHA/cDbM/OjC/V8kiRJo2JBAlxEHAlsBv5TZn4q\nIk4Bvh0R38nMf55r/cee+vR3Tv//4Q/92WN//mlnHprXpKYCZhnjp5txh9pYZ657CjYu3+w5rQWR\npA51+h1gHZ4Wq4U6Anc+MJWZnwLIzDsi4ovAbwJ/PNfKT7vwsv84/f/vf/0Dk/XzGmsq2hjjp5tx\nh2Zdp517CjYu3/ic1oJIUuc6/Q6wDk+L1UIFuHHgtoZptwJnzcfGOx3jp5txh2Zbp517CjYu3/ic\n1oJIUnd6/Q6QFoOFGgfuaGBfw7T7yumSJEnqwUIdgbsHeHjDtKOBPe2sfOeWzdse+pDaQwDu333X\nknvq/mK696c7mKp/ol3bWbVq1Xlr1649sdm2Vq1adfJs6zfbxlzr9PrzQmyzCm3wOX3OKj7nMLRh\nlJ6z08/jXj+/p7exZs2aEym+o8bKyWNo2Iw1PI6CW1vNqE1NNb6UexcRvwJszMwVddM+BWzLzDfP\n+xNKkiSNkIU6hfpV4EBErAGIiKcAvwJ8bIGeT5IkaWQsyBE4OBTa3gs8mqL+7U2ZuXlBnkySJGmE\nLFiAkyRJ0sJYqFOokiRJWiAGOEmSpIoxwEmSJFWMAU6SJKliDHCSJEkVs1B3YuhJRPwh8AqKgPlD\n4FWZ+YM51nkvcElmGkoXULt9ExGPBt4JPBVYQnGj6Vdn5r/1sbmLXkQ8DZgAHgXcD7w9Mz/aZLmX\nA39E0Rf/BvxBZn67n20dNR30zX8Efpfi83gv8IeZ+ZV+tnXUtNs3dcs/A/gm8DuZ+eH+tHI0dfC+\nWQls4MGhyl6fmZ/rZ1sHbejCTkQ8H7gUeFZmngbcAHxijnV+mWKgYMdEWUAd9s0GivvhngGMAw8D\n3taPdo6KiDgS2AxcXfbHC4B3RcS/a1juyRRh+gXlclcDfxURS/rd5lHRQd+8APivwPMycxx4O/Dp\niHhYv9s8Ktrtm7rljwKuBX6E3zELqoP3zdHAl4ArM/MU4PeA10TE0GWahTSMO/ty4COZ+a/lz+8G\nnhoRpzZbOCKOoRgweD1Q608TR1YnffMh4I8zcyozD1CEvSf3qZ2j4nxgKjM/BZCZdwBfBH6zYbmX\nAV8o51MuXwPO619TR067fXM78OLM/HH58xeARwAn9auhI6jdvpn2VuCzwJ34HbPQ2u2bXwN2ZOan\ny+X+LjPPz8wH+traARvGABfU3bw1M/cC24EntVj+CuDDwD8vfNNGXtt9k5lfzMy7ACKiBvxfwN/2\nqZ2jYhy4rWHarRzeHzP6rXRbk+U0f9rqm8z8fmb+v3WTXkjxnpq1ZEQ9afd9Q0Q8kyJU/Gk5ySNw\nC6vdvnkqMBkR10ZERsTfRsQ5fWnhEBlIDVxEvITiHHejn5aP+xqm7wOObrKd84GzKE7rnTifbRxV\n89U3ddurAX8OPIbiL1nNn6M5vD/u4/D+aLbcPmDpArVL7ffNIRFxHsWp7t/IzIML17SR11bfRMTD\ngf8BvDwz90dEn5o30tp93xwH/DJF6cEryxrfz0XEqaNUZz2QAJeZfwH8RbN5EXEz8PCGyUcDexqW\nW0Zx6vSFmfmAb675MR99U7f8UuCjFMWoz8nMpsupa/fQXn/s4fCw1rLfNC/a7Rvg0EUmVwC/npl/\ns8BtG3Xt9s1bgc9k5ta6aZ5CXVjt9s3dwD9k5k0AmfmRiHg78IsUZQgjYRhPoX6P4jAqcCioPR74\np4blzgGWA1+IiDuBb5TL3xkRv9into6advtmuhj1sxRvvOdm5t39auQI+R7wxIZppwPfbbLcob9w\nyqOi48A/LmjrRlu7fUNEvAJ4E3Cu4a0v2u2bFwIXl98pdwLPAK6MiKv60MZR1W7f3EZxFK7eFHBg\ngdo1lIYxwG0CfjsiHl/+/EfA32XmnfULZeaXMvPRmfmEzHwC8Evl9Cdk5rf62uLRsYk2+qb0JuBe\nYE15EYPm31eBAxGxBiAinkJxNfbHGpb7GPDv667keiXFX7rWJC6ctvomIs4A3gGcn5m39LuRI6qt\nvim/S06q+475e+A/Z+Z/7neDR0i7n2mfBJ4YEReUy10IHAWM1Hd/bWpq+GoyI+K1wCUUAfNW4Hen\nr9KKiO9TnDb9fsM6Y8AdmfnQPjd3pLTbNxFxH7CTIsRNuy8zn9rvNi9m5Qfce3lwLKQ3ZebmiLgc\nuDcz31Yu9xLgDRTDufwY+P3M3DagZo+EOfpmT2ZeHhHvB15C0Sf11mfml/vb4tHR7vumYZ2vAhsz\n8yP9be1o6eAz7bkU9dVHUYxt+Z8y85sDavZADGWAkyRJUmvDeApVkiRJszDASZIkVYwBTpIkqWIM\ncJIkSRVjgJMkSaoYA5wkSVLFGOAkSZIqxgAnSZJUMQY4SZKkivk/O6LMozAg6m4AAAAASUVORK5C\nYII=\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde3aaf4390>"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHFCAYAAABy/MT4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X28nGV95/HPqAgmRDRi8SGLRwF/B1w0BgXFRVBUmr5U\nlq61tgJN1LpYzJbsrq3abrWtoi1PrVEKK5r4gFRXGx9Lsdtqa93WllBoV8iPB3OK0RKsWSUhwZBw\n9o/7PmEymTlnHs6ZmXvm8369zmsy99Nc97nOzHxzX9d9XbXp6WkkSZJUHY8YdAEkSZLUGQOcJElS\nxRjgJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFWMAU6SJKliDHCSJEkV86hBF0BaSBHxDeBFwJmZ+bWG\nde8GfjUzH9/hMR8FvBn4JeB44JHAHcCngA9k5gMt9nsscBtwe2a+pMNT0ZiIiKcAHwW+D7wxMx1t\nfUhFxC8DZwB/nZlXl8tqwKsz8wuDLJtGnwFOIysing6cCtwEnAt8rclmHX05RsQjgS8AzwfeBfw5\nsBc4Dfhd4Gcj4szMvL/J7u8BjgSyk9dcCBFxGPB+4LvAEQCZ+Vvd7jPX8SLio8CXgJuBfwMeLFc9\nmJn7uilP3bFfADwtMz89z+dbo/i7eUFmXtjJ+jbO98nAGopWkJOAP8vMy8ptDgH+NjN/e9YTn73s\nvfw+n0LxH5HXNCyfBH4VmAIOBb6cmTeV61qeT0QE8DqK38EzgJsz84P9Lv9s6+f4256tLj8cEV8F\nVs0cKzOnI6IWEedn5sfbKbPUDZtQNcrOA24B/hD4TxFxaJNtah0e8yLgJcAZmflHmXlnZk5l5ico\nwuIxFEHuABHxPOANFFfpOn3NhfBe4L7MvKz8onpmRPxqD/vMdbwTgM8BdwE/BnaVP+3uP5tDgcN6\nKPtBIuIXgUsoQsljOl3P3Of7HuB3MvPtwGuBt0XEr89xDp3o5fd5CbC0fkH5n6FPAb+Rmb8H/BQw\nE3BqzH4+nwL+KjMvBtYCl0bEef0sfxvrZ3u9ueryoPdzZn4eOC0iJtoss9QxA5xG2XnAp4GNFFc1\nXj0Px1wDbMjMWxtXZOb3gT8A3hQRj55ZXl61uxr4fYqrFwNVXm34ZeCzdYv/hLqrCJ3sUwbjuY53\nO/BiipD7AuB04Drgim7K04lujp+Zn8rM/w58m+Zf0LOuZ/bzPQ44BZgsj/X/gBuAmat4PQX8Xn6f\nEXEaRSBuLMPvUfzdby+ffxJ4X/nvY5n9fB4CTizX7QD+H/DCPpe/5fo2Xq9lXZbrW13FXwf8j7nK\nLHXLAKeRFBGnUjTXXJuZOymaQM7t8Zj/Djga+MYsm30VOJyiGWnGW4HFFF94w3D17dkUZdxSt+xf\ngGdHxOM63Weu45V9Bj+VmX+TmX+XmX9P0W/obWX/rm7K04lejj9XfR20vo3z3QMcRXG1dsYPgSfM\n8Vrt6up8y/9o/DTFe6V++eOBc4C/mllWnte3yqeznk9mPj8z15XHWkxx9e7GfpW/jfWzvd5PMXtd\ntpSZ/wScXJ6zNO/sA6dRdR5Fs83W8vkngc9FxNK6qwidemr5ePcs28ysWwYQEU8Ffgc4JzMfLLoD\nzS0i/gPwPzLzrPL5oRRXe5aXgbQX/658rO+nt4MijDwJ+FGH+7x8tuNl5mbgz2ZWRMRZwObyimW3\n5ak3V8jq5fhz9ZE8aH1m7mWW883MfwGe2LDb83k4IPV600K357uK4uaJ0xqWn0xxo84xZVeAJ1M0\nWf9WZj7UxvnUexNwfWZ+tI/ln2v9bK+3NDNn+9udy40UXS6+3Ob2UtsMcBo5ZfPlzwNvL6+GAPwF\ncF+5/I96fIkHZ1m3qOH5B4AvZuZfls/b/XI+m+LO1hmnAI9qDG9l88865n4vTwPvzMx7KPps7cvM\nh+rW/6R8fGyL/Wfbp9bu8cryXpiZ9c3ZbZen3P8SDjzfpwBLypsZZkwD787Mezs5/nxrcb6N27wA\nWFH+zIeOzzcijgQem5l3lc2M9Y6c2Swz31du/1GK/5j8ZpNjHXQ+EfFs4KXAKyi6IfSz/HOtb+v1\n2qnLJrYAyzHAaQEY4DSKXgU8Driq/Kl3Lt0HuJn/dT8D+PsW28z8b/67EfFKir4zz6pb324T6hkU\nd8XNOB34euNG5ZAlv9zmMWc0u4JxePnYdAiUOfZpptXxzgf+qdvylOd7QACIiNOBicz8WIuydHO+\n86XZ+e5XNq99EHhNZs7X3cndnO+bgctbrLuvfPyLumWbgItpCHCtzqdsTvyniFgP/GNE/G5mru9T\n+eda3+7rzVqXLWyn7BsozTf7wGkUnUfRhPW8hp/zgBd2e2dYZt5NMczAz8+y2ekUX3j/CPwnirvd\nvhcRD0bEgxSdmk8vnzdt6in7+TyHA4c9eTHNm6S68X3gkRFRf/fkkvLxu13sc30Hx1tN0Sm81/J0\nYqGPP5tm5wtARDyC4uaWX8vM62c7SESsjoj1c/z893Lzjs43Ik4Cbm01fiFFfzAohtCYsZviqufM\n1bm2ziczfwx8BfhAi7vC5738bZxfu6/Xsi5n8RP8ntUC8QqcRkpEPAFYCayaGaOqzk0R8fsUQe6g\noT7adCVwcUScXHZorn/tp1IMLXBNZv4kIn6Dormv3oUUYXI1re9IPQP4l5m+ehFxCMVde/85ijHm\n9l8J6bIJ9RaKqw7PoOhXB/BM4I7yDsJmWu5DMT7WnMeLYiDj53FgEJj12LOUpxO9Hr/jfnAw6/nO\neBfw0Znm9Yh4U2Ze02zD8mpVqytWjTo939OBJ0bEKeXz5wHPiIiLy9f8Z+BeipsPvlNuc3j5GvX9\nSQ86H4qBqz8PvCEzZ24eeICiq8GjebipciHLP9f6OV+vjbpsZSmwrcN9pLYY4DRqfoHiC7VVn5ON\nwOvpPsBdAfwMcENEvItiuIQHKQLWeym+4H4L9g8rckBn54j4AbCr2TAkdV5CMdTCjPOBPZn5nYh4\nLXVNWd00oWYxkOxngJ/j4S+sn6MIgjPlXAUcn5m/Ptc+mfnQXMcrPY2iM3xjs+ic5ZnDrM3S3Zxv\nu8eeY33T8y1f700U/aseHRE/XS5ePsdrtaXT883MA5oWo5ih5FGZ+c66ZddQ3In6d+Wil1DW/Rzn\n8w8U5/+DcrsaRV+4Py6HFCEifgk4oZ2/tS7L3875zfX317Iu53AUxUDi0rxrK8BFxAXAZRR3Hc2M\nrv0Mig7ax1CMsfU14K3llYdHUFx5mOns+W2KKWF+OM/llxqdC/z5zJdDE58D3hIRz6cIeh3d8ZeZ\neyLiFcA7KfpiXUrxProT2AC8f5amGtp8zZcCP46It1MMGHoj8Nfl87+cdc/2vY2iGevtFCPP35gH\njo7/HIpm23b3met4lOdyD82vPLaz/8wVxys48LPrycDh5Z27M6aB3yxvYuj4fCPiHOCVlJ9hZaf9\nL2XmxnbWz3a+UcxocGV5DvWD036iye+lWx3XbxmuPgCcRXHF6irg0sy8E3g3cElEvI9iHLWbs5wp\nYrbzycxbophu6iUR8TMUw/D8OcXVuhnLgfMj4rczc9cClX+u9XO93mx/u7M5hWIMPWne1aanZ/8u\niYgrKS6XT1L8r+nycvkmig+sd0fEIooO1n+Sme+PiLdSzBP54szcHREfAo7MzNn6DkmVExEvohgX\n7pWZ+afzcLwnAt8Dnlj2F9KYiYinUXQB6HoqraqJiLOBr2XmfXNuPGRa1VfZl/XzmXnGQAqmkdfO\nFbhrMvOmiNjfobr8n8zFFM1HZOaucv2J5SbnA1dl5u7y+RXArRHxmLpl0lAo+5jNNYjqvsz8QePC\nzPxmRPwt8MGIWE3R4fvuhiEJOvES4CbDm8bMsiqGtzlcSDHUirQg5gxwTTqCk8UI1J+beV7eTfQz\nwIdmFnHg3TrfobgT55kUHUalYfIi5m6anKLo5NzMaynuvvsSRafsY3h46IVOHQ/8ry73lSqnbPre\nNOhy9KDZbBzLgCfXjf8ozbueb2Iow9u1FM0+/7NcvJjiNnMAyk7OPymXS0MlM79OD7f6Z+b3KPpD\nzUdZxqbZTC3tAV5Q9qt7Y84xZVPVZebfDLoM3Sr7953BwUP8vAm4qO8F0ljpKcCVYwBtBP4VeHVd\ns9FOitGtZ7Z7JEXH116nAJKkkZaZ/0oxFI6GXGZ+GPhwk+Xv7n9pNG66DnBRTHD8F8BX6m/HLn2b\n4qaHmUm/A9gLtDvS+AMUgU+SJGlctRyqqJMAV2s40IcoJgtvDG9QDKfw1oj4NMWkwO8ArsvMZoM2\nNjPBAs9R2OI1b6C4xXyqz6+tA01gXQyLCayLYTGBdTEsJrAuhsUEY1oXswa4sunzfooxlR4NnBoR\n76EYr+h1wFREvLxul7sy85WZ+eFynLgbKULfPwC/0kG57il/BmGKzqdL0cKYwroYFlNYF8NiCuti\nWExhXQyLKcasLmYNcJm5Dzisxeo3z7HvOyiuvEmSJGkeOcmuJElSxRjgJEmSKsYAJ0mSVDEGOEmS\npIoxwEmSJFWMAU6SJKliDHCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDEGOEmSpIoxwEmS\nJFWMAU6SJKliDHCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFWMAU6S\nJKliDHCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDEGOEmSpIp51KALIGn+1Wq1RcBkw+LN\n09PTuwZRHknS/DLASaNpcvnKtZuWLF0GwI7tW7n5+itOAm4abLEkSfPBACeNqCVLl3HEUccMuhiS\npAVgHzhJkqSKMcBJkiRVjAFOkiSpYgxwkiRJFWOAkwQUQ4/UarUV9T+rV68+YdcuRx6RpGHjXaiS\nZhww9AjAzdu2snnzZlasWDHAYkmSGhngJO3n0COSVA0GOEnzylkgJGnhGeAkzTdngZCkBWaAkzTv\nbIqVpIXlXaiSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFWMAU6SJKli\nDHCSJEkVY4CTJEmqGAOcpJb27d3DbbfdxurVq0+o1Woryp9Fgy6XJI0750KV1NLu++7l0mvvZcnS\nEzee9vrLnJhekoaEAU7SrJyYXpKGj02okiRJFWOAkyRJqhgDnCRJUsW01QcuIi4ALgN+KzMvK5cd\nCXwEeBbwEPBF4G2ZOR0RjwAuAV5dHuLbwBsz84fzXH5JkqSxM+cVuIi4EjiVIoRN1626CtiamccC\ny4HTgQvKdb8CvBh4dmYeB3wPuHIeyy1JkjS22mlCvSYzzwfun1kQEUuAs4HLATJzF3A1cG65yfnA\nVZm5u3x+BXBORDxmvgouSZI0ruYMcJnZbLyn48p1d9Utu4OiORUggNvr1n2nfK1ndldMSZIkzeh2\nHLjFwJ6GZbvL5TPrZ66+kZkPRcRP6tbP5UnAY7ssW7cmGh41OBMNj+rQqlWrjr7rwYOXATs72afV\ndp0eZ6591JaJhkcNzkTDowZnouFx1NzeakW3AW4ncGjDssU8/AG9E9jfXBoRjyy3b/cDfKrJ8fvl\nhgG9rg5mXXRpzZo1XHT51xuXbex0nxbbdXycufZRR3xfDA/rYniMal3UWq3oNsDdDuyLiOMy845y\n2fHALeW/vw1MAt8onwewF8g2jz/BYK7A3QCcRREgNTgTWBc9Wbdu3Qlw4saGZeesX7/+1k72abFd\nx8eZax+1ZQLfF8NiAutiWEwwpnXRSYCrlT9k5v0R8VngncDqiHgc8Bbg0nLbDcBbI+LTwA7gHcB1\nmfmTNl/rnvJnEKaY5ZKl+moK66IrGzZsOPy011/WuOzu9evXt/x9NtunxXYdH2eufdSRKXxfDIsp\nrIthMcWY1cWsAa5s+ryfYviQRwOnRsR7gI8DFwLXRMSdwD6KgPYxgMz8cEQ8A7iRIvT9A8XQIpIk\nSerRrAEuM/cBh82yyWtm2fcdFFfeJEmSNI+cSkuSJKliur2JQdIY2rd3D8BkrXbAjVGbp6endw2m\nRJI0ngxwktq2+757Wb5y7bVLli4DYMf2rdx8/RUnAc0G/JYkLRADnKSOLFm6jCOOOmbQxZCksWYf\nOEmSpIoxwEmSJFWMAU6SJKliDHCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDEGOEmSpIox\nwEmSJFWMU2lJY6DFJPTQh4noB/nakjSqDHDSGGichB76NxH9IF9bkkaVAU4aE4OchH6Qry1Jo8g+\ncJIkSRVjgJMkSaoYA5wkSVLFGOAkSZIqxpsYJA1crVZbBEw2WeVQI5LUhAFO0jCYXL5y7SaHGpGk\n9hjgJA0FhxqRpPbZB06SJKliDHCSJEkVY4CTJEmqGPvASRXT4o7Nju/WbDLJfLO7QCVJQ8gAJ1XP\nAXdsdnu3ZuMk89u2bJr3gkqSFoYBTqqg+bpjs/44O7dv7fl4kqT+sA+cJElSxXgFThoi89W/TZI0\n2gxw0nCZl/5tkqTRZoCThowzEkiS5mIfOEmSpIoxwEmSJFWMAU6SJKliDHCSJEkVY4CTJEmqGAOc\nJElSxRjgJEmSKsZx4CQNpX179wBM1mq1+sXOSiFJGOAkDand993L8pVrr3VWCkk6mAFO0tByVgpJ\nas4+cJIkSRVjgJMkSaoYA5wkSVLFGOAkSZIqxgAnSZJUMQY4SZKkijHASZIkVYzjwEkV12LGgsnB\nlEaS1A8GOKniGmcsANi2ZdMASyRJWmgGOGkENM5YsHP71gGWRpK00OwDJ0mSVDEGOEmSpIrpqQk1\nIl4MXAI8FtgLfDgzPxARRwIfAZ4FPAR8EXhbZk73WF5JkqSx1/UVuIhYBHwB+N3MPB54GfCbEXEW\ncBWwNTOPBZYDpwMXzEN5JQ2RujtgV8z84B2wkrTgerkCdzRwBHADQGZui4hbgOcDZ1N+iGfmroi4\nGlgN/FFvxZU0TLwDVpIGo5c+cHcAtwPnAkTEMcCJwJ8CZOZdDds+q4fXkjSkZu6AnflZfMRRgy6S\nJI28rgNcZu6juKp2SUT8AEhgHbAY2NOw+e5yuSRJknrUdRNqRDwZ+BLwi5n51Yh4AsXVt0cAhzZs\nvhjY2cHhn0RxY0Q/TTQ8anAmGh7HxqpVq46+68GDl1H3/mm2TRXVn1e759T4uxgzEw2PGpyJhkcN\nzkTD46i5vdWKXvrAvQj4UWZ+FSAzfxgRXwJeDOyNiOMy845y2+OBWzo49hQHh8B+uWFAr6uDjV1d\nrFmzhosu/3rjso1zbVNF9efV7jk1/i7G1Ni9L4aYdTE8RrUuaq1W9BLgbgWeGhHPy8wby7tSXw78\nFfAD4J3A6oh4HPAW4NIOjj3BYK7A3QCcRREgNTgTjGldrFu37gQ4cWPDsnPWr19/62zbVFH9ebV7\nTo2/izEzwZi+L4bQBNbFsJhgTOui6wCXmbdGxBuBj0TEoRQp8X8DFwOHAddExJ3APuC6zPxYB4e/\np/wZhClmuWSpvppizOpiw4YNh5/2+ssal929fv3622fbporqz6vdc2r8XYypKcbsfTHEprAuhsUU\nY1YXPQ3km5mfAj7VZNUDwGt6ObYkSZKacyotSZKkiunpCpwkDVKtVlvEwTM/bJ6ent41iPJIUr8Y\n4CRV2eTylWs3zcwEsWP7Vm6+/oqTgJsGWyxJWlgGOEmVNjMThCSNE/vASZIkVYxX4CT13b69ewAm\na7X9Y1Q29mOTJM3CACep73bfdy/LV669dqbv2rYtmwZcIkmqFgOcpIGo77u2c/vWAZdGkqrFACdp\nZDRpmp3h0CKSRooBTtLIaGyaBYcWkTSaDHCSRorDikgaBw4jIkmSVDEGOEmSpIoxwEmSJFWMAU6S\nJKliDHCSJEkVY4CTJEmqGAOcJElSxTgOnKSxV6vVFgGTDYudvUHS0DLASRJMLl+5dtPMDA7O3iBp\n2BngJAlncJBULfaBkyRJqhgDnCRJUsUY4CRJkirGACdJklQxBjhJkqSKMcBJkiRVjAFOkiSpYhwH\nThqQFqP/Nz6XJOkgBjhpcA4Y/R9g25ZNAyyOJKkqDHDSADWO/r9z+9YBlkaSVBX2gZMkSaoYA5wk\nSVLFGOAkSZIqxgAnSZJUMd7EIKkS9u3dAzBZq9XqFzvsiqSxZICTVAm777uX5SvXXuuwK5JkgJNU\nIQ67IkkFA5ykkdai6XXz9PT0rsGUSJJ6Z4CTNNIam153bN/KzddfcRJw02BLJkndM8BJGnmNTa+S\nVHUOIyJJklQxBjhJkqSKMcBJkiRVjAFOkiSpYgxwkiRJFWOAkyRJqhgDnCRJUsUY4CRJkirGACdJ\nklQxBjhJkqSKcSotaR7UarVFwGTD4p4nTG8xEXvj66gD/k4ljQIDnDQ/JpevXLtpvidMb5yIHWDb\nlk09FXTc+TuVNAoMcNI8WagJ0xuPu3P71nl/jXHj71RS1dkHTpIkqWIMcJIkSRVjgJMkSaqYnvrA\nRcRS4GrgFOBBYENm/m5EHAl8BHgW8BDwReBtmTndY3klSZLGXq9X4NYD92Tm0RQh7mURcRxwFbA1\nM48FlgOnAxf0+FpSZdQNVbGi4WfRoMsmSaq+rq/ARcRTgJXAkwEy89+A0yNiCXA25bhKmbkrIq4G\nVgN/1HOJpQpoNlTFfA0tIklSL02oy4F7gTdExHkUTaVXAX8PkJl31W17B0VzqjQ2FmpYEUmSeglw\njwd+CnggM58dEScC3wAuBfY0bLsbWNzBsZ8EPLaHsnVjouFRgzPR8Dj0Vq1adfRdD7a3HbCzk300\nGPV1NSQmGh41OBMNjxqciYbHUXN7qxW9BLgfAdPABwEy858j4ivAS4FDG7ZdTGcfhFNNjtEvNwzo\ndXWwytTFmjVruOjyr7ez3cZO99Fg1NfVkKnM+2IMWBfDY1TrotZqRS8B7k7gEOBwYEfd8huBF0XE\ncZl5R7nseOCWDo49wWCuwN0AnEURIDU4E1SsLtatW3cCnDjnF/66devOWb9+/a2d7KPBqK+rITFB\nxd4XI2wC62JYTDCmddF1gMvMjIhvAu8E3hERExQ3NZwNPLVcvjoiHge8haJptV33lD+DMMUslyzV\nV1NUpC42bNhw+Gmvv6yd7e5ev3797Z3so8Gor6shM0VF3hdjYArrYlhMMWZ10eswIucBJ0fEFPAV\n4O2Z+Q3gQmBJRNwJfAv4XGZ+rMfXkiRJEj0O5JuZU8CZTZb/CHhNL8eWJElSc06lJUmSVDE9XYGT\nxlE5m8Jkw+LG5wepm52h7X0kSWrGACd1bnL5yrWb6mdZ2LZl05w7Nc7O0M4+kiQ1Y4CTutA4y8LO\n7Vs73q/dfSRJamQfOEmSpIoxwEmSJFWMAU6SJKliDHCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsYA\nJ0mSVDEGOEmSpIoxwEmSJFWMU2lJUoN9e/cATNZqtcZVm6enp3f1v0SSdCADnCQ12H3fvSxfufba\nJUuX7V+2Y/tWbr7+ipOAmwZXMkkqGOAkqYklS5dxxFHHDLoYktSUfeAkSZIqxgAnSZJUMQY4SZKk\nijHASZIkVYwBTpIkqWIMcJIkSRVjgJMkSaoYA5wkSVLFGOAkSZIqxgAnSZJUMQY4SZKkijHASZIk\nVYwBTpIkqWIMcJIkSRVjgJMkSaoYA5wkSVLFGOAkSZIqxgAnSZJUMQY4SZKkijHASZIkVcyjBl0A\nadjVarVFwGTdoslW22q8NflbAdg8PT29axDlkTS6DHDS3CaXr1y7acnSZQBs27JpwMXREDvgb2XH\n9q3cfP0VJwE3DbZYkkaNAU5qw5KlyzjiqGMA2Ll964BLo2FW/7ciSQvFPnCSJEkV4xU4jTX7LEmS\nqsgAp3FnnyVJUuUY4DT27LMkSaoa+8BJkiRVjAFOkiSpYgxwkiRJFWOAkyRJqhgDnCRJUsUY4CRJ\nkirGACdJklQxBjhJkqSKMcBJkiRVjAFOkiSpYgxwkiRJFWOAkyRJqph5mcw+Ih4HfBv4amaujogj\ngY8AzwIeAr4IvC0zp+fj9SRJksbZfF2B+0NgNzAT0K4CtmbmscBy4HTggnl6LUmSpLHWc4CLiFcC\nTweuBWoRcThwNnA5QGbuAq4Gzu31tSRJktRjgIuIxwNXAKt5+OrbMwEy8666Te+gaE6VJElSj3q9\nAveHwAfLsDYT4BYBexq22w0s7vG1JEmSRA83MUTEq4CnAb9ULqqVj/cDhzZsvhjY2cHhnwQ8ttuy\ndWmi4VGDM9HwuGBWrVp19F0PPvx83949nHzyyWesXr366JllJ5988jMWuhwafs3+Ni644ILvnHLK\nKQ/MPG/8e5pZRvn5961vfeuwq6666qC/p8bjtDDR8KjBmWh41OBMNDyOmttbrejlLtTXAscC34kI\ngMeVx3sOsDcijsvMO8ptjwdu6eDYUxwcAvvlhgG9rg624HWxZs0aLrr86/uf777vXqaf8KLL7npw\n2f5lP3rUHo5a6IJo6DX+bezYvpVDDjnkgG0a/57KZRtn/n3IIYdw87bHs2Tpw39fzY4zBz+jhod1\nMTxGtS5qrVZ0HeAy87z65xHxLuBpmfmGiLgWeCewuhxi5C3ApR0cfoLBXIG7ATiLIkBqcCboU12s\nW7fuBDhxY/2yJUuXccRRx+x/vnP71oUsgiqk8W9j3bp156xfv/7WuucH/T3Vb7Nu3boTliw9cWP9\nMZodp4UJ/IwaFhNYF8NigjGti3kZB66JC4FrIuJOYB9wXWZ+rIP97yl/BmGKWS5Zqq+mWOC62LBh\nw+Gnvf6yhXwJjbANGzbcvX79+tvrnh/091S/Tau/t8bjzGEKP6OGxRTWxbCYYszqYt4CXGb+dt2/\nfwS8Zr6OLUmSpIc5lZYkSVLFGOAkSZIqxgAnSZJUMQY4SZKkijHASZIkVcxCDSMiSWNv3949AJO1\n2v6xOCcHVxpJo8QAJ0kLZPd997J85dprZ2Ze2LZl04BLJGlUGOAkaQHVz97grB6S5osBTpK60KR5\nFGwildQnBjhJ6kJj8yjYRCqpfwxwktSlxsntbSKV1C8OIyJJklQxBjhJkqSKMcBJkiRVjAFOkiSp\nYryJQSONskNIAAAO/0lEQVSrVqstovmwDpunp6d39bs8kiTNFwOcRtnk8pVrN9UP87Bj+1Zuvv6K\nk4CbBlcsSZJ6Y4DTSGsc5kGSpFFgHzhJkqSKMcBJkiRVjAFOkiSpYgxwkiRJFWOAkyRJqhgDnCRJ\nUsUY4CRJkirGACdJklQxBjhJkqSKMcBJkiRVjAFOkoZIrVZbVKvVVjT8nPra1772uTfddBOrV68+\noVy2aNBllTQ4zoUqScNlcvnKtZuWLF22f8G2LZu4Y+dRXHT514ETNy5fuZabr7/iJOCmQRVS0mAZ\n4CRpyCxZuowjjjpm//Od27dyeMMySePNAKdKKpuPJpus2jw9Pb2r3+WRJKmfDHCqqoOamXZs32qz\nkiRpLBjgVFmNzUySJI0L70KVJEmqGAOcJElSxRjgJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFWMAU6S\nJKliDHCSJEkVY4CTJEmqGAOcJElSxRjgJEmSKsa5UCVpgPbt3QMwWavVZhZNDq40kqrCACdJA7T7\nvntZvnLttUuWLgNg25ZNAy6RpCowwEnSgC1ZuowjjjoGgJ3btw64NJKqwD5wkiRJFWOAkyRJqhgD\nnCRJUsXYB04jo527+bzjT5I0CgxwGhnt3M3nHX+SpFFggNNIaeduPu/4kyRVnX3gJEmSKsYAJ0mS\nVDEGOEmSpIrpqQ9cRJwJvBc4AngkcGVm/kFEHAl8BHgW8BDwReBtmTndY3klSZLGXtdX4CLiScDn\ngXdk5vHATwO/ExEvAK4CtmbmscBy4HTggnkoryRJ0tjrpQl1L3BuZn4NIDO/A9wKnAycDVxeLt8F\nXA2c21tRJUmSBD00oWbmvwFfmHkeEccA/x74x3L9XXWb30HRnCpJkqQezcs4cBGxDPgS8Hvloj0N\nm+wGFndwyCcBj52HonViouFRgzPR8HiQVatWHX3Xg30pizSUVq1adTSwc9DlGFMTDY8anImGx1Fz\ne6sVPQe4iFhB0RduXWZeEhHPBQ5t2GwxnX3QTDU5Rr/cMKDX1cFa1sWaNWu46PKv97Eo0nBZs2bN\nxkGXQX5fDJFRrYtaqxW93oW6AvgK8CuZOfNhcjuwLyKOy8w7ymXHA7d0cOgJBnMF7gbgLIoAqcGZ\nYI66WLdu3Qlwol9gGlvr1q07Z/369bcOuhxjagK/L4bFBGNaF10HuIg4DPhfHBjeyMz7I+KzwDuB\n1RHxOOAtwKUdHP6e8mcQppjlkqX6aooWdbFhw4bDT3v9Zf0tjTRENmzYcPf69ev9rBqsKfy+GBZT\njFld9HIF7hzgacDFEXFx3fLrgAuBayLiTmAfcF1mfqyH19IIq9Vqi4DJmeerVq06+kMf+hCLFi0a\nYKkkSRpevdyFeh1FWGvlNd0eW2NncvnKtZuWLF0GwM3btrJ582ZWrFgx4GJJkjSc5uUuVKlXS5Yu\n44ijjhl0MSRJqgQDnBZUY/NoafP09PSuQZRHkqRRYIDTQjugeXTH9q3cfP0VJwE3DbZYkiRVlwFO\nC87mUUmS5pcBTn21b+8egMla7YCxCRubWA/SpCl2zn2kUdXifQRzdE+wS4M0Ogxw6qvd993L8pVr\nr51pUgXYtmVTO7se0BTb5j7SSGr2Pmqze4JdGqQRYYBT3zU2qe7cvrXj/drdRxpV3XZNsEuDNBoe\nMegCSJIkqTMGOEmSpIoxwEmSJFWMAU6SJKliDHAaOvv27uG2225j9erVJ9RqtRW1Wm0FDhsizapu\naJEVdT+LBl0uSQvDu1A1dHbfdy+XXnsvS5aeuPG0118GOGyINJfGoUUcIkQabQY4DaVuhxqRxplD\nhEjjwyZUSZKkijHASZIkVYwBTpIkqWLsAydJI6jFhPdz3s3thPdSNRjgJGkENZvwvs27uZ3wXqoA\nA5wkjahu7+b2blZp+NkHTpIkqWK8Aqe2tOgXA/aNkUZai7504HtfGigDnNp1QL8YsG+MNA6a9aXz\nvS8NngFObbNfjDSefO9Lw8cAp3nTopnVSeglSZpnBjjNp4OaWZ2EXpKk+WeA07xyEnpJkhaew4hI\nkiRVjAFOkiSpYgxwkiRJFWOAkyRJqhhvYpCkMdVilgWH/pEqwAAnSWOq2SwLDv0jVYMBTpLGmEP/\nSNVkgBtDLWZMOGBi6ibb2KwiqWstPneg4bNHUnsMcOPpgBkTWkxMfcA2NqtI6tFBM7W0+OyR1AYD\n3JhqZ3Lq+m1sVpHUq3Y+dyS1x2FEJEmSKsYAJ0mSVDEGOEmSpIoxwEmSJFWMNzFUSIvb8A8rHx+o\nW+Zt+ZL6xiFCpP4zwFXLQbfhb9uyiUVHHMUcQ4JI0kJyiBCpzwxwFdNs1PTDvTVf0oA5RIjUX/aB\nkyRJqhgDnCRJUsUY4CRJkirGPnAjrsXdYQc837d3D8BkrVZruU0zTfZzwntJkvrAADf6mt65Wm/3\nffeyfOXaa2fbppnG/ZzwXpKk/jDAjYFmd652s81cx3bCe0mS+sM+cJIkSRXjFThJUkfa6f/aTR/Z\nFn12nc1BasIAJ0nqSDv9X7vsI3tAn11nc5BaM8BJkjrWTv/XbvrIOqOD1B4D3Cy6nTy+nWaAJts0\nO+5B+0nSuGgxxNGcn8HSODDAza7byePbaQY4YJvG486ynySNhVZDHLXxGSyNvAULcBHxfGAd8ATg\nQeB9mfmJhXq9hdLt5PHtNAM0Ni84Kb0kHajbz2Bp1C1IgIuIQ4GNwH/NzM9ExDHAjRHxj5n5f3s9\n/jDdqdTtLAZdHtvZESSNjPn4vFrIZtZZvms6LWY7x505tk3BastCXYE7E5jOzM8AZOZdEfEV4BeA\n35hr52e+8Oe/OfPvBx/Yeej3Nn/jLXt23/cPdZsMzZ1K3c5i0M2xnR1B0iiZj8+rBW5mbfVds7Pj\ngs5y3B7LqDG1UAFuErijYdntwIp2do5Tf/HUmX/v+OF3+dc7/u7wxm2G6U6lbmcx6PTYzo4gadTM\nx+fVQjazLtR3zTB9h6maFmomhsXA7oZlD5TLJUmS1IOFugK3A3hMw7LFtHnZecumjbc+8hG1RwA8\nsOvHjz7xhONOWb169REz608++eRn7Kj7n9qO7Vs5+eSTz1i9evXR3RY4Ip7yile8gq9+9asvy8wT\nmr0OwP0/3sb0LM+bLWtWvsZjt3OcbrZZqOOO6jbDXr5h22bYyzds2wx7+YZtm/k6brffEa2+a97/\n/vc/0Ph90ctxZ469atWqo+m9eXbcTDQ8jprbW62o9doZs5mIeDmwPjOX1S37DHBrZr573l9QkiRp\njCxUE+rXgL0RsQogIp4DvBz45AK9niRJ0thYkCtwsD+0XQk8kaL/27syc+OCvJgkSdIYWbAAJ0mS\npIWxUE2okiRJWiAGOEmSpIoxwEmSJFWMAU6SJKliDHCSJEkVs1AzMVRCRPwa8EaKIHs38MuZ+Z05\n9rkSuCAzDb/zqN26iIgnAn8IPBc4hGLi57dk5g/7WNyRExHPB9YBTwAeBN6XmZ9ost35wNspfvc/\nBN6amTf2s6yjroO6+C/Amyk+x3cBv5aZ/7ufZR117dZF3fYvAL4JvCEzP9afUo6HDt4Xy4GreHgI\ns3dk5hf7WdZ+GdsQEhGvBC4EXpSZxwE3ANfNsc9LKQYkduyVedRhXVxFMc/uCcAk8Gjgvf0o56iK\niEOBjcDl5e//VcAHIuLfN2z3bIrw/Kpyu8uBP4mIQ/pd5lHVQV28Cvh14BWZOQm8D/hsRDy632Ue\nVe3WRd32hwHXAN/F74h51cH7YjHwp8ClmXkM8J+BX42Ikcw6I3lSbTof+Hhm/lv5/IPAcyPi2GYb\nR8ThFAMTrwVq/Sni2OikLj4K/EZmTmfmXoqw9+w+lXNUnQlMZ+ZnADLzLuArwC80bHcu8OVyPeX2\nNeCM/hV15LVbF3cCP5eZ3y+ffxl4LPC0fhV0DLRbFzPeA3wB2ILfEfOt3bp4NbAtMz9bbvc3mXlm\nZj7U19L2yTgHuKBuktjM3AVsBZ7VYvtLgI8B/3fhizZ22q6LzPxKZt4DEBE14D8Cf92nco6qSeCO\nhmW3c/Dv/4B6Kt3RZDt1r626yMzbMvP/1C36WYr3zKxdQNSRdt8XRMSpFCHjt8tFXoGbX+3WxXOB\nqYi4JiIyIv46Ik7rSwkHYKT7wEXE6yjazBv9uHzc3bB8N7C4yXHOBFZQNPMdPZ9lHBfzVRd1x6sB\nfwD8FMX/fNW9xRz8+3+Ag3//zbbbDSxaoHKNo3brYr+IOIOiafvnM3PfwhVt7LRVFxHxGOB/Audn\n5p6I6FPxxkq774vHAy+l6FrwprLP7hcj4thR7Cc90gEuM/8Y+ONm6yLiZuAxDYsXAzsbtltC0XT6\ns5n5kG/O7sxHXdRtvwj4BEVn1pdkZtPt1LYdtPf738nBYa1lPakr7dYFsP+mkkuA12bmXy5w2cZN\nu3XxHuDzmXlT3TKbUOdXu3XxI+DvM/NbAJn58Yh4H/BCim4GI2Wcm1C/TXFZFtgf1J4K/HPDdqcB\nS4EvR8QW4Bvl9lsi4oV9Kuuoa7cuZjqzfoHijfuyzPxRvwo5wr4NPLNh2fHALU222/8/mPIq6CTw\nTwtauvHSbl0QEW8E3gWcbnhbEO3Wxc8C55XfCVuAFwCXRsRlfSjjuGi3Lu6guApXbxrYu0DlGqhx\nDnAbgF+KiKeWz98O/E1mbqnfKDP/NDOfmJlPz8ynA/+hXP70zPzbvpZ4dG2gjboovQu4H1hV3sSg\n3n0N2BsRqwAi4jkUd1t/smG7TwI/U3fn15so/mdsH8T501ZdRMQJwPuBMzNzc78LOSbaqovyu+Bp\ndd8Rfwf8t8z8b/0u8Ahr9zPq08AzI+KscruzgcOAkfyurk1Pj29fy4i4CLiAIsjeDrx55q6uiLiN\notn0toZ9JoC7MvORfS7uSGu3LiLiAeBeihA344HMfG6/yzxKyg/EK3l47KR3ZebGiLgYuD8z31tu\n9zrgNymGb/k+8CuZeeuAij2S5qiLnZl5cURcDbyOog7qrc3MP+tviUdXu++Lhn2+BqzPzI/3t7Sj\nrYPPqJdR9I8+jGKsyv+amd8cULEX1FgHOEmSpCoa5yZUSZKkSjLASZIkVYwBTpIkqWIMcJIkSRVj\ngJMkSaoYA5wkSVLFGOAkSZIqxgAnSZJUMQY4SZKkivn/YZxCyPCjRnEAAAAASUVORK5CYII=\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fde3a7ca450>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "bf_outliers = get_outliers(bf, \"bf\", 6) \nrho_outliers = get_outliers(bf, \"rho\", 3)",
"execution_count": 1156,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "bf_outliers.keys()",
"execution_count": 1163,
"outputs": [
{
"execution_count": 1163,
"output_type": "execute_result",
"data": {
"text/plain": "[u'AI_Q3', u'AI_Q2', u'AI_Q1', u'AI_Q4']"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "rho_outliers.keys()",
"execution_count": 1164,
"outputs": [
{
"execution_count": 1164,
"output_type": "execute_result",
"data": {
"text/plain": "[u'AI_Q3', u'AI_Q2', u'AI_Q1', u'AI_Q4']"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "%%R\nlibrary(VennDiagram)",
"execution_count": 1159,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "def draw_venn(outliers, title):\n keys = sorted(list(outliers.keys()))\n a1 = set(outliers[keys[0]].index)\n a2 = set(outliers[keys[1]].index)\n a3 = set(outliers[keys[2]].index)\n a4 = set(outliers[keys[3]].index)\n area1 = len(a1)\n area2 = len(a2)\n area3 = len(a3) \n area4 = len(a4)\n n12 = len(a1.intersection(a2))\n n13 = len(a1.intersection(a3))\n n14 = len(a1.intersection(a4))\n n23 = len(a2.intersection(a3))\n n24 = len(a2.intersection(a4))\n n34 = len(a3.intersection(a4))\n n123 = len(set.intersection(a1, a2, a3))\n n124 = len(set.intersection(a1, a2, a4))\n n134 = len(set.intersection(a1, a3, a4))\n n234 = len(set.intersection(a2, a3, a4))\n n1234 = len(set.intersection(a1, a2, a3, a4))\n venn = \"venn_%s.png\" % title.replace(\" \", \"_\")\n r(\"library(VennDiagram)\")\n r(\"png('%s')\" % venn)\n r('draw.quad.venn')(area1, \n area2,\n area3,\n area4,\n n12,\n n13,\n n14,\n n23,\n n24,\n n34,\n n123,\n n124,\n n134,\n n234,\n n1234,\n category=keys)\n r('dev.off()')\n return venn",
"execution_count": 1174,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "Image(draw_venn(bf_outliers, \"Bayes factor outliers\"))",
"execution_count": 1175,
"outputs": [
{
"execution_count": 1175,
"output_type": "execute_result",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAADAFBMVEUAAAABAQECAgIDAwMEBAQF\nBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcY\nGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKior\nKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+\nPj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBR\nUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2Nk\nZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3\nd3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmK\nioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJyd\nnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+w\nsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLD\nw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW\n1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp\n6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8\n/Pz9/f3+/v7////isF19AAAgAElEQVR4nO2dd2AUxdvHn90r6Y2EkEIqvYROIEqR3iQU6f6o0kFA\nkRZ6FVDpqBSRIogU6YggRUBRQYrSlSpIC0VCenL7XkguubJlZnZ2L9x7nz/gcrc7O7ff292ZZ54C\nnBOHBuzdASfK4hTYwXEK7OA4BXZwnAI7OE6BHRynwA6OU2AHxymwg+MU2MFxCuzgOAV2cJwCOzhO\ngR0cp8AOjlNgB8cpsIPjFNjBcQrs4DgFdnCcAjs4ToEdHKfADo5TYAfHKbCD4xTYwXEK7OA4BXZw\nnAI7OE6BHRynwA6OU2AHxymwg+MU2MFxCuzgOAV2cJwCOzhOgR0cp8AOjlNgB8cpsIPjFNjBcQrs\n4DgFdnCcAjs4ToEdHKfADo5TYAfHKbCDUwgF/muc8Z+UBfDJi7w3/h49f9Goa8YXe+JD5tuxY3kI\n9497HGa/bglQCAWeE5Bs/DcLsvL+vl4vheNe1LjOJR3mTvvYs2e5CPaPMywufKez8PUo+Yu3luX8\nn9+zzjtz/t3WOeffC0Ps0ykzRPq3/l7hO52Fr0ebnp2oYODMelb835x/b+fc/VZFHbRXt/IR7t/J\nQ4XwdBa6Hhl6TJ/ue4Az65n345x/n/gZ/0kcVMte/TIh3L+nnxXC01n4enTiHMd9/iZn1rPXj+b8\n+1P9nH/vedunVwUI928X5HDSbj3jp9AJ/L7x9veQvWI2iNnXIeeO+PZezpDBnW9nz77lINI/rhCe\nzkLXo1WlrnLcSfcmN+fDx8l573069sTx9z7iuDsVx658YNfeifePK3ynszD2iIfnr8G39u6DGIW5\nf4Va4JcPtQjjixcjwj67Y+/e2FLY+5dDoRbYnMe/2bsH4hTW/r0yAjshwymwg+MU2MFxCuzgOAV2\ncJwCOzhOgR0cp8AOjlNgB8cpsIPjFNjBcQrs4DgFdnCcAjs4hULgpD8OfbV4xpgxI8aMGfvRsnV7\nzjzMkt7JCRJ2Fjjr7JIhTYJeLpwD6+fn55X7EvQRTfvP3n3Tvp1zCOwp8NXFTY2C+r7ed8Y3x/56\nlHfRZiZeObbj04RusUWMOgfUG7b+sh176ADYTeA7s8sDlHp34zXBLe4eXTbgNTcAn9YLfktTsWeO\nhX0ENnwXzzIN5t+S3jL7j2V9SwC4t/v0kvLdckTsIvCmKhA88y/07Z98O9R4uUe9eyBduT45KnYQ\n+Oc4KLM6FXeva0vj3cG78zcpSnTJgVFd4P/6s2Grs4l2TdvfPwBc228tTBpn3P5p28p5Ywb169ix\nY+f+7ybM++bIX4XqPqO2wIeKa0a/kN5MiOwfhwaBb79DhWCe/GD/4kH1S2hfzupc/CKjjUT6sTl/\nMaXaJuywdwiGCXUFNkxjy8uNzso62MsHwhPsOXu6++3oZgFGJf3iuo5bvu30XbPnzX9Xv187sXOM\nBpiSA3dgP4cUQFWBUzpD92TpzaTb2RSvYeqvtcv5u7y0ewQAW63H4iOJwlsl/zzvTS/warcjU72e\n8aOmwP/V0cyj1da9WWWh6MjbtJpD48maHsUBwtov/BXlKZN+ZEgghCT8o3i3RFFR4Gc1Xb6h2Fz2\n4c46TfO9ZOM1As7OrKWBIu0/vYKxT9bOlqxL/78V6xMC6gmcWk+/m3KTD2cEQekFzym3yoPh5/ei\nQVNz+kn8wd21Ea66QQ8V6BMiqglsaKehef3mkflVHfBNuE+/YXNODAsD/ZurSI9yb6jOd5lqNxpr\nVBN4GnysTMPH39K5DriqTNtGbkyLAtf4dUly2rjcABrb61GslsA/anoo1vat4R7sW78r0XLKmjoM\n2+SLZ7Ib+tLLdzuF/hCgksDPipeVYd6QJHFqEab1T7RbPTvQF6Kn07n0rscyCQYqLWGiksADNArH\nRz+dHsg0Pk6xwbQ1NcGj+4/U2kvvA13tYcNUR+Bf2JGKHyNlbhA0PUGpsVtjikC5xf9Rai2XuUwz\nO1jR1RE4LkTWIAWRlI+CoPWfFBr6rb1W25n6HZ9bybZU/xpWReDtsFKNw3Bc0iw/tpewjwgShp21\nwHfsXTodsmQ5013157CwwMJZc7M2VcU6hqFqadVMsonjPVyGy5gXp35WAaIW0DCY8zEHEmTsLaiI\nYUJEaaHRgrDAwllzuTS86/4HtS7gl9ztr/GeTahQ2uLiUGWTgkaJ3swu8p0FFdlxwLCwpMBOglKJ\nZvXFEzg+SN1Hz+X2EPIlwb3wxbziELdb0ZtoemwR4gUSYUWMF/GzYIG9BKUSy+qLJ/BdzXiczWlw\nuBrE/YK5T+rCAGh8SJHumHHduyHpL0hUkYNCibSFpBLN6osn8BxG5rCHAMO64kwvnNxzqUtCoSHu\nb4KEz2AF2Y6iimQPE5qmCEklntUXS+BqcThb0+LFFHePGaguAVmrIqAuPaOGGIb6/o+JdhRVZJ2g\nj6qQVKJZcw04At9gPsHYmiI3OkOJnUhb7oiB2B8U7k0+57XDifYTU2TvBS7rFP9uAlKJZs1NWwbf\noIcaLAEMD2i6HKoAbaUfD7/UhbJbVJyfDtDfINhLTJFdXsWKeQo4qeFci2RZc9uVwN+HFhkfu7vM\nyhDd5PrbELRc1dXaOy79aTWFoAiKwLKy5mb79cXcgyr/dIKyIg/X5xPc3Kcpuc7FxyDXf2W2gKEI\nrqkSO2vuRViDuQdl9kUz7zzl/yh7ZTEWa6xNh7/ZyRRbk1BEcVv0Grio9CEkSBmnDdzA98GJqhB3\nRu3e5NAyVD1vWsUFHuEhIwrhz0mrhzyS34eztaGtzYX6sI8maK3csRWuWT6Xb2GvzOOio7jATWrK\n2LnmXW5lTwqdyJrr6rHYQszsZQG6URQevphm+VzSi3SXf2REFBc4Us53cb3J/RpEpRu3mkF9M//k\nP2rBGxeoNEx0Avt6q2adV1rgDM0kGXtXHft4Hh2BOcMKH/eFedOh5yN1xb6mNPMlOoG7YT+do0uj\ntMA3ZS0VHo+Ifrs5ra7cbgZvvFzH3xPODBIYV+NDdAJTXN+ndXwplBb4BHwna//MyvQqEhlW+vh+\nyT3qAjG0XLc40hPYqDK9HoijtMA7QJbDsmF8L5pGxNuNoaqvfhrFByCWWb6A6ax8X2s0lBZ4NVyX\nsfdvYz+lG+p9pyzollBsD88sX8BB+J5iL8RQWuBFIBJFKwntCOCVvm4JlZhBSrlcofOMmaXSkZQW\neDYUnowaD9pA/Ztc2jhNWbvYryyI7qLSgZQWeBrYLa7OmrU+nrnzpCPhLh/aJYzEjDdjVDoQLYHT\n75zdte7z2VPf65/D8DEz5y7beuTivYzJhSLbqZHEjlDbtDD9pDM0u2fX3nAj3Uw/sYx7F49sXTZ3\n5pjhL0/de1Nnf75u19k7tAaCss9/xtlNU96uHcbmJxQNig7x83MD09/QcfTyfbfsnhVnX4h2qpmF\nf4VHgHrmYD6Wwu1b+5aP7hgXlXfmwM3PLyQ6yM/PdCbDar89ZdNZ8cVsBGQJfGl1v2paAG10436T\nl2//9eoTs+48v37mwLbPJleD8q7G7npW6zpnt8oZNcxIGcqU/dXincsxzHC7JcC8vXtOPci5Blwr\nvNl78mfbDpy5bpamIOPJ1V+3L5/cr3F0zrmt1m+1rCSOxALfWtY+AMC/2ci158TGuh9BUva/x778\nID7S+H1CGo3faY9sBperMAOsFxbS32dq3FC/Kw93jm8UknMqoN2Xx/6VGJ+knls7spk/QED7ZQhp\nPfkhE/j01PIAoX1WnJccqywBU0awpONLu1fUAZTov05dN1rDUvdAvniCnT5FdqjakWvr+pcA0FXs\nvvR40m1kE67h/Io+oQDlp54mOiiBwLemlANtvQ/PIm281tLlLuXY3HbFAEr1/1rO9BiLp+2gNX+w\n0rUazCi1Vt4Tv+5fCqBYu7nHcqeNL2Auzu5nP6ynhXJTCK5jXIEzv2mqYet/+gR1+51gm9nu/JJ4\nX2BrTj2jxgzq5wi9oNtu2hCop8JoOvvM1Bos+MYvMVugNGgmYLby5NP6rKbpN7i/SDyBn80Ngcgp\nOIOln2Af39uZJyfV0UFgn50KG5UMs3QlBRyGX7LOLVhhf/fknX0CQVdn0kkrZbwI1pNuT4mE0Ll4\nVmwcgR+N94Umu/Auu79grdBHz9Z39Qb39l8rmJHwQUvoJh6mf7G8RqHsPzmkft3eHby7rufRJEAo\nmEiU7F2NwXc8jhcTusDPJ3lpOqM9eM14AbNFPs06ODgQPDt+q5B/w8+hbp9LbfO8E3RWJv1A+rcd\nPSFw8EF+G0CxgYTNnu2k8ZqEnvwNVeCsFYHQCSeLnwm/oeKfG34cFgRF3jmkwPN4vr4Uwg/S8Imm\nAv3UtdkH3ykCQcN/FJxmEAvMcVc6QuBKVNMRosA/V4ZGYs8yYSrHS26SeaCPJ4RPlrOuyMN/b8Fb\naH4bR4p5UZ4vXZ8cDl59DogNiAIkfviinGoIVX5G2xRJ4OfDmPBNhH1pi2RVT97UlGEbfC3bMFfA\nxXKaOagrCndqstPpHTn96wYs03STxPCRZJBlxqZwZjjSfRpF4KMRmuHEj6n33RFP892pJSF4GK2b\n5TavYkfRt077H3Sl9CC+ZHzilJwqncNFKzMqPmm4JgLlG0oLnDlREyUjw9jngDw7z97bRc803kZh\nYSJ7IlMHLyRlniaGQtbfrG2NGX0XlBTHKaKDTySOR2kmSs+KJQV+WA/ekTNZPYLlnHJvWiiEL5F7\nMT1pBYNw7/bf+frLTZSXtCQcQqehpfj5Fz6TeTTjc+0dqCc5Y5IS+Lfinl/J6kUi4MV/Z2yqD97D\nZUWEXSqhX46/15Vy+lVyjnpnuDfU34RqaDoPNJIrf+VZXCoYUELgzW7hclPHhfTC3eOPzjptF3Kv\nmh2+QUTX4n9N4APiydqZLlpdlz/Qtz8Mh0kPZc6f4W5bxLcQF3ghGyc79qt5Ffx97r7vDU0J75gz\nmcqECWKzhkBrsnCl403BeyRWcrwNlIIuH8Wxi0Q3EBV4Irwl32VuvI5kYf35rCCoS+B0YRwPdyYf\nMnyqrUTw49hbF4JmYRYW+AgoOUanvAWiwUFiAo+CfhRGtNuALDtRyrJIqL4N0znu/mvMVDn+dHu8\nwjDtOYZt1SFyGfZ1MMwbdw8hsvrBaJGPRQQeD4Np+B7egYWEe6atKQFVsFL/nY9wIzXI5HEu2gsr\nNfvOKlBiDcEtKp5e7IphEIjMqYUFngVD6PiWRpC7AGesi4Ja6Nnn9vqG/iq9lTj/1tJILlDkc6gW\nRH1FZH6r0I5kL34MQ0DYjV5Q4LXM/yjZ/7uGydg5a0U4NEa8x6/QVKHg15f8JryP9sv+pTGEIxv9\nLcl2FbutYrf2NrNO6DMhgX/QNaPlzbJUVngSl/ZJUYhHsGAaxkJzKinas9+Fbgg33UvxEPgJqWPm\nNfiCcE9eMpvqDgp8JCDwdb8YavWmzsOX8hpImu6j7Sc1CUnrCoNo/SQ/YetLjXHv9tP6TCe3uO0C\nxMUgRJ5X9BO4ivgFflHZn57no6Go7Io6j9918RJPZ/WsAfuh3KMU8LVLFdFUVknTvFzfJUs5mcss\nhm49CO6af2X+88MvcC+WZoqBrsHyR2t/dWDC1ws3cztGL8+iasVR39Dzgh8a1oczHeTlZ+wcJWt3\nHvaz/BZDXoG/Ep874/IFCJ8sdI7FQm2hYPKL4d4HKBzCjHNBRYSGdr/XhthjMpsvTXEQncdEWM/3\nNp/At33rUHUXvg1UqsoavgxmevMGRhzzDz1H4wjm/F3ag/cu9rA3Q5RO3oJn7AyZLdiSWceXbw7B\nJ3AzT8reMxUa0GknaaTOe5Ht5G2HexniyA5hEmP1m23ezF7krR8p3zXgByUC/K97NuN5l0fgVbCU\n8qFH62gNKS61gCrWfgyrtLGKhEkkNdJYJ2c/WgVayAoFy2OGIik6lgDPeqetwIkB9Wh7OB4FmQZE\nMzYXZ/pZ+NJ9CM2Ql4DSR6+fjO6im9aW+cj876f9mOK2FzUJLStSacaK7HoBtr90W4EH62kUD7Mg\nK+Bteo0ljdUFbSz4MwE6oEu2YCO3EcNVJrOHeZ2jjUG6sXQct7L9BlBpx5o/dINt3rMR+A/Ne/SP\n3NuXpmv72VhodTP3pWEQ9MUwFtb8h7uNY+U3DIPBebezm60gFtvtX4DTQHVOV8AIjc3FaSNwsyLI\ngWXo7KabXjVrgafn/BxdjZfYBzg7+qRyKXjrdBPhfzkziqz5Hp4LqKUpmA8KJal+7GeTF9Ba4OPw\nkfUmFEj37U23wVstocY5LqMjTMPazS+NS/XDO9JHTJs07lwNaElxoN6qNL22LJkL1n4w1gLXD1Uk\n7VEvX9r5EjYUc5vegpmPt1ONu9zdWpgHWsY2mupW7GvMvcTI8CQKPEMhJfQNq3esBD4G4h4+pOwB\nGTX7+HncBgA3HmHBVm4LtvvBVIA2cuzONhwG5cq9LwQrI5uVwK2KKhOwm1G0K+0mk+pqvFzm4s3o\nksdvGIs53Mue6+LF1qW6NDBWr1w15eSAVpZvWAp8iZ2q0IEHuVNePnlWR7vlXnt44wbdZq25Xh/a\n39usj6MpSUVKhj1eprCWlhhLgYe4UqiQwMsJuYvCVjyL1ecYTzYW8aS6cm7NF55FchzUt2njqCWY\n5q7TMc0L8MjVMmzRQuDn3pQHu2aUsX76y+JJTX3uQ/1OQ2hP9QFpTmI7aJg7odnmUoOawguVLQXX\ny8fibmMh8ArKfgbmzGLEVzCwrIhPariYqhJmf6wPPSKnY8IcCdV/Ylo32u1SE9U+IPVNGlWQ2S9x\nfrZM0GQhcB0FD/2PRFoZHCvis5ouZoaTM+U1YxTIhpQ5mi1vZrra5RKHOIqQ+CYPZVWxQKB8HfO/\nzAW+xmDlbsKkVaioJQjDipgUp7eoKpo8AGpTiP205O9aMNDCJLBTVwttpCXxTZYD9bVrSyzrNZsL\nPJNVYFk1nx3isz90K2Jyfa31ms4mHy/e2mbkbPDysV4B+1ZfD0lhiW/SVDEzVh43LZKNmwtc7TUl\nj5sZ2krsY2QrYmoT1tZUfy0WBlJMx5QyAGJthwzfaBujmPnEv8lDLW4GNGziqpn9YSbwTYUrOU9m\nb4h8impFzGitWc3zduZopiq12/TfVZnRfE/1dWwLhHGg+DdZTMVBTZSPmZsFf5gJvARI0iSh8492\nlMiniFbErI6sQDXT3X5+24j6ZcO3fn67+T/5km0tPZwT/yaxyhfUuQJmdUfMBG5RRuEDdwwQsYOi\nWRENPZlPhT67UZ15n8JoOlMsz/BSpqukcVT0m1xWZLXOitItC14XCJzu8a7Cxz0qqwraS4aIJWlN\nGwyNHgh/jMaDhjBE5Ic2G/rKcqkcp5VbHBqBdz0KvkGBwEdB8ezJVWJk+puOA/ERygbPcNvktlj8\nFu4pPh6fCCNlNJ9VvKX0RrLZDgWOiQUCz2AVcOWwZDXIc0+fDYMktvgzWi/rLrFSHy3lkTYMe5HS\njO8ouh8K88TM7bpA4BaVFD9wWrCsSpNrmE6SD8AnDfAzKOWTMQgaSv7KDT2YZaQH4Lr4q1IoIqbg\nPpEvsEEhTz8LpjMyPDZ36xohnJ3MEUxdQjfpxLrMewijtKx2LKl/x0MXdaqODiiS/yzMF/iq/BGQ\nNI89yJerfnSLRTMVrneLJDIGnot0543usSGtvp6wpOpsRtmZqImVcNX0Ml/gjUBW9AGPYTrSGPyL\nfuVRL8zfQrx2Sm9lzU7PENQBWlJ1T6JUEdlRSi71m3Ea8j3H8wUep1Oj6vgt3XCyHf+JCEI3lN+r\nwWIvm8xla6CXb3hQyp+kQPxeoBMYIUm6Lt9hP1/g1uoU0+vuTuQz8l9FH5zUd6ndoC/WaCatL3TD\nsWXfDI0gcG1uEaJWkZeK+Vm68wUu1UmVI1/UkKTRTW/sehhrB8MEaIgR3/WsIUzAm6L/7lMJe1Z5\nicHz4pZBx1KmVyaBM7QT1Tl0Jx9835fsLoxgaQ8h1uhL30Dd9kZpPXb7B1zq4T7ThrioVvZtgtY0\nVzQJ/BcI2PBpc5aZgr3PBJLkyseLBCMmrTsZXIQgL+ZGpiveRf/YEzstKzGr8/2+TALvB4XrB+XT\n3gc3NvZzICpgcSHCfQ/KdrvdI0lGTNxc0RSCtswCjGy0Mvkx32ZoEngl3BTamDJnmcl4O+zXNiez\nTd2vrkO4La3RVidcoRiKldQ7LYQvAF8hbuTn4TIJPI2lWBBDnA4+WH6ul3wqkPrMP2/NSLpPTGBa\nk2YEy2qjxVifWSnTEI9Fev54ziTwoKKqHfxPdhzG1g+jQ8g9xTJ7w0BRV7+sgdCbfOqSVNNdKO+P\n7ZHKVCc+DgEBplBwk8AdFEkqwM//3NHqGuSQVt/thIxDGUZCJ5HBbnon+EDOCua9sBDU5d0tVHL4\nI1OhQ94Lk8Bv1Ffv4H/phiFv25uRSFkvxWy2qWAKjxdN2TnyWj/nUwPNQG6oVlqNWqv51DMFkpgE\nrtxGxaMPcEFNlDgH8CdVVnytixMwSTyO08kO+92vaYN0C9hLOTZLijYm1y+TwFHdVTz6v+7/Q9tw\nj6aj/CyIe9wq8VqZ78W4UUgssRjEXAnziYtSbRD7ku6mXIkmgYva5mdRkAQGaenqinc1GuHKR71L\n3rB990ZJH4zaaMIM4ctOZc0+IHcSIGJQYN4Lk8CecjyNsHkW0Bhhq6elguhMzk/5F7dJX3apuD9Z\ntU1rMpvppH8ocRHqXsDcSM+8FyaB5ZbSw2QRSBuZst/U0wp2PO0fZJVS/HIxf/LKTJY8Lh0oNZH7\nTu0LmEvQ5b3IE9ggfzCDRUap8pLTz/EUUyr+GVTMwsvjXLEgeuneLvpVEc+1Z6geqcZiuzmTmbwX\neQJnYeYjks1WSTPfNrYfxeNdDS9idsWeKRJ+VXhbbL7XtBcdC25VeQhtZBrkzcrsJTBXv6j4msMV\nn1oUo8k47mZEQP7A7nRABF3L+1yYKfJpVvly1HKooWItsNq3aI47y4rmqEsqH4hVKk6aaxGmp+4Z\n/wh6BQty6c6K5AdeA1spH06aKZB3TzENsiTi7xVggF4sMW9XLXq5JESuhxd5OW4+VSSccj5sjkuu\n7C8Y25gaUYtOASocxmvzXpgEdkeartPkgU8L4Q8Xya+fbMu1yIA/jOOrgEja16+Rm/6VhAZac0Gh\nHCJijHLPe2ESuIjSkWe2LBDOfndCH6/Ej/5GqP/FC/6hiqx8H9QKOLU99hMNfFeIof55L0wCh/VR\nvQ+ZFSIFAuYTw6LppaUy56/QokWLK5TEaK5AYOh7til+VaC3qdycSeByHdXvxI8CxV0MLV3pGJls\n+V6jUaBawksMHbR8t+K/XWjO9pDpUD7vhUng2k3t0Iu3XXlHJh9SqG/Pz+0SPj4lCMtHS/Jfab7F\n4XZe6P70FGlSO++FSeAWNe3Qi3vefD+r49oOPO/S4EEFr1MnvSoo5bx6zqO+jXnuB6BYkA2DGqb4\nQpPA/4u2RzeWgO1y/pPwUpTzlpp4VtP1R+ODwbWmEiVPclgHY6zeyawcpUj+bUnyl39NAr/vZY9u\nZFcPsfF466CXGaQvRNob2pfrv3u1DZQK0h3EWGVv+cwONo6XeJriVE0CzwHk2jQ0+U1jnfx8OWBm\ncUcluz2bFx36FdteIfeZ1Bp+FgtLj5GWRRXgRX4uE5PAa4B6MkAkhmksfeouubdQyOzTr2Bxain0\nV+YY3N8+tc0XfgfpLip0IAkKAlVMAv+gWmSDJc/DK5qvpKVVKSo7Tw4/E2BywR+TQKlIrE3mHjwn\nNaq6UZhxBEwFo00CXwbBIuHKssdiHWskQ7X+TgFLwCJDRX/zXGFUGczuM73Mjg1WaLgoybr8pHYm\ngVMY4nqYhgkRpWVc/l31BSE7h1jkeiR4Vep2sG0tHrvZbVnkJAB4R0qpXMx0D/ocZDhtyjurMxjT\n4D0/Pji4L2ljOw4YFpYk7gr3MCDWNHt8GloeeVKBVaXuJ7eaVg2n1HT7SYkjcdxF92a5o4gHvnKC\nkeSd1XeCTa/yBX6dOH3ENeMMM1h6M0E25I/4uumQI0GwqtRdCSxlk9/jUalAxIQouPXwVuTNA7q5\nyMm4Iu+svvG66VW+wD2Ky+jNQVmVntq45/rPbAaMxwRGlbpHJQN5FoCvBZZEyyaBXQ+vvUvOTP57\n2U4yMs5q8Z6mV/kCz2TIK8dkD5NVdeZf/7o5D8j7AbEYni3oVerS6rjzhjf97F4HyeCBXQ/vaXi5\nZC45uqxMRzsZZzWJyXchyhd4K5Cv4KyTuQK39uVNrbU7jiMccpU6QxdWILfNZrYLypwbvx7eQc0A\nbiQrd94p46yeLDCg5Qt8iXyetPcClyVvfa+N+yVuDV45IeQqdVOFzf0fIt1FCerhjYEFGrmJA+Wc\n1XWQ7w6VL3Cmi7WhHJVdXsWKeV6W3k6Ee/61bvvhFR5HrVK3kXlH+MM+DEJMJ0E9vIzK2mCZKxqy\nzuoYl/xlrYJkpFVEXKQUZwuUc1PE0+Kka12x+OC6CrkWvAtxirSLSPOq+S8LBO4ZYo+umKgDiqTp\nvBNcQnSo/KhEsBK1mv/UVwO+yhJqEVyQz6dA4AVgF9eDXB4VdSmjQN3T1BreEgl0znvXpOpf/5LM\n2GIP63srWaNInH+hYMxQIPAxEKhEoQbd9V+yCgSwdmcls6RsZ3tQP+x02Mbd8Gyqvjd0HrvMiggX\nCJykVTu4oYC9MIUbyVCvIf2xaERJHjOAdjWhc7puxn8/BUXroooxWVuwuG9WdSVGjXICvLyILJvO\npVctRnml8AdtJ4SLyNBRe1B6KwzSKobk5IkyNPFRK/WYNebJ+80E7lfEXveUD5gcw/8Fk5WeEv8U\njUEyBSVVLEp1oDWWyY19tttN2uBn5s9gJvBqsJP7wTltbodWUK2cnFbDF9FJ5S/fGhTDd4+xptO7\nFJbTaxaDC+Z5R80EvmKn/mTXCsyLY2jnSivq3kg/BjkN3XaGngvP88gSpvtGdl0fyhGSaCwHM5uv\neXHKIDUz7a0y4rsAACAASURBVBSwIt9I+iSsjKxVC3NWQYL0RiYS6EVo99QWrGxcdVczOVU+3c2X\nGc0F7hCudldyeBxQL/9RdVTbk1Krf7g3wFiaynrDnVIA0VaLcJyP5Ph0EBNuHoZkLvBSoB43i8AA\nrVk5zqkoOYkQeFY6BMtscy+kDBX3qdu+r5l7VWbWDFQmik6Ma2Be3tFc4EuwQu3OcNxpjbmNMquh\nB1HuZmu6aI5Jb2TOMU1XCofNqu9jGXt8WqN+6NlyMI+sNxeYC+2icl+MQ/q4YIvYhntB5SmYLD/F\njx+nEvE2BawLH37Aorp+UaNzqPlfFgL3LKpqwswc1lmXEjio6Sm70T/c8L3nDS3cZD+Gf9TY1P1K\njqqscgq07ACLygEWAm+A39TtDPc8KNb6NzVddtKwF+VCCWr3PAwtJzN651FoadtJwB6xgrhK8Kvl\nwM5C4Ees2smUJtrewbJbuMhco+2lIfKW4bn+sDC05J3Gt/ciLfZGxlTWwoPUQmCutsrL1Lfd37Z9\n81FYBGF1yVzWA2FaxgSbJygWc/gz8932eEtOq9jUrm3xp6XA01mFIoME6OHGt2j6m765jLHADd86\nhEn6M1/3lbE88KNQFpYPQamsEXzcZy3LG1sKfEbdJa7fGX5r0+fmgWKYZNfzJlbppnd94l/Wg7BS\nAl5Y6eVKqZip8gs4a/G3pcBcRFv1usJxDQMFzkkv60BqdD6UU+FrDXF6rqwmboJ29P0wi7BVAtpE\nWv5tJfBwdxXjwPcKppNNreVL6FD4u15WDcaOevTgGQvGi9372nko4fjFywt3q/KuVgIfUasAqpHs\nSqUFp4i3A8sSVTNKLheMXTPSnMfB6OFv5uxkxGL3rrsiljCQzybrOG8rgbOLqWfMWgebhD/8UduO\n5HE4kpFZfWo/QxKzfcW3mqjrXgLzC2F/cOkcZHXarATmBngq4NzIS0ZUdTEJFwFBetQfNURVDs0Z\nqMGv5PCiYlFxF8oXoSrlI032tD4B1gIf4klspAyfgngwfw8GO0HNi+ho2UOIF9ElcNswdNb8ILHJ\nl7CetENYbAbrJL3WAmcHqzQtTwl5XXyD1NpeZ8W3sGEESyGv62H2Pcw9PgLJ8lrZ1SPou1/z0D7E\n+q5oLTA3wlWpNGGWLAQpX8Z/w8LxctIdwZaGl/cw4wL3aRCuiUPwMWF3cHjmMsL6LRuBf1VnUTg1\nqKHkNqc86uH87JNLl6QyfkguiRVkccUvBmXA/6avLPsrGsttV4tsBObK1Fe+Ixw3HyVt0xamJ0aT\noxhKSeIPMhjZ0Z9VCECKUbmgUST4ypL6ZWzeshV4BnND+Z6khkhfwFxOaQn0pA6nZEfk5tNfg2zu\nyG7Jm0SYh74uigcr3eBJlWQr8C1WhRCWT+EwymaGt5GLj2ZWCabm/vQ0uCrqesUIZEeQf9x7SW8k\njyka29+QrcBc40jF52yZkYjrkqlxHogmgtmwnbw/1myTHhfnsgrQSyGM0ohVIaGAIZInMyaPwBtA\nalYnm9UIle1yuR8ViLQ4dI3uqmt7DyQH0x90LdGdcx/7KJxV/wCfky6PwGn+NBwMxTDEVEK+SVz0\nqYBiXW7hTTWR+z/eKJF4l/0r4DwWpjNKVSrIpYs/T9YgHoG5ES4KL/vvgq/QNz6obyjttraVdhLi\nefCt5DZPSgZgOZL/5x9P3B8EHrjwmQH4BP4T9QlESv1IHE/DdUxPqes9ObwKoReHEJlVIqQmw6kC\n+beEmcUolOv8JbPhPM+7fAJz9Uoq6j57CjPkeoakk9VYFvNUS/MzM1Z8A0M3ofxbgiQFKFhCKbtE\nPb63eQX+RmIdQCZdfDHDRPpJzEUu6+T5Q/LSSy/uczCWwB92toJ+yXv4V195Bc4IUTLY/64O16aT\nFa8RnQM19lOgkMoDvyZiHxNljX/up9xTuGUI71OKV2BuMkuzvK4V4zXYtQNf1HIXiQD5lmIlaTOW\nwDbhD3dp40lKxk5ncFfIULnKTuZ9n1/ge/phCvWD49KLtcPf6WFJf8HAkrQSMZRHWLlkxpQQTFZ6\n3K0mUSTzUy9ZLmMiDHO5z/s+v8BcLy/FktGvI7Kj3AwOFZrofmizyE2Jg4I+lhf8yhI+FEZrlCmd\n+MxLwBAqIPDvApUWKRBXhsgSetq33GPeD/71IrgjoNFWoCzd3ajgG4RN3nOltiRiwVxGYH1EQGCu\nQXGFguL+hAVkOx5xj+P1pemrV6AccC5/63mjex9X9CZ0rjUy0FUJK1JGqFDCfiGB9yhVhWWIG6lf\n6y7dGzwurWdZBUvXjNTwjImSarvJ8Ay6yipRa32t4MRWSGBDxSqKrCkl+/Qk3nc109Z25NosQJYj\ntDhPAmzramQ0ZWX5JbYNoO+3aqhcUUgtIYG5NcoYO76SMyJaCL2tv8d+qrm1bJgH+63eye7CfC6r\nyaOy459t2QNrhT4SFDgzsg71fhhpFC3HCjoFrKZvhmpRigbQZ0RVt/pJDZFtqK9Rnvq98fUowYmi\noMDGeT6+B7gkt9ipsvYfaWWW/lrpgm3rrNZYx5H441uyFmRGX9jwo0gdN2GBU4Pk1HUSYCYjL1OT\noa9FpF56qUp4N4SsTVWlNzInu1Jp89jPmTBccFNU0oJo2yubBQl7nwoLzH0C1JdouHJ1ZTaQ3dV8\nmrUMO8d1msgX5mWXeYLHhdCXwu11IntDfiNmnBAbh4h83xcBzan2w8hpixxdRGR1gPxBTmpx/HEC\nrsDc62H5l8dnzNs01lFvayVWIjFpFiASbCP2fedSv4RHufBbo3DIaMOasuEtQvPNtABb4EOwOO/V\nUuYtOkbvdoE0Q/5/FrU6in3fpGJNKfaDy3H7e5NCK6ktNbkFL1KKITlXW4ItMNcg7wn3BfMmJV2+\nEwucxaZpkFi0nOj3nQuYCQElOEmnFElqo9xi7Z+QjPPxBT6a+4j7StOEVvxYdqToUjMeR8WXDUS/\nb0qI3DGRJeN08u/QOaQ01Bgn9inBPG7AUhjwBeYaB6dw3AYtn6GUkGkUh1l1QkX7Jf59l8I+0c8x\nKUlr1PaiEbvROKTFz3eWtgy+QapIac4RWMitYRtQzF4i1xxgxj6Jcau4wOlR1Si6312QP4Y2kVJf\n80UYr5OZEtQLW6NpTO/6NdI0mpI1K7tatLgpT+KOtUFe8jdL5jD0Mty/aMJQNwgJsh/YhnRXCNYR\n3H14WS+VclxC4OwqUfRG9HUwrUiivHBjVlJsTpQvwJ2yg8sLLzpVItKiqkrcYqXGHPtI1+dteaqd\nSKspLse1txqDWfSVlEVsNarzmhx6FsEeCvCxQDJNouSgspk/rZQOm+E4pZZyqF4mNZ7ej0+MT5h2\nyaVrUG70OyrBkM/8JdcLJAU+q6HlMdHPh8TRVICDsJxLb690jE0O06BTJreMtmNfRgBPnl1seD1O\nLJGeFvZxoeQjHUXTOe7NIOMtLrM7aeZgdN6Dvlk5K0A0bHDm9PeSPyy/qhcpfp2HtMAPvNrL7kkO\nN/JtuhS4zLxMmps9BIYqGq2e9Q4MezmKmc7Iq3FuwwExt3pE2nlJO/AhGHZm0bk9rQFKpYlyGOia\n55ecAD0U8XrPJb0DjMt99dB1EN2mM/1l5688iJLFFkHg1OiKNM5hnwB619oTj/x704fQlsp4lI/k\npky+6/s7HpSd+3r6yXQ2yqwQjfDNUUyzO4DGfKQsxTJvH8O5/NcLmcbU6uFZ8qSWpiCq8SztTGbf\ngsy0fAsApTgjku29mZ98Z+1Eht6INzvK3M17nbYWnTUMK+5W0JtH+b8RRTdoOok3IB+dB75Iln0k\ngS/qesrqSw57aRnnuBw3GovQ630eFRWo8nkl3Pew+d+bsd2DJGhqm7UMhx56pKQ9aKtnoxnZ9bum\naOjdSFuFWD6+fvYL+4Na46Y2/YNOW7yREUx5prRQVqnI48wYpO3QBH4RUUnuOCu+nMwGCrjJTrJ6\n589gP8oV5La5l7QuLz2RJ82YHC7L8YDPjIlAW75EXP/eJjvaMIyG5SaXiRqbUlPXS3jspNa+kSWa\nWJv40Fs2vyuZhMnImzUXdRqN6uAQ7yHv5/uUXoW3rJAWtm8m1tFQW2zmssdAGx47U/MQirZWI32K\nEA/bbiGXnkYV+LaHvCfQMXqhTrt5f7zJrWACpYl2WlcYzCflt8j5+dBYB8T5HFp5otbLQ3ZRmg/f\nEHbmJctBRlExS94qxjseyBgA3anEKSXWZfjvNhnF6GbDv01sX9iIvo6GLHBmbJCc2eZId6TLa098\niFTKukS90PLWdKY5US0eSy6XdNko8NH7eomk3umj10/GcJCIJEzYkRgUizzmRXcyPKuTkw43vhLK\nVkmHudM+EtssFrZpb9THyC5S/4NfsKC7/59S6yULNnIbMWqnvV0cfVtzeunOSW+UB4YXaQJ8R9CZ\nPCqirhVeGCKxQU0Rx58j/sEykwV+pit3Q/jTqrHie9f8h7tdGf1gS4Bo5LoXZ5EUQ+C0MpHknkme\niHa5VVEStTquiOZBvBjtLmeokDkCmoo5sHwM4mvjPqlcijf64U4CduUgI88iymIsr+D4gZ8gLzv1\nBDUQP3FQLfENJmtEzZIPX2NnonbKhqfN4V3Rh9tdjXg2fL80LtUP/Xjp+nHoG+czQIMTMobl6D+S\nIU0Vfh55DH5P4goo00j887Ru0J3QEfRCOa1Ufv5GZUU/rnGXuyvxA7WgGkEI9g/MBzibYwmcUi6C\nsC7CQbSlBkMGd178YX3GPFyXv41pbF2ixa/9vgGSsU7LxaeuC7ZyW3CmPn2KYWycy9OIcli+Pnih\nOie1hGldv4aLKJvdqTh2pbg4KOFNWz3CBWv5CmL4UFv5huRWiVr+ktZ5JI/fMBbn9rEAsH+KvbR4\nw0jMWKxJhJ5ES4E/kyI2JVEiWk8X95TO125JUkfoiBK80KQUZsOi7Mf2hvoWtzg6psAZVQOJlJoF\ndEIv/0BbgXlYj5mIZbf8qxKLtpqyjKZnGfcPclGePO4HVsW01uFGU15wJcogkqAj2cuWaSzaPS3t\nHWiD4bC/y6cIYqDTA3YaerOSGDwwU2fHu17APAR2uOx8IMkD9h7G7FCMashJORbpyl5B3DRrDFMD\n2QJWpxrqlihUwnNU+ww/lgNbYEMzd9QTZ8bgovj78HBbYBmAjx+K+u1C2vB+Y+iL/gCZy9Cs39Mm\nBmfry+7NsRfM8APe7wVUx/dTHRiEvQsfn6MNxnO5U4udiLCAeyzUYw1GFy4S3cGEGCZleTcnrVoA\n/gCIIKPBLsamSK0klASOL4mzdfpAaPZIYhvDLG1pvGFTSZppzOYChqfaCIbA7Y9AYO5dBu3eZ8aQ\nAILj2JDqgVlp4Au3CPFiYw9bQFdMA/u7nhRrea8D9ATwOxmSOgskAqdWK/ov5i7vexEcx4b92G4h\np6NdhdM4ctzhUDfsG+4empkFvgdkZ8F/A6qT/LJIBOauetbDdLKcoKHhTvOBC3YilKethS/RzLFs\nOXx32xcuGOWjpTgJqL6CmXU9iao9EAnMrcXNuYr1rBGkKkHiM8MMbTm+km8cd+N16EUSwtmAYiaK\nvwF1gDeeMK8umcBcPxYvv9JKsqVtSx6RrQQeCXHjy+axxsdPIn+JADNYqZEbOg9EEgFbsI8lTOpB\nKHBq1aKobn0v2QkUyjJuIcydaZzodrG+gTzrBnFY36CAn0FWSn8LkhD9zW8HVCUc2hEKzF32isNZ\nNvkNKRJOgnc9heywEs5uhrmakr9avLM/TDtJZBgh2l6GB3rVbykyYQbKZum1vQisSy8hFZj7hhmK\nsfV9GuH9lQQzPEo6ux0P031S4GWeOpwpJXozEG+vMYbblQQGEHcRyWMIQ5zlh1hgbhTOUx/bqs7D\nM2E7v7Sz29N20Nw0tztTAfqLj/nE25uqoZc1C0ngdTCa/ADEe2Y1dMNYVq8sv57pPhD0x0NwdjN8\n7hHwcpE4fZI+SMpQI97eQcnkVMhkwnTpjU67NSKPmSEXmHsYHonuCt8tgvxAeUzRCs6CkZzdLlZm\nBiZzF6pCb0m/I/H2kjTUUokmIySCSowMl1E9V4bA3EnXRsj2jjmM7Cj85lUEP0JzdksbpynbX1cM\nwdlDor3K1GodPJQem2Q0dJUzA5EjsPHZgGwd/UH2bc3gLzwTRHV2+0IHlSWiT1Da6+dPK5/MNWlD\nxzB5lYNkCcy9C18ibvlcwqNYmmsi/pRozm5JIzUhzSAWIfOBRHvLZMXmm3MSpIYDq9AvIl7kCZzZ\nQI9qLK/+hqwj5eTIEF8YkuS7CHbAC257kNtHcsN8T1IzdeyGX8U3+EnfUF5uBXkCc49KBCHag0bj\nLxRYMkEnKx/W/c5Q8eWPMbEDxCGlLxEmVUurguhyCRPu7WIlZNpFZQrMXfCuhpYq+5Dc1H1vVpSx\nc+ZSH7cZph/IWj9XmRdxhdaydi9gglb0+kyu6o3rZGeNXIG5vZpWSIkIMvx6yjtQZDfyfU/UhGZm\nOVX+jYdaxMH1OXSLlLO3GV1LiH2a3VIjOy+CbIG5RYC2PtrbR5YnRBJDHFSW2I8JtYrp/qqodpyM\nO/5MhlJOqKo86UYKGEXBwCtfYONQGin9yUGp6gLinATcYIU8spb46sbY2BYf94YK5NVVt8od8OWR\n6SYWSPapzAH0SygInNlSi5KcJDtcIi5QnK9wHCrNOBwDTXgX/PcWZwYShtJxF2E94Z6W/CHWzh5t\nSwpZfSgIzCXX8PodYbNZjJwBwyQtyS31fCuIEnKKSflAG0R4U0nTTCbb0YoVIgHlv3vVpFHphYbA\n3N3wIASHjUSPPjKO0S0af5+Hw3TeH4sYLM7UhCZk66xRdNK69SwqaBK7FRRBJQEnFYG5837lEbIp\nD9PdID9Ebew6dmlzvDWDxc30hs989ONJrpNGcQQ72RIumOvucXk/uROkXOgIzB1xqSvtv3bHrSf5\nEYKkyxNYkPFFcYjn97Yz50EPJoIgUcY7wfj72HJRMFYypY4LpeS8lATmtmjaSo8IxrLEg880vKg+\nw+bSUBNtlHzUOArDDgmdytJIM/+hUJxTVhsNLWMoLYGNY/pBkkss/wXVIs3OeA1WSW9kwrC7ClRE\nTk6audhHPwxzMfMLKssN1QWWJA2DcOOGhaEmMDceRLMbvORrkMpjJ8RxjOXG72pA1HocE/3jgZqA\nRVhTkn00inxdEkplmIDrdi4CPYG5AQjqtXYnm81yWwAxBiF7a3WIWoO7AnOhCZTFsZWfo7GeNFLP\nH80+DwbIb9wERYGzuzJrpba5FxxDNrlbipauJHNteSi1miQn6a4y0AB9hHCfQqXcZH/+VJVrmG4U\na0FRFJjLaCE9NPie7UTU+ykMwi00bVk0lFpD+JjPXBIEna2zvAtuzMh3y1oMx/je3qxpSSVpbh40\nBeZe1NVLrn58CCTZ3bhhvpKbPJ4WArW/lmHdez7J02UIYtykz3Dy4+SSHvEa39t79HUplhqnLDD3\nXw23w1LbDCYqQNQjSmKDCwP00IL3ksDg/nt6z3FIz4LIHjIPxS2B/TzvHnKrQbdUMV2BucSKXlIn\nOasTQ1D/oY2oX3vG9uaM+ztE4ZVW3Oqt8ZyIYJWr3FbmgZ4U5Vt7OeZVEcUpEAPKAnP3S/lIOXlm\ndIRx2M/hRiLpde5NC4Pic2gVx7rShfGeICnx69iWUysGaXlcDk76lKaUMC4f2gJzd6N9pZaWsgbD\nW7gL5nFCGe6y9sZrmabbaZbLONuJ8Xr/nvg2TXgfoOj8yPKsBJ/yjaZe4Yu6wNytEv6Si4cfa3FD\n66vxe0GdHxkMQaNRx77InO+p8RwhukDWWl66rKeRJW2ni7/7l6RbmSkH+gJz1yN8JYOWDgW7fIx1\n0VXoYPveP59UA238FsLkweJc6eui6yGyVvGWHBdAztBOb/sgO+MbQcvd2gwFBOZuRgZImgwetoGa\nEi7BFpTtbN3AoroapvantB9ZBdwb68M03SU0qe4sq5DbBB6j3yn/SPrXrzICc9ejfH+R3GhjMNsV\n/d5apqv5X1c/qa2FClOv4XcNh/8+CoESi/mXQbvIqSy5nOlp894vPlE3ZDQpiCICc/9E+0gr/DzB\nQ9P9tORmuZTtYnqVsn9kKWAqT5Ve65VP+lc1wWckn5t8Z/HU76Ks57FV/eJdgmaKxAKUEZi7VcoL\nofzxvQ88ofZqpEw3FV76PmT9MqOBC3g0X6LwtWvGic6u0HSLjSAdKhC3uELTwGaAdcSrlBL3Z04x\ngbl7MW4oPtuPPi4L3l2+lvZurNIm8bvxjXyAiRm+k4YvGgaJs6IgdJSVA00b4VhWcbInMC1tbJF7\n3WIkpmXEKCUw97iyHimvhOFYn0DQ1h69U3gGmPXXpil+rgD6KkM3yC9FTkDW3rY6qL/M3PrRtDZZ\nU09aQ3+b28EmfWVFapjnoJjAXGJNzRdoWxqOT6ijAwhu9M6ctUcu/Jt3Ob+4f+3n3Wsm9WocyQKw\n7kU/PqbylWvBg7kVQN9pa35wRh2CnGxGDoTrbRNjrdTEUrZPmqGcwNzzBoxYDStL0k/M7/taMbBB\nE1inw9h1Z1KJb4n0ODsiCLzf3p6rcRW8TN65POnHlLadQH7MNKBQclEIBQXmUtvg1GDLIeXKkS3L\nZk8fY2T67M837Dl1zXTJSK4mqUH2D30DwKfjOuO9Ogp/NSltqb9mjG181nhoQzF9rQ1KCsxl9oDB\nxDWQLRkhvR6sCtk/DAwBtu4MT9yc2UnzwqCF7dQuezD0lBfhLYGiAnOG96ALHUviDEYRiyQJWScn\nVAPwevuLa+g/3lPv+0HDw7bvp3eB9yn65/CgrMA5D5hGpBFeFiwHZewAhJyBuECAgDazD0rXdjGc\nmxgDuh58lp8njVj0YQoZSgvMbdBXws0ezsdOqWQW6vIr7DJcWtOzJANsua5zt/4tdC2n/La4WyAw\ncct53TTuxuhlhdSioLjA3H7PKPRyxoKcJqrEqhhbINfGmvj99LeiGABdqTe6T1i66eCf1xKfGPn3\n2tnDmxcOfzNGA1C80zqByfu5KE8+rx26KC8wdybMV36cTSJqfVp1+ATMLBPPfl89uVvtUJ31FM8j\npu20rcL2myO+YfglFrFRQWDudnmX1bIb8aGXw5cCQ/nK4Tw88+O3Xy1bNm/BsmVrvz16UcI4tdql\nPGHCaizUEJh73pQZL3esWF00m4XaNK8hswHDeKapguaNAlQRmMvoC11JyiOYQS2xDRXkpPzJIaUL\n9KXp3i6MOgJz3EeaWHnrJdNZqv7g8khikRK1C3IvVkPiHE6CWgJzWz0JqjabsR2kXQhU44S8CgWn\nwz1VmxOoJjB3Osxjs4zdb9ILmZXPp3BTxt6bPdQYPuehnsDcvdeZBBmW6YC+9Loil74yKvVlJzCv\nK7W6z4OKAnNpvaEVRtVmK1pWkt8DieosyMSQFyh41gr60Ej/gIqaAnPcAm35y6T7zmDlG7Ulq7Og\n8ZSsQlcOl8ppsWs8y0JdgblDgX7bCXc9DATFVa2Qrs6CxC44TLjndr/AQ/KPj4PKAnO3ajEJZHFE\nqa5ieR3RQKjOgsIHrmRL9FkJTC01rFfmqC0wl9YPWpB5mDWQ/xBGqs4iTSUyh6zHLaCfmo/fl6gu\nMMet8YgkWvqbw8hed0SrziLFXWYuyW6/RHhI5jChjx0E5i6U1n9EYJr+Q6QqByKo1VnEWQbYidNy\n6ifqy9BJToiHPQTm/usMbxLcpqNlV09Dq84iRQuCvKiP34TOdHMzIGIXgTnDEn04fiaxkS5UvH/k\n8lSPP9o7Fq5foqzvlRD2EZjjfi+tnYFr1voVuUqTonyJ7T2UPV1bGiWjthLYS2DueQ9ogpmvwFBS\nVs54WjQqiXkt3mkCPVRZ++XDbgIbrwSvIphVcaewCoXg4XCLxcyBtqmIl3yHFmLsKDB3vTb0xYo3\nuslOVqgrGEzG+5Ul94W4Gwp1BQV7CsylT9KWOIyzQ4viikYBoJAZijWWP1xCO8muLvt2FZjjTkSz\nCRiuK7vhG+X6gsZGQCkxk0fGODbazn4KdhaYSxrAVEZ3m84uHatgX5CILY0++D9XmRlAqYIWMfYW\nmOP2BeunId/EPgOEzBBKchg+R900fZo+eJ+SfUHC/gJzT/8HMaizxLTgBor2RZI3QlCXC36vCN0L\ngWGmEAjMcTuK6ychnrd5/EmW1eIYak2CtIn64rIc82hRKATmnveCsmg1UlLC6ircF1HqhKG5dx8t\nC73sZtuwoHAIzHHfRTEDkG5oy4HUJYQC22AFymZPBzBR9n/65lJYBOZejNIGo7jVZlYoKTNGgpyU\nEhVQ5uGbg7WjCo2XfqERmONO14CGCC55B0B+uQRCpsIB6Y0uN4QaqPn7VKAQCcxlzfdzGS/90+/s\nQlZQUjaXXawzotryIsHFbwHN5NVyKUwCc9yjHkyEZPmiB0XqUMrsgkf260Uk07Bti2B6PFKjM8gU\nLoE57mBlaCpVO2s1cf00WcwHqUWhC02hykFV+oJOYROYy1xcRDdEYjzdxoVCUghczrpI5D57OlhX\nZLHdF0OsKXQCc9zDoaz/ItEViIfB5VRPa5hcLli0FnHGQn92qHi1YrtQCAU23uoaQ2nR2e5hbVex\nj5Wgq1bUCr69NDS2h9OkJIVSYI7bUx5e/0nk8zlA5JpMzlzRA/70OpTHWEVUk0IqMJf5WSjE86Va\nz8XQhVXV0rud7SLsiHUpHkI/K0xTI3MKq8AclzTTV9tbMM46OdZDqgAXRX7ziBV86N/srfWdae9V\nX2EKr8AclzjC1aWfUAbDB9H+hKWI8bngHy00A/6nn4vrCOWyPcunMAvMcXeHurgNFfBx+zs4hEax\nQgT+CgkWqBFxa6iby1DqxcqoUrgFNp7CfjqXQfyn98/AUFUU/is0kL/Cy7VBLrp+hcCRV5TCLrDx\nGTfQRd+b9258rmgxFaz6p4sV5TWrXOitdx0oJxeLOhR+gTnuzggPTfvfeD64HOaruGXwoG8Y3xLX\nb+01OWl8kgAABA1JREFUHu/dUfrgFHgVBOa4x5P8oM5e2yWG25X0q5Q98hf6SrYx+dl7Xwe/SYoV\nSqHKqyGwcdL0SQSUWmiTOeG/FjBUQb/y9KHQ0iboM3VhKYiYV3gnRpa8KgJzXNammhAw1vqhlzUM\n6ik2jL1bD4ZZGzBujg2AmpsKq1nDlldHYCO/9nDVtN1ndXI3uvvLyaAnwmZ/d6tAiqx9bTWuPQtV\n7nkpXimBOe7RzEgInWRZZvdiZegjWZIdnyd9oLLl4P36pFCInFm41vMlecUENl5EO5qxbCuLapFp\nk3XFt9A+zpZQ3RRzX+2Mza1YttmOV+fenMcrJ7CR25ODIWCouSn6ZHVoQdVwebEFVDc/wG9DAyB4\nsto5rmjwKgrMcYbv33aBstMKVpsyP/HTDKa23P5wsMZvXoFvxqVpZcHl7e/tk2NDLq+mwEaerWrM\nQuzMfCPEg8E6rwlUrP6J4710g/MXFy7PjAW28SryJKp25pUV2Mi9+bVZKJ9gyr18tQvrNVL2XfT2\nSC+2y9W8P84klAe29nwVs/9S51UW2Mg/i95gofjQXbkWkPPdtdrOx2XcSg3HO2u13XOXFlJ3Di0O\n7BuLClXFNXxecYGNPFzR3hvcmsw9lWPJvD3KH8rMIbR83J1TBvxH5dwDsk/NbeIK3u1XFEIvOkxe\nfYGNpB8YXo6BgHZLfs/kUlfXYZgGC+/jtnF/YQOGqbM6lcv8fUm7AGDKDT9QaMphysEhBM7h3pqe\n0QDuTabvvn99cgVga039FTn+IfvXqbVYqDD5+v3d05u4A0T3XPMqP3YtcBiBc7ixYXh1xqhP/PT5\nY6ox4NZisnRx0GcHJ7dwA6bamPnT442/EKb68A03VOiqajiUwDmk/TyvUzkNgK5sveqhLDCR7RLW\nn+S9Yd8/+VVCu0gG2NDq9crqADTlOs37WfV8zkrjcAK/5PmptaPiI13AeEW6uxivaXALiWnWoeeQ\nMRNnz544ZkjPDs1iQtxyPnVxz/nUJTJ+1NpThSMinzaOKXAuGTcPr0ro1zoukLGuC5oLExjXul/C\nqsM31SkyZx8cWeACsp5cu3zq5L4NX69etWrF2m/3nzx1+dqTV27dgIj/HwL/P8YpsIPjFNjBcQrs\n4DgFdnCcAjs4ToEdHKfADo5TYAfHKbCD4xTYwXEK7OA4BXZwnAI7OE6BHRynwA6OU2AHxymwg+MU\n2MFxCuzgOAV2cJwCOzhOgR0cp8AOjlNgB8cpsIPjFNjBcQrs4DgFdnCcAjs4ToEdHKfADo5TYAfH\nKbCD4xTYwXEK7OA4BXZwnAI7OE6BHRynwA6OU2AHxymwg+MU2MFxCuzgOAV2cJwCOzhOgR0cp8AO\njlNgB8cpsIPjFNjBcQrs4DgFdnD+D5rpSkrr6sJjAAAAAElFTkSuQmCC\n",
"text/plain": "<IPython.core.display.Image object>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "Image(draw_venn(rho_outliers, \"Rho outliers\"))",
"execution_count": 1176,
"outputs": [
{
"execution_count": 1176,
"output_type": "execute_result",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAADAFBMVEUAAAABAQECAgIDAwMEBAQF\nBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcY\nGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKior\nKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+\nPj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBR\nUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2Nk\nZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3\nd3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmK\nioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJyd\nnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+w\nsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLD\nw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW\n1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp\n6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8\n/Pz9/f3+/v7////isF19AAAgAElEQVR4nO2dd2AUxdvHn90r6Y2EkEIqvYROIEqR3iQU6f6o0kFA\nkd6rgIUuAoIUQQURpIkoTVBUkKJ0pQqGDhLSk9v3LsklV7bMzM7uhXvv8wckd7Ozk/ve7s488xTg\nXDg14OgBuFAWl8BOjktgJ8clsJPjEtjJcQns5LgEdnJcAjs5LoGdHJfATo5LYCfHJbCT4xLYyXEJ\n7OS4BHZyXAI7OS6BnRyXwE6OS2AnxyWwk+MS2MlxCezkuAR2clwCOzkugZ0cl8BOjktgJ8clsJPj\nEtjJcQns5LgEdnJcAjs5LoGdHJfATo5LYCfHJbCT4xLYyXEJ7OS4BHZyXAI7OS6BnRyXwE6OS2An\nxyWwk+MS2MlxCezkuAR2clwCOzkugZ2cIijwXxOM/6Qugg+e57/w99iFS8ZcNf6wJzFsoQMHlo/w\n+LhHEY4blgBFUOD5QSnGf7MhO//3aw1SOe55rWtc8iHulJ8jR5aH4Pg4w9Ki93EWvRGlrHltpen/\ngpF13Wn6d3tX07/nhzlmUBaIjG9TUtH7OIveiLY8PV7JwFmMrOS/pn9vme5+a2MOOGpYBQiP78TB\nIvhxFrkRGXrNmuX/PWcxMt9Hpn8fBxj/eTikjqPGZUZ4fE9WFMGPs+iN6PhZjvv4Vc5iZC//aPr3\np4amf5N8HTOqQoTHtwtMnHDYyPgpcgK/bbz93WcvW0xi9nUy3RFf38sZMrlzHRw5NhMi4+OK4MdZ\n5Ea0tswVjjvh2ezGQng/Jf+1j8YfP/bWexx3u/L4T+45dHTi4+OK3sdZFEfEw7OX4GtHj0GMojy+\nIi1w7kMtyvjD81ERK247ejT2FPXxmSjSAlvy6DdHj0Ccojq+F0ZgF2S4BHZyXAI7OS6BnRyXwE6O\nS2AnxyWwk+MS2MlxCezkuAR2clwCOzkugZ0cl8BOjktgJ6dICJz8x8HPls4eN27UuHHj31u5cc/p\n+9nSB7lAwsECZ59ZNqxZSO7GObABAQE+eT+CPqr5wHm7bzh2cE6BIwW+srS5UVD/l/vP/vLoXw/y\nL9qsh5ePfvPRxB7xxYw6BzUYsemSA0foBDhM4NvzKgKUefOLq4It7vy4ctBLHgB+bRf9lq7iyJwL\nxwhs+DaRZRotvCndMuePlf1LAXh2+Oii8sNyRhwi8JZqEDrnL/T2j78ebrzcY978PkO5MTkrDhD4\n5wQoty4N96iryxM9wbfrl6lKDMmJUV3g/wayEetyiA5N3z8wCNw7bitKGmfe+mn7Jx+OGzKgc+fO\nXQe+OfHDLw//VaTuM2oLfLCkZuxz6WZC5BwZHgL+Aw4WgXXyvf1LhzQspc1d1bkFRMcaiQ5gTb8x\nZdpP/MbRIRhm1BXYMJOtKDc6K/tAHz+InOjI1dOdr8e2CDIqGZDQfcKq7afuWDxv/rvy3YYpXeM0\nwJQe/A32c0gBVBU4tSv0TJFuJt3PlkQN03CDQz6/S8t7RgGwNXotPfxQuFXKzx++6gM+Hb7JUm9k\n/Kgp8H/1NB/S6itpbnkoPvoWre7QeLy+V0mAiI6Lf0V5ymQcHhYMYRP/UXxYoqgo8NPabl9S7C7n\nUFedpuVesvkaAWfm1NFAsY4fXcY4Jntna9Zt4N+KjQkB9QROa6DfTbnL+7NDoOyiZ5R75cHw81ux\noKk96wT+5O7qKHfdkPsKjAkR1QQ2dNDQvH7zyfqsHvhPvEu/Y0uOj4gA/atrSc+SNFznv1K1G40t\nqgk8E95XpuNjr+ncB11Rpm8j12fGgHvixmQ5fVxqBE0d9ShWS+Ajml6K9X1zpBf72u9K9Jy6vh7D\nNlvzVHZHn/r476AwHgJUEvhpyfIyzBuSPJxRjGn7E+1ezwz2h9hZdC69a/HMRAOVnjBRSeBBGoXj\no5/MCmaaHqPYYfr62uDV8wi1/jL6QXdH2DDVEfgXdrTi50hdEALNj1Pq7Oa4YlBh6X+UestjAdPC\nAVZ0dQROCJM1SUEk9b0QaPsnhY5+66jVdqV+x+c+YVurfw2rIvAO+ESN03Bc8twAto+wjwgShp11\nwH/8HToDsmYV01P157CwwMJZc7O3VMc6h6F6WdVMsg8nebmNlLEuTltRCWIW0TCY8zEfJso4WlAR\nw+SoskKzBWGBhbPmcul41/0Pal3AudwZqPGdR6hQ+tKSUG2LgkaJvswu8oMFFfnme8Pi0gIHCUol\nmtUXT+DEEHUfPZc6QtinBPfC5x+WhITdit5EM+KLEW+QCCtivIifhgocJSiVWFZfPIHvaCbhNKfB\noRqQ8AvmMWmLg6DpQUWGY8E138ak3yBRRQ4IJdIWkko0qy+ewPMZmdMeAgwbSzJ9cHLPpS0Lh8a4\n3wkSVsBqsgNFFckZIbRMEZJKPKsvlsA1EnBa0+L5dE+v2aguAdlro6A+PaOGGIaGgY+IDhRVZKOg\nj6qQVKJZcw04Al9nPsBoTZHrXaHUTqSW38RB/A8Kj6aAc9qRRMeJKbL3PJd9kv8wAalEs+amr4Qv\n0UMNlgGGBzRdDlaC9tKPh1/qQ/mvVFyfDtJfJzhKTJFdPiVKeAs4qeFci2RZczuUwj+GFpnve7rN\nzRRtcu11CFml6m7tbbeBtLpCUARFYFlZc3MC+mMeQZV/ukB5kYfrs8kenjOV3OfiY4j7vzJ7wFAE\n11SJnTX3AqzHPIIy+2KZN57wv5XzSQkWa65Nh7/ZaRR7k1BEcVv0erig9CkkSJ2gDd7M98bx6pBw\nWnb3D/APaR2unjet4gKP8iKOQsi1eWeM3TRNriHsTF1ob3eh3u+nCdkgd261xsurK/5RX8NemedF\nR3GBm9UmP9Zk8170BffFPLmDyF7g7rXUSsyclUG6MbIfvjlTiQ7LKNZT7pmRUVzgaDl/i3F0tf/h\nblWVP4ybLaChhX/yH3XglfPye/1OE0/kL9nfVzXrvNICZ2rIvuR5GEfnl8al0qiGZVjt57k4X4xn\no3UlPqex8jXcXOo7meC43bCfwtmRUFrgG7K2Co2jC0jn0gKoDOVWC3gldx9/TyQzRGBejc+3xQkO\nSnV/m9b5pVBa4OPwrYyjjaOrdYe7Q6lgoeETP/9PuQfdII6W65aR58EkRzWh8NRBQ2mBvwEZDssm\nm/eibdxXi2mN5lZTqO6vn0ntAfjAwB0hsizPYuX7WqOhtMDr4Brxsbk275RJm8fTm5HcLg+6ZdR6\n49586dNVRAmADsB39EYhitICLwGRKFrV+cTfY2IVZohSLlfoPGXmqnQmpQWeB0Uno8a9dtDwBpc+\nQVNevv1KLrHdVDqR0gLPBIfF1dmywc87b510ONLtXYeEkVjwapxKJ6IlcMbtM7s2fjxvxlsDTYwc\nN2fBym2HLyRlTisS2U6NPOwMdc0b04+7Qoskh46GG+1h/oplJl04vG3lgjnjRuZ+dG/NmPfxxl1n\nbtOad8j+/DPPbJn+et0ItiChaEhsWECAB5h/h85jV+276fCsOPvCtDMsLPyrvYLUMwfzsRxu3dy3\namznhJj8Tw48AgLCYkMCAsyfZETd16dvOSO+mY2ALIEvrhtQQwugjW06YNqqHb9eeWwxnGfXTn+/\nfcW0GlDR3Thc7xrd5+9WOaOGBanDmfK/Wr1yKY4Z6bAEmLd2z28ApmvAvdKrfaet2P796WsWaQoy\nH1/5dceqaQOaxpo+2xoD1slK4kgs8M2VHYMAAluM3nBWzLXtPUjO+ffop+8kRhv/nrAmk3Y6IpvB\npWrMINuNhYy3mVrX1R/K/Z2TmoSZPgro8OnRfyXmJ2lnN4xuEQgQ1HElQlpPfsgEPjWjIkB4v9Xn\nJOcqy8CcESz52PKelXUApQZuVNeN1rDcM5gvnmCnX7FvVB3I1Y0DSwHoKvdcfiz5FrIJ13Budb9w\ngIozThGdlEDgm9MrgLbBu2eQGm+wdrlLPbqgQwmAMgM/V215/KQDtOUPVrpaixmj1s77w88HlgEo\n0WHB0bxl43NYgHP4mXcbaKHCdILrGFfgrC+ba9iGHz1Gbb8T7DPbnVuW6A9s7Rmn1VhB/RylF3Tb\nTR8GDVSYTeecnlGLBf/EZRYblAYN7i7U448asprmX+J+I/EEfrogDKKn40yWfoJ9fC9nnZhaTwfB\n/XYqbFQyzNWVFnAYzmWjR6jC/u4pO/sFg67e1BM2yvgQ7Cfdmh4N4QvwrNg4Aj+Y5A/NduFddn/B\nBqG3nm7q7gueHT9XMCPhvdbQQzxM/0JFjULZf0ykfd7RE3y7b+LRJEgomEiUnF1NwX8SjhsYusDP\npvpouqI9eC14DmL+NtkHhgaDd+evFfJv+Dnc42OpNs+6QFdl0g9kfN3ZG4KHHuC3AZQYTNjtmS4a\nn6noyd9QBc5eHQxdcLL4mQkYLv6+4ciIECj2xkEFnscL9WUQvpCGDzSV6KeuzTnwRjEIGXlEcJlB\nLDDHXe4MwZ+gmo4QBf65KjQRe5YJUzVRsknW9/28IXIa+b4iL/+9Bq+h+W0cLuFDeb10bVok+PT7\nXmxCFCTxxRflZGOo9jNaUySBn41gIrcQjqU9klU9ZUtzhm30uWzDXCEXKmjmo+4o3K7NzqJ35ozP\nG7FM8y0S00eSSZYFWyKZkUj3aRSBf4zSjCR+TL3tifgx35lRGkJH0LpZbvcp8SN66/T/QXdKD+KL\nxidO6RnSOVy0MqPik0dqolD+QmmBs6ZoYmRkGPsYkFfnOXu76Zmm2ylsTORMYerhhaR8qImjkPU3\ne3tTRt8NJcVxqujkE4ljMZop0qtiSYHvN4A35CxWD2M5pyTNDIfIZXIvpsdtYAju3f5b/0C5ifKS\nl0VC+Ey0FD//wgqZZzM+196ABpIrJimBfyvp/ZmsUTwEvPjvzC0NwXekrIiwi6X0q/CPulxBv1bO\nWW+P9IWGW1ANTeeARnLlz7xLSgUDSgi81SNSbuq4sD64R/zRVaftRu5V841/CNG1+F8zeId4sXa6\nm1bX7Q/09ofgEOmpLPkz0uMr8RbiAi9mEwiC56xpWQ3/mDtv+0JzwjvmHKYqYYLY7GHQlixc6Vhz\n8B2NlRxvM6WgywcJ7BLRBqICT4HX5LvMTdKRbKw/mxsC9QmcLozz4a7kU4aPtFUIvhx760PIXMzC\nAu8BJcfo1NdANDhITOAxMIDCjHY7kGUnSl0ZDTW3YzrH3X2JmSHHn26PTwSmPcewvSZEr8S+DkbQ\niLfKJXsAjBV5W0TgSTCUhu/hbSANTEhfXwqqYaX+OxflQWqQyedsrA9Wavad1aDUeoJbVCK92BXD\nEBBZUwsLPBeG0fEtjSJ3Ac7cGAN10LPP7fUP/1W6lTj/1tFIblAUcLAOxHxGZH6r1IHkKH4Mw0DY\njV5Q4A3M/yjZ/7tHyDg4e3UkNEW8x6/WVKPg15fyKryN9s3+pSlEIhv9rclxF7utYvf2OrNR6D0h\ngX/QtaDlzbJcRniSkfQPikMiggXTMB5aUknRnvMm9EC46V5MhOAPSB0zr8IawiN5yWquOyDwloDA\n1wLiqNWbOgefyusgeZafdoDUIiS9Owyh9ZX8gG0oNce9M0DrN4vc4rYLEDeDEHlWOUDgKuIX+HnV\nQHqej4bisivqPHrTzUc8ndXTRuy7cs9SyOdu1URTWSXP9HF/kyzlZB5zGbr1ILirgVX5Px9+gfuw\nNFMMdA+VP1v7qxMTuUm4m1txenkWVRt+9A8/J/imYVMk00lefsauMbIO52E/y28x5BX4M/G1My5r\nQPjDQudoPNQVCia/EOn7PYVTWHA2pJjQ1O73uhB/VGb3ZSlOovOZApv4XuYT+JZ/ParuwreASlVZ\nw6ehTF/ewIijgeFnaZzBkr/LevHexe73ZYjSyVvxlJ0tswd7sur5860h+ARu4U3Ze6ZSIzr9JI/W\n+S6xX7x941mOOLJDmIfx+q12L+Ys8dWPlu8a8IMSAf7XvFvwvMoj8FpYTvnUY3W0phQXW0E1Wz+G\ntdp4RcIkkptobJOz/1gNWskKBctntiIpOpYBz36nvcAPgxrQ9nD8EWQaEC3YWpIZYOVL9y60QN8C\nwqoIlN6eec/y9ycDmJL2FzUJrStT6caGnAZB9t90e4GH6mkUD7MiO+h1ep0lj9eFfFH460TohONV\njVURKKuXZZ2jL0J04+k4buUEDKLSjy1/6IbavWb39/6heYv+mfv603RtPxMPbW7k/WgYAv3xjIVY\nsTqGETA0/3Z2ow3EY7v9C3AKqK7pChmlsbs47f7eFsWQA8vQ2U03vWr2Im/vhSZdjZfYO5jHYkbb\nTYH/mVYU2Qu9vBdRS1OwEBRKUv0ooKXtS7Z/7zF4z7YJBTL8+9Lt8GZrqHWWy+wMM3GPxA2nfI9p\nl86drQWtKU7U25Sl15c1C8DWD8b2720Yrkjaoz7+tPMlbC7hMasVsxD7OOyA6JVskxkeJT7HPpEw\nmd5EgWcopIa/YvOKzd97FMQ9fEjZAzJq9vHzqB0AfjwCVkWgPGYAtJNjd7bjEChX7n0x2BjZbP7e\nNsWVCdjNLN6ddpfJ9TU+bgswV3R4FYFM5Cxw82HrU90aGK9XrppySlAb6xesBb7IzlDoxEM8KW+f\nPK2n/SqpI7xynW63tlxrCB2TtuoTaEpSmZJhj5fprLUlxlrgYe6yvWQFOC53U9iGp/F6k/Hki2Le\nVHfObVnjXczkoL5dm0AtwTR3jY5pXoAH7tZhi1YCP/OlPNm1oJzt018Wj2vr8x7qtxtDR6oPSEse\ndoDGeQua7W61qCm8WNlScH38rO42VgKvpuxnYMlcRmIHY09iGPKc+HEtN3NVwpz39eGHZYxLhMPh\n+g/M+0a73Wqj2gek6sQ0qSRzXOL8bJ2gyUrgegqe+h+JtDLJh7hTfoh9Pa3tZmE4OV1RM06BbEhZ\nY9mKFqarXW4JiLMIiTox92VVsUCgYj3L3ywFvspg5W7CpE24lCXoPOLyMDlBb1VVNGUQ1KUQ+2nN\n33VgsJVJYKeuDtpMS6JOzCqgvndtjXW9ZkuB57AKbKsW8I3U6m9tjJBnoDUpDbW2ezpb/Hx4a5uR\ns9nHz3YH7Gt9AySFJerENFfMjJXPDatk45YC13hJyfNmhbcRb/BwCFLxjbRmrL2p/mo8DKaYjil1\nEMTbTxm+1DZFMfOJ14m5ryWpw4NFQg2LXywEvqFwJedp7HXxBkko8TqZbTXreF7OGstUp3ab/rs6\nM5bvqb6RbYWwKyZeJ2YpFQc1Ud5nbhT+YiHwMiBJk4TOP9oxIu8aMrlzCJ5o2Z1ZgWqmuwMCthON\ny46vAwJ287/zKdtWejonXicmXvmCOpfBou6IhcCtyil84s5BInbQ25XHf3JP+O18DL2Zj4Teu16T\neZvCbDpLLM/wcqa7pHFUtE7MJUV262wo27rw50KBM7zeVPi8P8qqgpbLMLEkrelDoYn0d0SCe41h\nmMh9eB70l+VSOUErtzg0Am96Ff4FhQL/CIpnT64WJ9PfdAKIz1A2e0faJ7fF4rdIb/H5+BQYLaP7\n7JKtpRvJZgcUOiYWCjybVcCVw5p1IM89fR4MkWjxZ6xe1l3iE32slEfaCIJNygK+peh+KMxjC7fr\nQoFbVVH8xOmhdh4lOKxnukg+AB83ws+gVEDmEGgs+S039GJWkp6A6xaoSqGIuML7RIHABoU8/ayY\nxcjw2Nyta4Lw6WSNYuoTukk/rM+8hTBLy+7Akvp33HdTp+rooGIFz8ICga/InwFJ88iLfLvqiEc8\nmqlwk0c0kTHwbLQnb3SPHekN9YQlVecxyq5EzXwCV8w/Fgj8BZAVfcBjhI40Bv9CQEXUC/O3MJ+d\n0q1s2ekdhjpBS67pTZQqIidGya1+C05Bged4gcATdGpUHb+pI6rGynH/RIWgG8qTarHY2yYL2Fro\n5RvulQkkKRC/F+gERkiSoStw2C8QuK06xfR6ehL5jPxX2Q8n9V1aD+iPNZtJ7w89cGzZN8KjCFyb\nW4WpVeSlckGW7gKBy3RR5cwXNCRpdDOauh/COsAwGRpjxHc9bQyT8Zbov/tVwV5VXmSwvbhJ6VzG\n/JNZ4EztFHVO3cUP3/clpxsjWNpDiPX6stdR214vq8fu/3u3BrjPtGFuqpV9m6w1rxXNAv8FAjZ8\n2pxhpmMfM5kkufKxYqGISetOhBYjyIv5BdMd76J/5I2dlpWYdQV+X2aB94PC9YMK6OiHGxv7MRAV\nsDgf5bkHpd1uz2iSGRO3QDSFoD1zASMbrUyOFNgMzQJ/AjeEGlPmDDMN74D92pZktqm7NXUIt6X1\n2pqEOxTDsZJ6p4fxBeArxPWCPFxmgWeyFAtiiNPJD8vP9aJfJVKf+WdtGUn3iclMW9KMYNnttBj7\nM5/INMRjkVEwnzMLPKS4aif/k52A0fp+bBi5p1hWXxgs6uqXPRj6ki9dkmt7CuX9sT9TuZrE5yEg\nyBwKbha4kyJJBfj5nydaXQMT6Q09jss4lWE0dBGZ7GZ0gXfk7GAmRYShbu9+RSWHPzKVOuX/YBb4\nlYbqnfwv3Qjktn0ZiZT1Usxjmwum8HjenJ0vr/ezfrXQDOSGGmXVqLVaQANzIIlZ4KrtVDz7IDfU\nRInzAX9RZcPnugQBk8SjBJ3ssN/9mnZIt4C9lGOzpGhndv0yCxzTU8Wz/+v5P7SGezSd5WdB3ONR\nhdfKnBTnQSGxxFIQcyUsICFGtUlsLj3NuRLNAhe3z8+iIBMZpK2ry741aIQr/+hb+rr9q9dL+2HU\nRhNmGF92Klv2AbmTABFDgvN/MAvsLcfTCJunQU0RWj0pE0JncX4ysKRd+rKLJQPJqm3aktVCJ/1F\nSYhS9wLmRnvn/2AWWG4pPUyWgLSRKedVPa1gx1OBITYpxS+VCCSvzGTNo7LBUgu5b9W+gLmJuvwf\n8gU2yJ/MYJFZpqLk8nMSxZSKf4aUsPLyOFsihF66twsB1cRz7RlqRqux2W7JNCb/h3yBs/HzEclj\nm6SZbzs7gOL5rkQWs7hiTxeLvCLcFpvvNB1F54LbVJ5CG5kJ+asyRwnMNSwuvudw2a8OxWgyjrsR\nFVQwsTsVFEXX8r4A5oi8m12xArUcaqjYCqz2LZrjzrCiOeqSKwZjlYqT5mqU+al7OjCKXsGCPHqy\nIvmB18M2yqeTZjrk31PMkyyJ+HsFGKQXS8zbXYteLgmRa5HFcufNJ4tFUs6HzXEpVQMFYxvTourQ\nKUCFwyRt/g9mgT2Rlus0uefXSvjNJfLrJ9tzNTroD+P8Kiia9vVr5EZgFaGJ1gJQKIeIGGM8838w\nC1xM6cgzexYJZ787rk9U4kt/PTzwwvnAcEV2vg9oBZzaHgVIBL4rwvDA/B/MAkf0U30MWZWiBQLm\nH0bE0ktLZclf4cWLl1QoidECgcDQt+xT/KpAX3O5ObPAFTqrP4gjAsVdDK3d6RiZ7PlOo1GgWkIu\nhk5avlvx3240V3vIdKqY/4NZ4LrNHTCK1915ZybvUqhvz8+tUn5+pQjLR0vyX1m+zeEOPuj+9BRp\nVjf/B7PArWo7YBRJvnxfq2PaTjyv0uBeJZ+TJ3wqKeW8etaroZ157gegWJANg1rm+EKzwP+LdcQw\nloH9dv7jyDKU85aaeVrb/YjxweBeW4mSJyY2wjibV7KqxiiSf1uSgu1fs8Bv+zhiGDk1w+w83jrp\nZQbpC5H+ijZ3/3evtpFSQbpDGJvsLSscYOPIxdscp2oWeD6g16ahyG8a2+x2qwA/izsSOR3Z/OjQ\nz9iOCrnPpNUKsNpYeoS0LaoAzwtymZgFXg/UkwEiMUJj7VN30bOVQmafAYWbU8thoDLn4P72q2u5\n8TtEd0GhE0lQGKhiFvgH1SIbrHkWWdlyJy29WnHZeXL4mQzTCn+ZCkpFYm2x9OA5oVHVjcKCw2BO\nC2kW+BIIFglXlj1W+1ijGar1dwpZBlYZKgZa5gqjylB2n/nHnPhQhaaLkmwsSGpnFjiVkVEP81GE\ndBtBuusLQ3YOsuj1SLCq1H3Dtrd67Oa0Z5GTAEjlf7YmtWoJ8z3oYyB22sz747D+RCtmM+bJe0F8\ncGh/0sFwhqX4pUwKuR8Ub149PgmviLGowKhS95NHbZuOU2t7/IR4sET+Z1sueLbIm0Xc85cRjJT3\nx2EV4rPkjVDzTwU9vEyePmJTkhyBuc0FM74eOuRIEBPIZ70cXMYuv8eDMsGICVEk8j/bsTp/HdDD\nTU7GFbD4F59XXrbux0ivkqRDOXGQeBx5tPPM85/ZCniPCdSzPigdzLMBfDW4NFo2CYn8z/Z0dDOt\n5L+T5yQjT+CSva37MTKHIawc82QF+Tjy+DewvukBeTcoXpE6k+n1PHnDm372rIdk8BDP/8zDk8gK\nKVxKbHlZjnayBE5mClyICnrYBoQ7OLvAhCzr04bcm1pbT0xHOLS/3tCNFchts5XthrLmFs//zMcB\nzSBuNCtv3SlL4BOFBrSCHi7KWSfJu4JNN+mL3HrcckKIVepmCJv730W6i4rnf+ZlHCzSyEscmPfH\nERTiy2UjFLhDFfSQ5WZrKMdArsBJgXVuBWAWHkesUvcF84bwm/0YhJhO0fzP/GRW1YbK2tHI++Pw\nC/HlM86tYFurUJpqIi5SivMVVPBQxNPihHt9sfjg+gq5FrwJCYr0i0jLwvVzocC9wxwxFDP1QJE0\nnbdDS4lOlR+UClWiVvOf+hrAV1lCLUIL8/kUCrwIHOJ6kMeD4m7lFKh7mlbLVyKBzjnf2lT963PJ\nii9xv6GvkjWKxPkXCucMhQIfBYFKFGrQU/8pq0AAa09WMkvKDrYX9dPOgu3cde/m6ntD57PLoohw\nocDJWrWDGwrZC9O50Qz1GtLvi0aU5DMbaFcTOqvrYfz3I1C0LqoY07SFm/sW8984NcoJ8PI8unwG\nl1G9BOWdwh+0XRAuIkNnLVrFNVTSK4eZ8kQZmvmplXrMFsvk/RYCDyjmqHvKO4zJ8H/ebKWnxD/F\n45CMc8mVi1OdaI1n8mKfHXaTNgRY+DNYCLwOHOR+cFabN6DVVCsnp9fyR3RS+cu/FsXw3aOs+eNd\nDqvodYvBeTeZkLUAACAASURBVMu8oxYCX3bQeHLqBOfHMXRwpxV1b2QAg5yGbgdDz4XnWXQp830j\np74f5QhJNFaBhc3X0gYVomamnUJWFxhJH0eUI9zxsGctTJRuZGYivQjt3trCnY0rnmompyqgZ6jF\nL5YCd4pUeygmHgU1KHhU/ajtTanXPzwbYWxNZb/iSSmAaJtVOM575D4dMoi0DEOyFHg5UI+bRWCQ\n1qIc5wyUnEQIPC0bhmW2SQorR8V96pb/S5ZelVm1g5WJohPjKliWd7QU+CKsVnswHHdKY2mjzG7s\nRZS72ZZumqPSjSw5qulO4bTZDf2sY49PadQPPVsFlpH1VvtA4d1UHotxSp8QahXbkBRSkYLJ8iP8\n+HEqEW/Twbbw4TssqusXNbqGW/5mJXDv4qomzDSx0baUwAFNb9md/uGB7z1vaOUh+zF8RGNX9ysl\npqrKKdBygqwqB1gJvBl+U3cw3LOQeNvv1CzZScOeVwgnqN1zP7yCzOidB+Fl7RcBe8QK4irBr9YT\nOyuBH7BqJ1OaYn8Hy2nlJnOPto+GyFuG5/rDwtCadxnf0Ye02BsZM1grD1JrX4y6Km9T3/J83f7F\nBxFRhNUl89gEhGkZJ9o9QbGYz5+Z75bXa3J6xaZuXatfrQWexSoUGSRALw++TdPf9C1lzAWu+9cj\nTNKf9bK/jO2BI0JZWN4FpbJG8HGXtS5vbC3waXW3uH5n+K1NH1sGimGS08CXWKUbvg2Jv1n3IsoI\neGFlVCijYqbKNXDG6ncbd7mo9uoNheMaBwt8Jn1sA6nReVdOha/1xOm5spt5CNrR98Ncwl4JaBdt\n/buNwCM9VYwD3yuYTjatjv8lgbck+F0vqwZjZz1W8Ewhk8TufR28lHD84uW5p015VxuBD6tVANVI\nTpWygkvEW8HliaoZpVQIxa4ZacmjUJzwt0J2MmKxe9fcEUsYyGeLbZy3jcA5JdQzZm2ELcJvHtF2\nIHkcjmZkVp/az5DEbF/2ryHqujeR+YVwPLh0DbH52Gxd1gd5K+DcyEtmTE0xCZcAQXrUIxqiKoeW\nDNbgV3J4Xrm4uAvl83CV8pGmeNt+ALYCH+RJbKQMH4F4MH8vBjtBzfPYWNlTiOexpXD7MHTV/CDR\n5FPYRDogLLaCbZJeW4FzQlValqeGvSzeIK2uzxnxFnaMYinkdT3EvoV5xHsgWV4rp2YUffdrHjqG\n2d4V7aKKRrkrlSbMmsUg5cv4b0QkXk66w9jS8PIWZlzgPg3CNXEQ3iccDg5P3UbZvmQn8K/qbAqn\nhTSWbHPSqwHO1z6lbGkq84eU0lhBFpcD4lAm/K/6y7K/orHKfrfIPi6wXEPlB8JxC1HSNn3F9Mbo\ncgxDKUn8AQYjO/rTSkFIMSrnNYoEX1nTsJzdS/YCz2auKz+StDDpC5gzlZZAT+pwUmZErgUDNcjm\njpzWvEmEeejvpniw0nWeVEn2At9kVQhh+QgOoTQzvI5cfDSrWig196cnodVR9ytGITuC/OPZR7qR\nPKZr7L9DPKHbTaMVX7NlRSPuS6YleCGaCObBDvLx2LJdel6cx1pAL4UwRiNWhYQChmiezJg8Am8G\nqVWdbNYhVLbL425MMNLm0FW6u64dvZAcTH/QtUZ3zn3kp3BW/e/5nHR5BE4PpOFgKIYhrgryTeKC\nXyUU63IrX6qJ3P/xRYnEuxRYCeexMItRqlJBHt0CefI98GXXGOWm8Lb/LvgMvfEBfWNpt7VttJMQ\nfwhfS7Z5XDoIy5H8v8BE4vEgcM+NzwzAJ/CfqE8gUhpG43gabmR6S13vKZHVCL04hMiqFiW1GE4T\nyL8lzFxGoVznucyDczyv8ubHaVBaUffZk5gh17MlnazGs5gftTQ/M+PFGxh6COXfEiQ5SMESSjml\nGvC9zCvwlxL7ADLp5o8ZJjJAYi1ySSfPH5KXPnpxn4PxBP6w8xT0S97Dv/vKK3BmmJLB/nd0uDad\n7ESN6BqoaYAChVTuBTQTe5soa/yzAOWewq3DeJ9S/CnMprE0y+vaMEmDXTvweR1PkQiQrylWkrZg\nGWwXfnOXNpGkZOwsBneHDJUr7DTe1/kFTtKPUGgcHJdRogP+QfdLBwoGlqSXiqM8w8ojK66UYJq5\nYx61iSKZn/jIchkTYYTbXd7XBZIQ9vFRLBn9RiI7yo3QcKGF7rt2m9yUOCDoY3k+oDzhQ2GsRpnS\niU99BAyhAgL/LlBpkQIJ5Ygsoaf8KzzifeNfH4I7AhrtBcrS3YkJvU7YZZI7tS0RKxYwAvsjQmlE\nG5VUKCjuT1hEduBhzwReX5r+egXKAefxt543uvdRZV9C51ojg92VsCJlhgsl7BcSeI9SVViGeZD6\nte7SvcLj0nqGVbB0zWgNz5woua6HDM+gK6wStdY3CC5shQQ2VK6myJ5Sil9v4mPXMe3tZ64tgmQ5\nQovzOMi+rkZmc1aWX2L7IPp+q4aqlYXUEsz0vF4ZY8dncmZEi6Gv7d+xn2puLTs+hP02r+R0Yz6W\n1eWPsuOf7dkDG4TeEhQ4K7oe9XEYaRIrxwo6HWyWb4YaMYoG0GfG1LT5Sg2TbaivVZH6vfHlGMGF\nonCu9mWA7wEuyU12hqzjR9uYpT9XumDbRps91gkk/vjWbACZ0Rd2HBGp4yYscFqIjLpOQsxh5GVq\nMvS3itTLKFMF64aAV8TMRE6VspYHzIGRgk1RSQ+hba9sESLsfSpSbeEDoL5Fw1WoL7ODnO6Wy6yV\nmDmuMYuYmdhlmeBxMfSncHudwl6X34kFx8XmISICPw9qSXUcRk5Z5egiIrsTFExy0kpizhNwi5iZ\neDmi4PJYwbxOYx/1llZiJxKTFkEiwTZi9VIWUL+Ex7jxW6NwyGzHmrPhLUHzzSwEu4gZZ4pJWJr/\n03LmNTpG7w7BNEP+fxa1OooJnFyiOcVxcCa3v1cp9JLWWpNX8CK1BJJztQXYRcxMNMp/wq1hXqWk\ny7digbPYNA8Ri5YTrXi0ADATAkpwgk4pkrQmecXaP8Ce5+MXMeNMC9fcR9xnmma04sdyokW3mvH4\nUXzbQFTg1DC5cyJrJujk36FNpDbWGBf2qaE8bsDiEBQxM9I0NJXjNmv5DKWEzKQ4zaoXLjou8Zpl\ny2Gf6PuYlKY1a3vehP3COKXFzndGUMSMM+W1WMytZxtRzF4i1xxgwT6Jeau4wBkxNSi6352XP4c2\nk9pQsyaC18lMCRpErNc0pXf9GmkeS8malVMjVtyUJ1F1cLO85G/WzGfoZbh/3oyhbhASZD+wjenu\nEGzEv/vws0kq5biEwDnVYujN6OuRVqTn47kH8wnF7kRZA56UHVye+9CpEpEeU13iFitVN3Qf6f68\nPU+0U2h1xZlce2sw+PMlIpawNaiua0z0LkZUVtSWRZJpEiULw7YIpJXSYSsco9STiZrl0hLpffnE\n+IDpkFK2FuVOv6USDPk0UHK/QFLgMxpaHhMD/EgcTQU4AKu4jI5Kx9iYmAldsriVtB37MoN48uxi\nw+txYo10aed+bpR8pGNoOse9GmK8xWX1JM0cjM5b0D/btANEwwZnyUAf+dPyK3qR4tf5SAt8z6ej\n7JGYuF5g06XAJSY3aW7OMBiuaLR69hswIncWM4shTJ4pxPdibvWIdPCRduBDKM4+l87taT1QKk1k\nYrB7vl/yROiliNd7HhmdYELeT/fdh9DtOitQdv7KAyhZbBEEToutTOMz7BdE71p77FVwb3oX2lOZ\nj/KR0pwp2D1+w4uyc1/vAJnORlmVYhH+cgSBuW+AxnqkPMUyb+/D2YKfFzNNqdXDs+ZxHU1hVOMZ\n2pnMvgaZafkWAUpxRhSBuRYB8p21HzL0Zrw5MZZu3hu1dejsYdhwp5LeMsr/lRi6QdPJvAH56Nzz\nR7LsIwl8Qddb1lhM7KVlnONMbjRWodf7vCorUOXzcqT/Icvft2K6B0nS3D5rGQ699EhJe5AE5sYy\nsut3TdfQu5G2CbN+fP0cEPEHtc7NfQaGnLJ6ITOU8kppsaxSkceYcUjt0AR+HlVF7jwrsYLMDgq5\nwU61eeXP0ADKFeS2e5a2LS89hSfNmBwuyfGAz4qLQtu+RBOY2y472jCChuUmjykau1JT10p57aTW\nv5Flmni7+NCbdt8rmUTIyJu1AHUZjSgwl+gl7+v7hF6Ft+ywVvYvPqynobbZzOWMg3Y8dqaWYRRt\nrUb6FSOett1ELj2NKvAtL3lPoKP0Qp128355U9rAZEoL7fTuMJRPyq+R8/OhsRGI8zm08Uatl4cq\nMLcQviQcTC6rQEZRMWteK8E7H8gcBD2pxCk9rM/w320yS9DNhn+L2L7wBfo+GrLAWfEhclaboz3R\nLq9HEVItHuqFtrdmMS2JavFYc6m02xcCb72tl0jqjRkaE02YsONhSDzynBdZYO6MTk463MQqSM0M\nSyUHtFTYpv2FPk52kfofAkIF3f3/lNovwQyNeb0keltL+ujOSjfKB11gbiJ8SzCYfCqj7RVuSpIc\nUG0Rx5/DgaEykwWu0FW4Lvxu9XjxozFDY5YB0cx1L84mKYbA6eWiyT2TvJHscicOSg7osmgexAux\nnnKmClmjoLmYA8v7IL43jhkacwKwKwcZeRpVHmN7BUNg7jh52anHSIH4T1ZID2iaRtQsef8ldg76\nsGzP3xLeFH243dGIZ8PHDI3J0E9Ab1zAIA1OyBiOwNxohjRV+DmkOfguMCF+ky3XRLyP9B7Qk9AR\n9HwFrVR+/iblRd/GDY2pQRCC/QPzDk5zLIFTK0QR1kU4gLzVIDGg05bhurwYZrL1iTa/9vsHScY6\nrRJfuuKGxvQrgdE4jydRFbB8fbAE5k5oCdO6fg4XEFtKDAglvGmbV6RgLV9BDO9qq16XbPVQy1/S\nOh/c0JhFgP1V7KPFm0biCcxNJfQkWg78mRSxKY0S0XqqpLd0vnZrkjtDZ5TghWZlMDsWZT+2N9TX\nuMXRMQXOrB5MpNRcoBN6+QfaDsz9BswULLvlX1VYtN2UlTQ9y7h/kIvy5HM3uDqmtQ5TYO68O1EG\nkYk6kqPsmcmi3dPS34B2GA77u/yKIQY63WNnoncricELM3V2ovt5zFPgCswtBJI8YG/hJk4QoAZy\nUo4luvKXEZtmj2NqIVvA6tVAbYlCFTxHtRX4sRzYAhtaeKJ+cBYMLY5/DA+3BLYB+PiheMAupIZ3\nm0J/9AfIAoZm/Z52cTitL3m2xN4wwxaYSwqqie+nOjgE+xA+PkaejBu5XYedgrCBezTcaz3GEC4Q\n3cGEGOGH0Ti9RhD+BAhfYG4XY1ekVhJKAieWxmmdMRhaPJBoY5irLYs3bSpNM43ZAsDwVBvFELj9\nEQjMvcmg3fssGBZEcB470rwwKw2s8YgSLzZ2vxV0xzSwv+lNsZb3RkBPAL+TIamzQCJwWo3i/2Ie\n8rYPwXns2I/tFnIq1l04jSPHHQr3wL7h7qGZWeA7QHYW/DeoJsk3i0Rg7op3A0wny8kaGu4077hh\nJ0J50lb4Es0az1bAd7d97oZRPlqKE4DqK5hV35uo2gORwNwG3JyrWM8aQarjJj4zYpitrcBX8o3j\nrr8MfUhCOBtRzETxN6BO8CYR5tUlE5gbwOLlV/qEbGvbmgdkO4GHwzz4snms9wuQyF8iwGxWauaG\nzj2RRMBW7GMJk3oQCpxWvTiqW18uOyU2AZH4ijB3pnGh2832BvK0ByRg/QWF/AyyUvpbkYzob34r\nqDrh1I5QYO6STwLOtslvSJFwErzpLWSHlXB2MyzQlP7V6pX9EdqpItMI0f4yvdCrfkuRBbNRmmXU\n9SGwLuVCKjD3JTMco/VdGuH9VQQzPEo6ux2L0H1Q6GWeNpIpI3ozEO+vKW5GYmEMIO4iks8whjjL\nD7HA3Bicpz62VZ2Hp8J2fmlntycdoKV5bXe6EgwUn/OJ9zdDQy9rFpLAG2Es+QmIj8xu7IGxrV5V\nfj3TfXBA6C0EZzfDx15BuZvEGVP1IVKGGvH+Dkgmp0ImC2ZJNzrl0YQ8ZoZcYO5+ZDS6K3yPKPIT\n5TNdK7gKRnJ2u1CVGZzCna8OfSX9jsT7S9ZQSyWagpAI6mF0pIzquTIE5k64N0G2d8xnZEfht6wm\n+Baas1v6BE35gboSCM4eEv1VpVbr4L703CSzsbucFYgcgY3PBmTr6A+yb2uGQOGVIKqz2xodVJWI\nPkHpb0AgrXwyV6UNHSPkVQ6SJTD3JnyK2PKZhEexNFdF/CnRnN2SR2vCWkA8QuYDif5WyorNt+QE\nSE0H1qJfRLzIEzirkR7VWF7zFVlnMuXIEN8YkuTbKHbQc25HiMd7csN8T1AzdeyGX8Ub/KRvLC+3\ngjyBuQelQhDtQWPxNwqsmayTlQ/rbleonPtlfNgJEpDSlwiTpqVVQXSVhAn3VolSMu2iMgXmzvvW\nQEuVfVBu6r5XK8s4OGu5n8ds8xdkQ4C7zIu4UltZhxcyWSt6faZU98V1srNFrsDcXk0bpEQEmQG9\n5Z0ougf5scdrQwuLnCr/JkId4uB6Ez2i5RxtQfdSYu/mtNbIzosgW2BuCaDtj/b1k+UJkcwQB5U9\nHMCE28R0f1ZcO0HGHX8OQyknVHWedCOFjKFg4JUvsHEqjZT+5IBUdQFxTgBusEI+2cv8dePsbIuP\n+kIl8uqq2+RO+PLJ8hALJPtI5gQ6FwoCZ7XWoiQnyYmUiAsU5zMch0oLDsVBM94N/70lmcGEoXTc\nBdhEeKQ1f4j1s0fbmkJWHwoCcym1fH5HaDaXkTNhmKoluaWeawMxQk4xqe9oQwhvKumaaWQH2rBa\nJKD8d5/aNCq90BCYuxMZguCw8dCrn4xz9IjFP+b+CJ3v+yIGi9O1oRnZPmsMnbRuvYsLmsRuhkRR\nScBJRWDuXEBFhGzKI3TXyU9RF7uOXfp8X81QcTO9YYWffhLJddIkgeAgeyIFc909qhggd4GUBx2B\nucNu9aX912579CY/Q4h0eQIrMteUhER+bztL7vVioggSZbwRin+MPRcEYyVT67lRSs5LSWDuK017\n6RnBeJZ48pmOF9Vn2FoWaqPNkn80zsKwQ0JnsDTSzL8rFOeU3U5DyxhKS2DjnH6I5BbLfyF1SLMz\nXoW10o3MGHZXg8rIyUmzlvrpR2BuZq6hst1QU2BL0jAEN25YGGoCc5NANLtBLp/DQsLej2FsN35b\nC2I24ZjoHw3WBC3BWpLso1Hk66JQKsOJuG7nItATmBuEoF5bT7LVLPcVIMYg5GyrCTHrcXdgzjeD\n8ji28rM09pNG6/mj2T+EQfI7N0NR4JzuzAapNkmhcWSLu+Vo6UqyNlSEMutIcpLuKgeN0GcIdylU\nyk0J5E9VuZ7pQbEWFEWBucxW0lOD79guRKOfziDcQtNXxkKZ9YSP+axlIdDVNsu7YGNGvlvWUjjK\n9/JWTWsqSXPzoSkw97y+XnL3410gye7GjfCXbPJoZhjU/VyGde/ZVG+3YYhxk34jyc+TR0bUS3wv\n79HXp1hqnLLA3H+1PA5JtRlKVICoV4xEg/OD9NCK95LA4O5beu8JSM+C6F4yT8Utg/08rx70qEW3\nVDFdgbmHlX2kPuTsLgxB/Yd2on7tmTtaMp5vEIVX2nCzr8Z7CoJVrmp7mSd6XJxv7+WoT2UUp0AM\nKAvM3S3jJ+XkmdkZJmA/h5uIpNdJmhkBJefTKo51uRvjO1lS4pexLac2DNHyuByc8CtLKWFcAbQF\n5u7E+kttLWUPhddwN8wThDLcZe9N1DLNd9Asl3GmC+PzdpJ4m2a8D1B0jrA8O8En/WOpV/iiLjB3\ns1Sg5Obh+1rc0Poa/F5Q50aHQshY1LkvMud6a7xHiW6QtZWXLutJdGn75eLvgaXpVmYyQV9g7lqU\nv2TQ0sFQt/exLrpKnexf++eDGqBN/IowebA4l/u76XqJ7FW8JscFkDN00Ns/yE77R9Fyt7ZAAYG5\nG9FBkiaD++2gtoRLsBXlu9p2sKS+hqn7Ee1HViFJ4/2Y5ruEFtVdZRVym8xj9DsZGE3/+lVGYO5a\njP8vko2+CGW7o99by3W3/O3KB3W1UGnGVfyh4fDfe2FQain/Nmg3OZUlVzG97V77xS/muowuBVFE\nYO6fWD9phZ9N9NL0PCXZLI/y3cw/pe4fXQaYqjOk93rlk/FZbfAbzecm31U89bsom3hsVb/4lqKZ\nIrEQZQTmbpbxQSh/nPSON9Rdh5TpplKu70P2L7MbuYFXy2UKX7sWHO/qDs2/shOkUyXiHldrGtlN\nsA77lFHi/swpJjCXFOeB4rP94P3y4Nvtc2nvxmrtHn47qYkfMHEjd9LwRcPg4dwYCB9j40DTTjiW\nVZycyUxrO1vkXo84iWUZMUoJzD2qqkfKK2E42i8YtHXH7hReAWb/tWV6gDuAvtrwzfJLkROQvbe9\nDhqutLR+NK9L1tXjtjDQ7nawRV9VkRrmJhQTmHtYW7MGraXh2OR6OoDQJm/M33D4/L/5l/Pzu1d/\n3r1+ap+m0SwA61n8/aMqX7lW3FtQCfRdthUEZ9QjyMlm5PtIvX1irE808ZTtkxYoJzD3rBEjVsPK\nmozjC/u/VALs0ATX6zR+4+k04lsiPc6MCgHf13fkaVwNL5N3Ho8HMGXtF5DvM40olFwUQkGBubR2\nODXYTKRePvzVynmzxhmZNe/jzXtOXjVfMpK7SWqQ80P/IPDrvNF4r47B301KXx6oGWcfnzUJ2lFM\nX2uHkgJzWb1gKHENZGtGSe8Hq0LOD4PDgK0/2xs3Z3byhxHQyn5plzMUesuL8JZAUYE5w1vQjY4l\ncTajiEWShOwTk2sA+Ly+5ir6l/fk2wHQ+JD96xnd4G2K/jk8KCuw6QHThDTCy4pVoIwdgJDTkBAM\nENRu3gHp2i6Gs1PiQNeLz/LzuAmLPk0hQ2mBuc36KrjZw/nYKZXMQl1+hV2Gi+t7l2aArdB9wba/\nha7l1N+W9ggGJmEVr5vGnTi9rJBaFBQXmNvvHYNezliQU0SVWBXjK8izsT78btZrMQyArswrPScv\n33Lgz6sPHxv59+qZQ1sXj3w1TgNQsstGgcX72RhvPq8duigvMHc6wl9+nM1DpPq0qvEBWFgmnv6+\nblqPuuE62yWeV1z7mduE7TeH/SPwSyxio4LA3K2Kbutkd+JHL4cvBYbzlcO5f/rI15+tXPnhopUr\nN3z94wUJ49Q6t4qECauxUENg7llzZpLcuWJN0WwWatOylswODJOY5gqaNwpRRWAusz90JymPYAG1\nxDZUkJPyx0RqN+hP071dGHUE5rj3NPHy9ktmsVT9weWRzCIlahckKV5D4hxOgloCc9u8Cao2W7AD\npF0IVOO4vAoFpyK9VVsTqCYwdyrCa6uMw2/QC5mVz0dwQ8bRW73UmD7no57AXNLLzEQZlumg/vSG\nIpf+Mir15UxkXlZqd58HFQXm0vtCG4yqzTa0riJ/BBLVWZCJIy9Q8LQN9KOR/gEVNQXmuEXaipdI\nj53NyjdqS1ZnQeMJWYUuExcraLFrPMtCXYG5g8EBOwgPPQQExVVtkK7OgsQuOER45I6A4IPyz4+D\nygJzN+swE8niiNLcxfI6ooFQnQWFd9zJtuizJzJ11LBeWaK2wFz6AGhF5mHWSP5DGKk6izRVyByy\nHrWCAWo+fnNRXWCOW+8VTbT1N5+Rve+IVp1FijvMApLDfonyksxhQh8HCMydL6t/j8A0/YdIVQ5E\nUKuziLMSsBOnmeon6svRSU6IhyME5v7rCq8S3KZjZVdPQ6vOIkUrgryoj16FrnRzMyDiEIE5wzJ9\nJH4msdFuVLx/5PJEjz/bOxqpX6as75UQjhGY434vq52Na9b6FblKk6J8iu09lDNLWxYlo7YSOEpg\n7lkvaIaZr8BQWlbOeFo0KY15Ld5uBr1U2fvlw2ECG68En2KYVXGnswqF4OFwk8XMgbalmI98hxZi\nHCgwd60u9MeKN7rBTlNoKBhMw/uWpfSHhOsKDQUFRwrMZUzVljqEc0CrkopGAaCQFY41lz9USjvV\noS77DhWY447HshMxXFd2w5fKjQWNLwClxEw+mRPYWAf7KThYYC55EFMV3W06p2y8gmNBIr4s+uT/\nbFVmEKUKWsQ4WmCO2xeqn4l8E1sBCJkhlOQQfIzaNGOmPnSfkmNBwvECc0/+B3Goq8T00EaKjkWS\nV8JQtwt+rww9i4BhpggIzHHflNRPRfzcPuRPsqwWR1FrEqRP0ZeU5ZhHiyIhMPesD5RHq5GSGlFf\n4bGIUi8Czb37x/LQx2G2DSuKhsAc920MMwjphrYKSF1CKLAdVqM0ezKIiXH80zePoiIw93yMNhTF\nrTarUmmZMRLkpJaqhLIO3xqqHVNkvPSLjMAcd6oWNEZwyfse5JdLIGQGfC/d6FJjqIWav08FipDA\nXPbCALdJ0l/9rm5kBSVlc8nNNiOqPc8nugUsopm8Wi5FSWCOe9CLiZIsX3SvWD1KmV3wyHm5mGQa\ntu1RTK8HagwGmaIlMMcdqArNpWpnrSOunyaLhSC1KXS+OVQ7oMpY0ClqAnNZS4vphknMp9u5UUgK\ngcsZN4ncZ0+G6ootdfhmiC1FTmCOuz+cDVwiugNxP7SC6mkNUyqEitYizlwcyA4Xr1bsEIqgwMZb\nXVMoK7raPaTtLva2EnTXilrBd5SFpo5wmpSkSArMcXsqwss/ibw/H4hck8lZIHrCn16Gihi7iGpS\nRAXmslaEQyJfqvU8DN1YVS29O9huwo5YFxMhfEVRWhpZUlQF5rjkOf7avoJx1inxXlIFuCjym1e8\n4EP/Rl+t/xxH7/oKU3QF5riHo9zdBghlMLwXG0hYihif84GxQivgfwa4uY9SLtuzfIqywBx3Z7ib\nx3ABH7e/Q8NoFCtE4K+wUIEaETeHe7gNp16sjCpFW2DjRzhA5zaE/+P9MzhcFYX/Cg/mr/BydYib\nbkARcOQVpagLbHzGDXbT9+W9G58tXkIFq/6pEsV5zSrn++rdB8vJxaIORV9gjrs9ykvT8TeeNy5F\n+CtukDCa6QAABBlJREFUGTzgH8G3xfVbR43XW7eVPjkFXgSBOe7R1ACot9d+i+FWFf1aZc+8Rl/F\nPiY/Z+/LEDBVsUIpVHkxBDYumj6IgjKL7TIn/NcKhivoV54xHFrbBX2mLS4DUR8W3YWRNS+KwByX\nvaU2BI23fehlj4AGik1j7zSAEbYGjBvjg6D2lqJq1rDnxRHYyK+93DXt99l8uF94BsrJoCfC1kBP\nm0CK7H3tNe69i1TueSleKIE57sGcaAifal1m90JV6CdZkh2fx/2gqvXk/drUcIieU7T28yV5wQQ2\nXkTftGDZNlbVItOn6Up+Rfs8X4Xrplv6amdubcOyLb55ce7N+bxwAhu5NS0UgoZbmqJP1IRWVA2X\nF1pBTcsT/DY8CEKnqZ3jigYvosAcZ/judTcoP7NwtynrgwDNUGrb7feHagI+LPTNuDizPLi9/p1j\ncmzI5cUU2MjTtU1ZiJ9TYIS4N1TnM5mK1f/hJB/d0ILNhUtz4oFtupY8iaqDeWEFNpK0sC4LFSea\ncy9f6cb6jJZ9F7012oftdiX/l9MTKwJbd6GK2X+p8yILbOSfJa+wUHL4rjwLyLmeWm3XYzJupYZj\nXbXannlbC2k7h5cE9pUlRariGj4vuMBG7q/u6AsezRacNFkyb40JhHLzCS0fd+aXg8AxpntAzskF\nzdzBt+PqIuhFh8mLL7CRjO9HVmAgqMOy37O4tHX1GKbR4ru4fdxd3Ihh6q1L47J+X9YhCJgKI78v\nMuUw5eAUAptIWt87FsCz2azdd69NqwRsnRm/Isc/5Pw6ow4LlaZdu7t7VjNPgNje61/kx64VTiOw\nieubR9ZkjPokzlo4rgYDHq2mSRcHfXpgWisPYGqMWzgr0fgNYWqO3HxdhaGqhlMJbCL95w+7VNAA\n6Mo3qBnOAhPdYeKmE7w37LsnPpvYIZoBNrxmg/I6AE2FLh/+rHo+Z6VxOoFzeXZyw5jEaDcwXpGe\nbsZrGjzC4lp06j1s3JR586aMG9a7U4u4MA/Tu26epnfdohPHbDhZNCLyaeOcAueReePQ2okD2iYE\nM7Z1QfNgghPaDpi49tANdYrMOQZnFriQ7MdXL508sW/z5+vWrl294ev9J05euvr4hds3IOL/h8D/\nj3EJ7OS4BHZyXAI7OS6BnRyXwE6OS2AnxyWwk+MS2MlxCezkuAR2clwCOzkugZ0cl8BOjktgJ8cl\nsJPjEtjJcQns5LgEdnJcAjs5LoGdHJfATo5LYCfHJbCT4xLYyXEJ7OS4BHZyXAI7OS6BnRyXwE6O\nS2AnxyWwk+MS2MlxCezkuAR2clwCOzkugZ0cl8BOjktgJ8clsJPjEtjJcQns5LgEdnJcAjs5LoGd\nHJfATo5LYCfHJbCT4xLYyXEJ7OS4BHZyXAI7OS6BnZz/A3lOOxgvJ22AAAAAAElFTkSuQmCC\n",
"text/plain": "<IPython.core.display.Image object>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": true,
"trusted": false
},
"cell_type": "code",
"source": "combined_outliers = {}\nfor key in bf_outliers:\n a = bf_outliers[key].index\n b = rho_outliers[key].index\n combined_outliers[key] = pd.Series(index=a.intersection(b))",
"execution_count": 1177,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "Image(draw_venn(combined_outliers, \"combined\"))",
"execution_count": 1204,
"outputs": [
{
"execution_count": 1204,
"output_type": "execute_result",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAADAFBMVEUAAAABAQECAgIDAwMEBAQF\nBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcY\nGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKior\nKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+\nPj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBR\nUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2Nk\nZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3\nd3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmK\nioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJyd\nnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+w\nsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLD\nw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW\n1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp\n6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8\n/Pz9/f3+/v7////isF19AAAgAElEQVR4nO2dd2AUxdvHn91r6YWEkEIqvYROIEqR3iQU6f6o0kFA\nkRZ6FVA6qIAgRREpgjQRpQgoKkhRulIF6UVCenL7XkguubJlZnZ2L9x7nz/gcrc7O7ff292ZZ54C\nnAunBhzdARfK4hLYyXEJ7OS4BHZyXAI7OS6BnRyXwE6OS2AnxyWwk+MS2MlxCezkuAR2clwCOzku\ngZ0cl8BOjktgJ8clsJPjEtjJcQns5LgEdnJcAjs5LoGdHJfATo5LYCfHJbCT4xLYyXEJ7OS4BHZy\nXAI7OS6BnRyXwE6OS2AnxyWwk+MS2MlxCezkuAR2clwCOzkugZ0cl8BOjktgJ8clsJPjEtjJcQns\n5LgEdnJcAjs5LoGdHJfATo5LYCfHJbCTUwgF/muc6Z+UhTDved4bf49esHjUFdOL3QmhCxzYsTyE\n+8c9CndctwQohALPCUw2/ZsFWXl/X62XwnHPa1zlkg5yJ30d2bNcBPvHGZcUvtNZ+HqUvOqN5Tn/\n5/es846cf7d1zvn33BDHdMoCkf59cafwnc7C16NNT49VMHIWPSv+b86/N3Pufquj9zuqW/kI9+/4\ngUJ4Ogtdj4w9pk/3+56z6JnPo5x/H/ub/nk4qJaj+mVGuH9PPi6Ep7Pw9ejYGY775HXOomevHs75\n96f6Of/e8XFMrwoQ7t9OyOG4w3rGT6ET+F3T7e8+e8liELO3Q84d8c09nDGDO9vOkX3LQaR/XCE8\nnYWuR6tLXea44x5Nri+AD5Pz3vto7LGj73zAcbcqjv30nkN7J94/rvCdzsLYIx6evQJfO7oPYhTm\n/hVqgV881CJNL56PCP/4lqN7Y09h718OhVpgSx795ugeiFNY+/fSCOyCDJfATo5LYCfHJbCT4xLY\nyXEJ7OS4BHZyXAI7OS6BnRyXwE6OS2AnxyWwk+MS2MlxCezkFAqBk/448PmSGWPGjBgzZuwHy9fv\nPnU/S3onF0g4WOCs00uHNAl+sXAOrL+/v3fuS9BHNu0/e9d1x3bOKXCkwJeXNDUJ6vdq3xlfHfnr\nQd5Fm/nw0pFvPkrsFlfEpHNgvWFfXHRgD50Ahwl8a3Z5gFJvb7wiuMXtw8sHvOIO4Nt64W9pKvbM\nuXCMwMZvE1imwYIb0ltm/7G8bwkAj3YfXVC+W86IQwTeVAVCZv6Fvv3jr4eaLvfot79PV65PzooD\nBP45HsqsScXd68qyBA/w6fxVihJdcmJUF/i//mz4mmyiXdP29Q8Et/ZbC5PGGTd/2vbp/DGD+nXs\n2LFz/7cT53916K9CdZ9RW+ADxTWjn0tvJkT2j0ODwa/fgUIwT763b8mg+iW0L2Z1Bv+oGBNR/mzO\nX0yptonfODoEw4y6AhunseXlRmdl7e/lCxGJjpw93f56dLNAk5L+8V3Hrdh28rbF8+a/y9+tm9g5\nVgNMyYHfYD+HFEBVgVM6Q/dk6c2k29mUoGHqr3PI+bu4rHskAFutx5JDD4W3Sv55/uve4N3um0z1\nesaPmgL/V0czn1Zbd2aVhaIjb9JqDo3Ha3sUBwhvv+hXlKdM+qEhQRCa+I/i3RJFRYGf1jR8RbG5\n7IOddZrme8jGawScnllLA0Xaf3QJY5+sHS1ZQ/+/FesTAuoJnFpPv4tyk/dnBEPphc8ot8qD8ed3\nYkBTc/px/MHdlRFuukH3FegTIqoJbGynoXn95pH5eR3wS7xLv2FLjg0LB/3rq0mPcmeozm+5ajca\nW1QTeBp8qEzDR9/QuQ24rEzbJq5Niwa3hPVJctq42AAaO+pRrJbAP2p6KNb2jeGe7Bu/K9Fyyto6\nDNtk1VPZDX3m7bedQn8IUEngp8XLyjBvSPJwahGm9U+0Wz090A9iptO59K7GMYlGKi1hopLAAzQK\nx0c/mR7END5KscG0tTXBs/uP1NpL7wNdHWHDVEfgX9iRih8jZW4wND1GqbEbY4pAuSX/UWotl7lM\nMwdY0dUROD5U1iAFkZQPgqH1nxQa+q29VtuZ+h2f+5Rtqf41rIrA2+FTNQ7DcUmz/Nlewj4iSBh3\n1AK/sbfpdMiaFUx31Z/DwgILZ83N2lQV6xjGqqVVM8k+HO9pGC5jXpz6cQWIXkjDYM7HHEiUsbeg\nIsYJkaWFRgvCAgtnzeXS8K77H9S6gF9wu7/GZzahQmlLikOVTQoaJXozO8l3FlTkm++Ni0oK7CQo\nlWhWXzyBE4LVffRcbA+hnxHcC5/PLw7xuxS9iabHFSFeIBFWxHQRPw0R2EtQKrGsvngC39aMx9mc\nBgerQfwvmPukLgqExgcU6Y4FV30akv6CRBXZL5RIW0gq0ay+eALPYWQOewgwri/O9MLJPZe6NAwa\n4v4mSPgYVpLtKKpI9jChaYqQVOJZfbEErhaPszUtnk/x8JyB6hKQtToS6tIzaohhrB/wiGhHUUXW\nC/qoCkklmjXXiCPwNWYextYUudYZSuxA2vKbWIj7QeHe5HNWO5xoPzFF9pzjsk7w7yYglWjW3LTl\n8BV6qMFSwPCApsuBCtBW+vHwS10ou0XF+ekA/TWCvcQU2eldrJiXgJMazrVIljW3XQn8fWiR8aGH\nYVaG6CZX34TgFaqu1t4y9KfVFIIiKALLypqb7d8Xcw+q/NMJyoo8XJ9NcPeYpuQ6Fx+D3P6V2QKG\nIrimSuysuedhLeYelNkbw7z1hP+j7E+LsVhjbTr8zU6m2JqEIorbotfCeaUPIUHKOG3QBr4PjlWF\n+FNq9yaHlmHqedMqLvAITxlRCOmjv5hMwQp2uja0tbtQ7/fRBK+TObYi7N/XsEfecTFQXOAmNWXs\nvHAjt3E2hU5kzXXzXGIlZvbyQN0o2Q9fwv6lF+ku98jIKC5wlJzvUvMf7mZlKt240QzqW/gn/1EL\nXjsnv1XS/vX1Uc06r7TAGZpJMvb2TeVSKJXCMq709ViUNx16NlJX7EsaM1/S/u2CfRSOjoTSAl+X\ntVTon8al+tPqys1m8NqLdfzdEcwggXE1JqT9S3F7l8rxEVBa4GPwrYy9a9zmbtOrVmj81NfvM+5B\nF4il5bpF3L9GdB48CCgt8Dcgx2F54VZuyyJqfTFdxI2hqp9+GrUHIHH/prPyfa3RUFrgNXBVxt7J\n4zeMpTocuVUWdEvpNUfcv/3wHb1eiKK0wItBJIpWdT71c0+sxAxSyuUKnafMLJWOpLTAs6HwZNS4\n1wbqX+fSxmnKOsR+ZUVMF5UOpLTA08BhcXW2rPP1yp0nHYowvO+QMBILXo9V6UC0BE6/dXrn+k9m\nT32nfw7Dx8ycu3zrofN3MiYXimynJh52hNrmhenHnaHZHYf2hhvpbv6JZdw5f2jr8rkzxwx/cere\nmTr7k/U7T9+iNfSQff4zTm+a8mbtcDY/oWhwTKi/vzuY/4aOo1fsveHwrDh7Q7VTLSz8Kz0D1TMH\n87EMbt7Yu2J0x/jovDMH7v7+oTHB/v7mMxle+80pm06LL2YjIEvgC2v6VdMCaGMa95u8Yvuvlx9b\ndOfZ1VPfb/t4cjUo72bqrle1rnN2qZxRw4KUoUzZX63euRjLDHdYAsybu+bUg5xrwK3C670nf7zt\n+1NXLdIUZDy+/Ov2FZP7NY7JObfV+q2RlcSRWOAby9sHAgQ0G7nujJhr2weQlP3vkc/eS4gyfZ/Q\nRuN3OCKbwcUqzADbhYX0d5ka19Tvyv0d4xuF5pwKaPfZkX8lxiepZ9aNbBYAENh+OUJaT37IBD45\ntTxAWJ+VZyXHKkvBnBEs6eiy7hV1ACX6r1fXjda4zCOIL55gh2+Rb1TtyJX1/UsA6Cp2X3Y06Say\nCdd4dmWfMIDyU08SHZRA4BtTyoG23vunkTZeZ+1yl3JkbrtiAKX6f6na9PhJO2jNH6x0pQYzSq2V\n94df9i8FUKzd3CO508bnMBdn99Pv19NCuSkE1zGuwJlfNdWw9T96jLr9DrDPbHd2aYIfsDWnnlJj\nBvVzpF7QbTdtCNRTYTSdfWpqDRb8EpZaLFAaNRMwW3n8UX1W0/Qr3F8knsBP54ZC1BScwdJPsJfv\n7czjk+roIKjPDoWNSsZZupICDsMvWO8eorC/e/KOPkGgqzPpuI0y3gTrSTenREHYXDwrNo7AD8b7\nQZOdeJfdX7BO6KOnX3T1AY/2XyqYkfBeS+gmHqZ/vrxGoew/OaR+2d4DfLp+waNJoFAwkSjZOxuD\n3/gHGHugC/xskremM9qD14LnIObSkrV/cBB4dfxaIf+Gn8PcP5Ha5lkn6KxM+oH0rzt6QdDg/fw2\ngGIDCZs93UnjPQk9+RuqwFkrg6ATThY/M/5DxT83/jgsGIq8dUCB5/ECfSmEH6RxnqYC/dS12fvf\nKgLBw38UnGYQC8xxlzpC0KeopiNEgX+uDI3EnmXCVE6Q3CTz+z5eEDFZzroiD/+9AW+g+W0cKuZN\neb50dXIEePf5XmxAFCjxwxflREOo8jPapkgCPxvGRGwi7EtbJKt68qamDNvgS9mGuQLOl9PMQV1R\nuFWTnU7vyOlfNmCZppskho8kgywLNkUww5Hu0ygCH47UDCd+TL3rgXiab08tCSHDaN0st3kXO4y+\nddr/oCulB/EF0xOn5FTpHC5amVHxScM1kSjfUFrgzImaaBkZxj4B5Nl59p4ueqbxNgoLE9kTmTp4\nISnzNbEUsv5mbWvM6LugpDhOER18InE0WjNRelYsKfD9evCWnMnqISznlDvTwiBiqdyL6XErGIR7\nt//WL0BuorykpREQNg0txc+/8LHMo5mea29BPckZk5TAvxX3+lxWLx4CXvx3xqb64DNcVkTYhRL6\nFfh7XSqnXy3nqLeG+0D9TaiGprNAI7ny517FpYIBJQTe7B4hN3VcaC/cPf7orNN2Ifeq+cYvmOha\n/K8JvEc8WTvVRavr8gf69gfhIOmhLPkzwn2L+BbiAi9i43GsJrw0r4K/z+13faAp4R1zJlOZMEFs\n1hBoTRaudLQp+IzESo63gVLQ5YN4drHoBqICT4Q35LvMjdeRLKw/mxUMdQmcLkzj4c7kQ4aPtJUI\nfhx76kLwLMzCAh8AJcfolDdANDhITOBR0I/CiHYbkGUnSlkeBdW3YTrH3X2FmSrHn263dzimPce4\nrTpELce+DoZRCrky3Xf6wWiRj0UEHg+Dafge3gLS2IS0tSWgClbqv7OR7qQGmTzOxHhjpWbfUQVK\nrCW4RSXQi10xDgKRObWwwLNgCB3f0khyF+CM9dFQCz373B6/sF+ltxLn31oayQWKfA7UgujPicxv\nFdqR7MWPcQgIu9ELCryO+R8l+3/XcBk7Z62MgMaI9/iVmioU/PqSX4d30X7ZvzSGCGSjvzXZbmK3\nVezW3mTWC30mJPAPuma0vFmWyQpP4tLmFYUEBAumcSw0p5KiPftt6IZw072QAEHzSB0zr8Aqwj15\nyWyq2y/wkYDAV/1jqdWbOgufyWsgabqvtp/UJCStKwyi9ZOcx9aXGuPe7qf1nU5ucdsJiItBiDyr\n6C9wFfEL/LxyAD3PR2NR2RV1Hr1t8BZPZ/W0Afu+3KMU8KWhimgqq6Rp3m5vk6WczGUWQ7ceBHcl\noDL/+eEXuBdLM8VA1xD5o7W/OjARXwg3czNWL8+iasNhv7Czgh8av4hgOsjLz9g5WtbuPOxj+S2G\nvAJ/Lj53xmUVCJ8sdI7EQW2hYPLzET7fUziEBWeCiwgN7X6vDXFHZDZfmuIgOo+J8AXf23wC3/Sr\nQ9Vd+CZQqSpr/CyE6c0bGHEkIOwMjSNY8ndpT9672P3eDFE6eSuesjNktmBPZh0/vjkEn8DNvCh7\nz1RoQKedpJE6n8X2k7dvPMoQR3YI8zBOv9nuzezFPvqR8l0DflAiwP+qVzOed3kEXg3LKB96tI7W\nkOJCC6hi68ewWhunSJhEUiONbXL2w1WghaxQsDxmKJKiYynwrHfaC/wwsB5tD8fDINOAaMHm4kw/\nK1+696EZ8hIQXurBtLbMB5Z/P+nHFLe/qEloWZFKMzZk1wu0/6XbCzxYT6N4mBVZgW/SayxprC54\nY8GfidABXTLM1IOZPSzrHG0M1o2l47iV7T+ASju2/KEbbPeencB/aN6hf+TefjRd20/HQavruS+N\ng6AvhrEQN/WgcRgMzrudXW8Fcdhu/wKcBKpzugJGaOwuTjuBmxVBDixDZxfd9KpZC728FuToarrE\n3sPZET/14ET4X86MImuBp9dCamkKFoBCSaof+Te3fctW4KPwge0mFEj36023wRstocYZLqMjTMPa\njSD14AdMmzTuTA1oSXGg3qo0vbasmQu2fjC2AtcPUyTtUS8/2vkSNhRzn96CWYC3E0nqweVso6nu\nxb7E3EuMDC+iwDMUUsJes3nHRuAjIO7hQ8pukFGzj59HbQBw4xGIUg9OBWgjx+5sx0FQrtz7IrAx\nstkI3KqoMgG7GUW70m4yqa7G2zAXb0ZHkHowe67Bm61LdWlgrF65asrJga2s37AW+AI7VaEDD/Kg\nvHzytI52y5328No1us3acrU+tL+zWR9PU5KKlAx7vExhrS0x1gIPcZPtJSvAMbmLwjY8jdPnGE82\nFvGiunJuyyqvIjkO6tu08XQSTOdwlY5pXoAHbtZhi1YCP/OhPNi1oIzt018Wj2vqcx/qtxpCe6oP\nSEsetoOGuROabYYa1BRepGwpuF6+VncbK4FXUvYzsGQWI76CgWVFfFzDYK5KmP2hPuyQnI4JcyhM\nP8+8brTLUBPVPiD1TRpVkNkvcX62TtBkJXAdBQ/9j0RaGRwr4tOaBgvDyanymjEKZEPKHM2WtzBd\n7TTEI44iJL7JfVlVLBAoX8fyL0uBrzBYuZswaRUmagnCsCImxeutqoomD4DaFGI/rfm7Fgy0Mgns\n0NVCG2lJfJMVQH3t2hrres2WAs9kFVhWzecb8dkfuhUxub7Wdk1nk683b20zcjZ4+9qugH2tr4ek\nsMQ3aaqYGSuP61bJxi0FrvaKksfNDGsl9jGyFTG1CWtvqr8SBwMppmNKGQBx9kOGr7SNUcx84t/k\nvhY3Axo28dUs/rAQ+LrClZwns9dEPkW1Ima01qzheTtzNFOV2m3676rMaL6n+nq2BcI4UPybLKHi\noCbKh8z1gj8sBF4KJGmS0PlHO0rkU0QrYlZHVqCa6S5//21E/bLja3//XfyffMa2lh7OiX+TOOUL\n6lwCi7ojFgK3KKPwgTsGithB0ayIxp7MR0KfXavOvEthNJ0plmd4GdNV0jgq+k0uKrJaZ0PplgWv\nCwRO93xb4eMellUF7QVDxJK0pg2GRveEP0bjXkMYIvJDmw19ZblUjtPKLQ6NwNueBd+gQODDoHj2\n5CqxMv1Nx4H4CGWDV4R9clssfovwEh+PT4SRMprPKt5SeiPZbIcCx8QCgWewCrhyWLMG5Lmnz4ZB\nElv8GaOXdZf4VB8j5ZE2DHuR0oJvKbofCvPYwu26QOAWlRQ/cFqInUcJDmuZTpIPwMcN8DMo5ZMx\nCBpK/sqNPZjlpAfgugSoUigituA+kS+wUSFPPyumMzI8NnfpGiGcncwRTF1CN+mHdZl3EEZpWe1Y\nUv+O+wZ1qo4OKJL/LMwX+LL8EZA0jzzJl6t+dI9DMxV+4R5FZAw8E+XBG91jR1p9PWFJ1dmMsjNR\nM5/CZfPLfIE3AlnRBzyG6Uhj8M/7l0e9MH8L9d4hvZUtO7xCUQdoSdW9iFJFZEcrudRvwUnI9xzP\nF3icTo2q4zd0w8l2/CcyGN1QfqcGi71sMpetgV6+4V6pAJIC8XuATmCEJOm6fIf9fIFbq1NMr7sH\nkc/IfxV9cVLfpXaDvlijmbS+0A3Hln09LJLAtblFqFpFXirmZ+nOF7hUJ1WOfF5DkkY3vbHbQawd\njBOgIUZ819OGMAFviv67byXsWeUFBs+LWwYdS5lfmQXO0E5U59CdfPF9X7K7MIKlPYRYqy99DXXb\na6X12O1/b6iH+0wbYlCt7NsErXmuaBb4LxCw4dPmNDMFe58JJMmVjxYJQUxadzykCEFezI1MV7yL\n/pEXdlpWYtbk+32ZBd4HCtcPyqe9L25s7CdAVMDiXKTHbpTtdnlEkYyYuLmiKQTtmQUY2Whl8mO+\nzdAs8KdwXWhjypxmJuPtsE/bnMw2dbe6DuG2tFZbnXCFYihWUu+0UL4AfIW4lp+HyyzwNJZiQQxx\nOvhi+ble8K1A6jP/rDUj6T4xgWlNmhEsq40WY33mU5mGeCzS88dzZoEHFVXt4H+y4zC2vh8TSu4p\nltkbBoq6+mUNhN7kU5ekmh5CeX/sj1SmOvFxCAg0h4KbBe6gSFIBfv7ngVbXIIe0+u7HZBzKOBI6\niQx20zvBe3JWMO+Eh6Iu726hksMfmQod8l6YBX6tvnoH/0s3DHnb3oxEynopZrNNBVN4PG/KzpHX\n+hnfGmgGcmO10mrUWs2nnjmQxCxw5TYqHn2AATVR4hzAn1TZ8KUuXsAk8SheJzvsd5+mDdItYA/l\n2Cwp2phdv8wCR3dX8ej/evwPbcPdmo7ysyDudq/Ea2W+E+tOIbHEEhBzJcwnPlq1QewLuptzJZoF\nLmqfn0VBEhmkpatLPtVohCsf9il5zf7dayV9MWqjCTOELzuVLXuB3EmAiEFBeS/MAnvJ8TTC5mlg\nY4StnpQKpjM5PxFQ3C592YXiAWTVNm3JbKaT/qHER6p7AXMjvfJemAWWW0oPk8UgbWTKfl1PK9jx\nZECwTUrxi8UCyCszWfOodJDURO5btS9gLlGX9yJPYKP8wQwWGaXKS04/x1NMqfhncDErL48zxYLp\npXs7719FPNeesXqUGovtlkxm8l7kCZyFmY9INlslzXzb2H4Uj3c5oojFFXuqSMRl4W2x+U7TXnQs\nuFXlIbSJaZA3K3OUwFz9ouJrDpd8a1GMJuO465GB+QO7k4GRdC3vc2GmyKdZ5ctRy6GGiq3Aat+i\nOe40K5qjLql8EFapOGmuRJqfuqcCIukVLMilOyuSH3gtbKV8OGmmQN49xTzIkoi/V4ABerHEvF21\n6OWSELkaUeTFuPlEkQjK+bA5LrlygGBsY2pkLToFqHAYr817YRbYA2m6TpN7vi2EP1wsv36yPVei\nAv8wja8Co2hfvyauB1QSGmjNBYVyiIgxyiPvhVngIkpHntmzUDj73TF9ghI/+mthAefPBYQpsvK9\nXyvg1PbIXzTwXSGGBuS9MAsc3kf1PmRWiBIImH8YHkMvLZUlf4UVLVpcoSRGcwUCQ9+xT/GrAr3N\n5ebMApfrqH4nfhQo7mJs6UbHyGTPdxqNAtUSXmDsoOW7Ff9toDnbQ6ZD+bwXZoFrN3VAL9504x2Z\nvE+hvj0/N0v4+pYgLB8tyX+l+RaH23mj+9NTpEntvBdmgVvUdEAv7vjw/ayOajvwvEuDexW8Txz3\nrqCU8+oZz/p25rkfgGJBNgxqmOMLzQL/L8YR3VgK9sv5jyNKUc5bauZpTbcfTQ8Gt5pKlDzJYT2M\nsXkns3K0Ivm3Jclf/jUL/K63I7qRXT3UzuOtg15mkL4Qaa9pX6z/7tE2UCpIdxBjk73lYwfYOF7g\nZY5TNQs8B5Br09DkN41t8vMVgJnFHZXs9mxedOjnbHuF3GdSa/hbLSw9QloWVYDn+blMzAKvBerJ\nAJEYprH2qbvg0UIhs0+/gsWpZdBfmWNwf/vWtlz4HaQ7r9CBJCgIVDEL/INqkQ3WPIuoaLmSllal\nqOw8OfxMgMkFf0wCpSKxNll68BzXqOpGYcEhMBeMNgt8EQSLhCvLbqt1rJEM1fo7BSwFqwwV/S1z\nhVFlMLvX/DI7LkSh4aIk6/OT2pkFTmGI62Hi1Yuzo6u+IGTnAItcjwTvqN+wba0eu9ltWeQkAHhH\nSqlczHwP+gRkOG3KO6szGPPgPT8+OKQvaWOY9eJsuR8YZ549PgkrjzypwDrqT+41bRpOqen+kxJH\n4rjzHs1yRxH3/OQEI8k7q2+FmF/lC/wqcfoI3HpxtmzIH/F10yFHgmAd9VJQKbv8Hg9KBSEmRMH9\nfivz5gHdDHIyrsg7q6+9an6VL3CP4qSN4deLs6GNR67/zGbAeExgHPVBySCeBeArQSXRsklgf7/2\nhpyZ/HfynGTkndXiPc2v8gWeyZBWjiGoF2fNvwF1cx6QdwPjMDxb0I+aVseDN7zpZ486SAYP7O/3\nJKJcMpccU1aWo52ss5rE5LsQ5Qu8FUhXcEjqxVmz7sVNrbUHjiMc8lGNXViB3Dab2S4oc27877df\nM4Abycqbd8o6q8cLDGj5Al8gnicR1Yuzpo3HBW4tXjkh5KNOFTb3v490FyX4fmNgoUZm4kBZZ3U9\n5LtD5QucabA1lKNCUC/OljsBtW764xUeRz3qRuYt4Q/7MAgxnQTfL6OyNkTmioasszrGkL+sVZCM\ntIqIi5TibIFy7op4Whx3qysWH1xXIdeCtyFekXYRaV41/2WBwD1DHdEVM3VAkTSdt0JKiA6VH5QI\nUaJW85/6asBXWUItQgry+RQIvBAc4nqQy4OihjIK1D1NreEjkUDnrE9Nqv71L8iMK3a/vo+SNYrE\n+RcKnt4FAh8BgUoUatBd/xmrQABrd1YyS8p2tgf1w06Hbdw1r6bqe0PnsdOiiHCBwElatYMbCtgD\nU7iRDPUa0h+KRpTkMQNoVxM6o+tm+vcjULQuqhiTtQWL+xZVV2LVKCfAy/OosulcetVilFcKf9B2\nQriIjB21+6W3wiCtYmhOnihjE1+1Uo/ZYpm830LgfkUcdU95j8kx/J8zW+kp8U/RWCTjXFLFolQH\nWmOZ3Nhnh92kjf4W/gwWAq8BB7kfnNHmdmgl1crJaTX8EJ1U/vKrQTF89whrPr3LYAW9ZjE4Z5l3\n1ELgSw7qT3atoLw4hnZutKLuTfRjkNPQbWfoufA8iyphvm9k1/WlHCGJxgqwsPlaFqcMVjPTTgEr\n842kj8PLkK542LEaEqU3MpNIL0K7p7ZgZeOyh5rJqfLpHmLxh6XAHSLU7koOjwLr5T+qDmt7Umr1\nD48GGEtTWYTuqg4AACAASURBVK95UAog2moVjvOBHJ8OYiIsw5AsBV4G1ONmERigtSjHORUlJxEC\nT0uHYplt7oSWoeI+ddPvFUuvysyaQcpE0YlxBSzLO1oKfAFWqt0ZjjupsbRRZjX0JMrdbEsXzRHp\njSw5oulK4bBZ9X2tY49PatQPPVsBlpH1lgJzYV1U7otpSB8fYhXbcCe4PAWT5Uf48eNUIt6mgG3h\nw/dYVNcvanQOs/zLSuCeRVVNmJnDettSAvs1PWU3+oc7vve8sYW77Mfwjxq7ul/J0ZVVToGWHWhV\nOcBK4A3wm7qd4Z4Fx9n+pqbLThr2vFwYQe2e+2HlZEbvPAgrbT8J2C1WEFcJfrUe2FkJ/IBVO5nS\nRPs7WHYLg8w12l4aIm8ZnusPC2NL3ml8e2/SYm9kTGWtPEitBOZqq7xMfdPjTfs3H4RHElaXzOUL\nIEzLmGj3BMViDn9mvpueb8hpFZvata3+tBZ4OqtQZJAAPdz5Fk1/0zeXMRa45leHMEl/5qt+MpYH\nfhTKwvI+KJU1go+7rHV5Y2uBT6m7xPU7w29t+sQyUAyT7Ho+xCpd96lP/Mu6F15KwAsrvVwpFTNV\nroLTVn9bC8xFtlWvKxzXMEjgnPSyDaRG5305Fb7WEqfnymriLmhH3wezCFsloE2U9d82Ag/3UDEO\nfI9gOtnUWn4XBT6S4He9rBqMHfXowTNWjBe797XzVMLxi5fnHjblXW0EPqRWAVQT2ZVKC04RbwaV\nJapmlFwuBLtmpCWPQtDD3yzZwYjF7l11QyxhIJ9NtnHeNgJnF1PPmLUeNgl/+KO2HcnjcCQjs/rU\nPoYkZvuSXzVR171E5hfC/uDSOdjmtNkIzA3wUsC5kZeM6OpiEi4GgvSoP2qIqhxaMlCDX8nhecWi\n4i6Uz8NUykea7GV7AmwFPsCT2EgZPgLxYP4eDHaCmucxMbKHEM9jSuC2Yeys+UFik8/gC9IOYbEZ\nbJP02gqcHaLStDwl9FXxDVJre58W38KOESyFvK4H2Xcw9/gAJMtrZVePpO9+zUP7UNu7oq3A3Ag3\npdKEWbMIpHwZ/w2PwMtJdwhbGl7ewYwL3KtBuCYOwIeE3cHhqWGE7Vt2Av+qzqJwanBDyW1OeNbD\n+dknly5JZfyQXBIryOKSfyzKgP91P1n2VzRW2K8W2QnMlamvfEc4bgFK2qYtTE+MJkcxlJLE72cw\nsqM/rRCIFKNyTqNI8JU19cvYvWUv8AzmmvI9SQ2VvoC5nNIS6EkdTsiNyC2gvwbZ3JHdkjeJMA99\nDYoHK13jSZVkL/ANVoUQlo/gIMpmxjeRi49mVgmh5v70JKQq6nrFCGRHkH88eklvJI8pGvvfkL3A\nXOMoxedsmVGI65Kp8Z6IJoLZsJ28P7Zskx4X57Ia0EshjNKIVSGhgDGKJzMmj8AbQGpWJ5s1CJXt\ncrkbHYS0OHSF7qpre08kB9MfdC3RnXMf+SqcVf97PiddHoHTAmg4GIphjK2EfJM471sBxbrcwodq\nIvd/fFAi8S4GVMB5LExnlKpUkEuXAJ6sQTwCcyMMCi/774TP0Tfer28o7ba2lXYS4vnwteQ2j0sG\nYjmS/xeQQNwfBO4Z+MwAfAL/ifoEIqV+FI6n4Xqmp9T1nhxRhdCLQ4jMKpFSk+FUgfxbwsxiFMp1\n/oLZcJbnXT6BuXolFXWfPYEZcj1D0slqLIt5qqX5mRkrvoGxm1D+LUGSAhUsoZRdoh7f27wCfyWx\nDiCTLn6YYSL9JOYiF3Xy/CF56aUX9zkYS+APO1tBv+Td/KuvvAJnhCoZ7H9bh2vTyUrQiM6BGvsr\nUEjlnn8TsY+JssY/81fuKdwylPcpxSswN5mlWV7XhvEa7NqBz2t5iESAfE2xkrQFS2Gb8Ic7tQkk\nJWOnM7grZKhcZifzvs8v8B39MIX6wXHpxdrh73S/ZIBgYElaiVjKI6xcMmNLCCYrPepekyiS+Ym3\nLJcxEYYZ7vK+zy8w18tbsWT064nsKNdDwoQmuu/bLXJTYr+gj+U5/7KED4XRGmVKJz71FjCECgj8\nu0ClRQrElyGyhJ70K/eI94N/vQnuCGi0FShLdzs65Bphk3fcqC2JWDGXEVgfERCYa1BcoaC4P2Eh\n2Y6HPOJ5fWn66hUoB5zL33re6N5HFX0InWtNDHRTwoqUESaUsF9I4N1KVWEZ4k7q17pT9xqPS+tp\nVsHSNSM1PGOipNruMjyDLrNK1FpfJzixFRLYWLGKImtKyb49ifddw7S1H7k2C5TlCC3O40D7uhoZ\nTVlZfoltA+n7rRorVxRSS0hgbq0yxo7P5YyIFkFv2++xj2puLTvmwz6bd7K7MJ/IavKw7Phne3bD\nOqGPBAXOjKpDvR8mGsXIsYJOAZvpm7FatKIB9BnR1W1+UkNkG+prlKd+b3w1WnCiKCiwaZ6P7wEu\nyQ12qqz9R9qYpb9UumDbeps11nEk/vjWrAOZ0Rd2/ChSx01Y4NRgOXWdBJjJyMvUZOxrFamXXqoS\n1g0Bv5xYdqXSljvMhOGCm6KSFkzbXtksWNj7VFhgbh5QX6LhytWV2UB2V8tp1nLMHNcE5cR2WiZ4\nXAR9KdxeJ7LX5DdiwTGxcYiIwM8Dm1Pth4mTVjm6iMjqAPmDnNTimOMEknJir4bnXx4fM2/SWEe9\nqZVYicSkWaBIsI2IwNxc6pfwKAO/NQqHjDasORveYjTfzAJIyokdgCV5r5Yxb9AxercLohny/7Oo\n1VFM4KRiTSn2g8tx+3udQiupLTW5BS9SiiE5V1tAVE6sQd4TbhXzOiVdvhULnMWmabBYtJyYwKZL\nGDMhoATH6ZQiSW2UW6x9HvY4n6ic2OHcR9znmia04seyo0SXmvE4LL5sICpwSqjcMZE143Ty79A5\npDTUmCb2KSE8bsDikJUTaxySwnEbtHyGUkKmURxm1QkT7ZeowNwy2Cv6OSYlaY3anjdiN5qGtNj5\nzsjKiR2CRdxatgHF7CVyzQEW7JUYt4oLnB5djaL73Tn5Y2gzKfU1q8J5ncyUoF74Wk1jeteviaYx\nlKxZ2dVixE154gJzG+Qlf7NmDkMvw/3zJgx1g5Ag+4BtSHeFYD3+3YefL6RSjksInF0lmt6Ivk5V\n6W2Qee7OfEqxOVFWgQdlB5fn3nSqRKRFV5W4xUoIbLrFE67P2/NEO5FWU1yOa281RmZRW1QWs9Wo\nzmty6FkEqTi1FAsl0yRKCcw1C6CV0mEzHKXUUg7Vy6Qm0PvxiTGPaZdcugblRr+lEgz5NEByvUBS\n4NMaWh4T/XxJHE0F2A8ruPT2SsfY5DANOmVyy2k79mUE8uTZxYbX48QaSYG5PgZKPtLRNJ3jXg82\n3eIyu5NmDkbnHeiblbMCRMMGZ0l/b/nD8st6keLXeUgLfM+7veye5HAt36ZLgYvMi6S52UNgqKLR\n6llvwbAXo5jpDGHyTCG+F3OrR6Sdt7QDn7TA3Cw6t6e1QKk0UQ4D3fL8khOhhyJe77mkd4Bxua/u\nuw2i23RmgOz8lftRstgiCJwaU5HGOewTSO9ae+yZf296H9pSGY/ykdyUyV89fsuTsnNfT3+ZzkaZ\nFWIQvjmCwNw3QGM+UpZimbcP4Uz+60VMY2r18Kx5XEtTENV4mnYms69BZlq+hYBSnBFFYK6Zv3xn\n7YcMvRFvdrSlm/d6bS06axg23K6gt4zyfy2abtB0Em9APjr3/JAs+0gCn9f1lNWXHPbQMs5xOW40\nVqHXez0rKlDl81KE30HLvzdjugdJ0tQ+axkOPfRISXuQBOZGM7Lrd03R0LuRtgq1fnz97B/+B7XG\nzW0GBJ+0eiMjhPJMaZGsUpFHmTFI26EJ/DyyktxxVkI5mQ0UcJ2dZPPOnyH+lCvIbfMoaVteeiJP\nmjE5XJTjAZ8ZG4m2fIkmMLdNdrRhOA3LTS4TNXalpq6W8NxBrX0TSzVxdvGhN+x+VzIJl5E3ay7q\nNBpRYC7BU97P9wm9Cm9ZoS3s33xYR0NtsZnLHgNteOxMzUMp2lpN9ClCPGy7gVx6GlXgm57ynkBH\n6IU67eL98Sa3ggmUJtppXWEwn5RfI+fnQ2M9EOdzaOWFWi8PVWBuAXxF2JkXrAAZRcWseaMY73gg\nYwB0pxKn9LAuw3+3yShGNxv+TWL7wkb0dTRkgTPjguXMNkd6oFxeKKElD/VCy1vTmeZEtXisuVjS\nsFHgo3f1Ekm9MUNjoggTdjwMjkMe8yILzJ3WyUmHm1AJZSuU0JIlwjbtjfpY2UXqf/APEXT3/1Nq\nvQQzNObN4ujbWtJLd0Z6ozzQBeYS4VuCzuRREWmtECW0pKaI48+hgBCZyQI/1pW7Jvxp1TjxvTFD\nY5YC0ch1D84iKYbAaWWiyD2TvJDscgihJZdE8yCej/GQM1TIHAFNxRxYPgTxtXHM0JjjgF05yMTT\nyLIYyysYAnPHyMtOPUYLxEcILZmsETVL3n+FnYneLRueNIe3RR9utzXi2fAxQ2PS9ePQN85ngAYn\nZAxHYG4kQ5oq/CzaGBwhtKRMI/HP07pBd0JH0HPltFL5+RuVFf0YNzSmGkEI9g/MezibYwmcUi6S\nsC7CfrSlBunQklOW4bq8GKexdYkWv/b5BUrGOq0Qn7rihsb0KYaxcS5PIsth+fpgCcwd1xKmdf0S\nzqNsJh1aghLetNUzQrCWryDG97WVr0lu9VDLX9I6D9zQmIWA/VPspcUbRuIJzE0i9CRaBvyZFLEp\niRLRerK4l3S+dmuSOkJHlOCFJqUwGxZlH7Y31Ne4xdExBc6oGkSk1CygE3r5B9oKzP16zEQsu+Vf\nlVi01ZTlND3LuH+Qi/LkcTeoKqa1DlNg7pwbUQaRRB3JXvZMY9HuaWlvQRsMh/2dvkUQA53usdPQ\nm5XE6ImZOjvB7RzmIXAF5hYASR6wd3ATJwhQDTkpx2Jd2UuIm2aNYWogW8DqVEPdEoVKeI5qH+PH\ncmALbGzmgXriLBhcFH8fHm4KLAPw8UNR/51IG95tDH3RHyBzGZr1e9rE4mx90aM59oIZtsDcncDq\n+H6qA4Oxd+HjE7TBeC63arETERZwj4R5rsXownmiO5gQw3wxNk6rFog/AMIXmNvJ2BWplYSSwAkl\ncbZOHwjNHkhsY5ylLY03bCpJM43ZXMDwVBvBELj9EQjMvc2g3fssGBJIcBw7Uj0xKw2sco8ULzZ2\nvwV0xTSwv+1FsZb3ekBPAL+DIamzQCJwarWi/2Lu8q43wXHs2IftFnIyxk04jSPHHQxzx77h7qaZ\nWeA7QHYW/DewOskvi0Rg7rJXPUwnywkaGu407xmwE6E8aS18iWaOZcvhu9s+N2CUj5biOKD6CmbW\n9SKq9kAkMLcON+cq1rNGkKq4ic9MGGdoy/GVfOO4a69CL5IQzgYUM1H8DagDvPGEeXXJBOb6sXj5\nlT4lW9q25gHZSuChUHe+bB5rff0l8pcIMIOVGrmhc08kEbAVe1nCpB6EAqdWLYrq1veCHUChLOMW\nwtyZpoluF9sbyNNuEI/1DQr4GWSl9LciCdHf/GZgVcKhHaHA3EXveJxlk9+QIuEkeNtLyA4r4exm\nnKsp+avVO/vCtZNEhhGi7WV4olf9liITZqBsll7bm8C69AJSgbmvmKEYW9+lEd5fSTDDo6Sz29Fw\n3bwCL/PU4Uwp0ZuBeHuNcTMSC2MEcReRPIYwxFl+iAXmRuE89bGt6jw8FbbzSzu7PWkHzc1zu1MV\noL/4mE+8vakaelmzkAReD6PJD0C8Z1ZDd4xl9cry65nuhf1CHyE4uxk/8Qx8sUicPkkfLGWoEW9v\nv2RyKmQyYbr0RifdG5HHzJALzN2PiEJ3he8WSX6gPKZoBWfBSM5u5yszA5O5c1Wht6TfkXh7SRpq\nqUSTERJBPYyKkFE9V4bA3HG3Rsj2jjmM7Cj85lUEP0JzdksbpynbX1cMwdlDor3K1God3Jcem2Q0\ndJMzA5EjsOnZgGwd/UH2bc0YIDwTRHV2W6WDyhLRJyjt9QuglU/mirShY5i8ykGyBObehs8Qt3wm\n4VEszRURf0o0Z7ekkZrQZhCHkPlAor3lsmLzLTkOUsOB1egXES/yBM5soEc1lld/TdaRcnJkiC8M\nSfJtJDvgObc92P0DuWG+x6mZOnbBr+Ib/KRvKC+3gjyBuQclghHtQaPxFwqsmaCTlQ/rbmeo+OLH\n+LADxCOlLxEmVUurgugKCRPuzWIlZNpFZQrMnfOphpYq+4Dc1H2vV5Sxc+YyX/cZ5h/IOn83mRdx\nhdaydi9gglb0+kyu6oPrZGeLXIG5PZpWSIkIMvx7yjtQVDfyfY/VhGYWOVX+TYBaxMH1OXSLkrO3\nBV1LiH2a3VIjOy+CbIG5xYC2PtrbV5YnRBJDHFT2sB8TZhPT/XlR7TgZd/yZDKWcUFV50o0UMIqC\ngVe+wKahNFL6k/1S1QXEOQ64wQp5ZC31042xsy0+6g0VyKurbpU74Msj010skOwjmQPoF1AQOLOl\nFiU5SXaERFygOJ/jOFRacDAWmvAu+O8pzgwkDKXjzsMXhHta84dYO7u1LSlk9aEgMJdcw/t3hM1m\nMXIGDJO0JLfUs60gWsgpJuU9bTDhTSVNM5lsRxtWigSU/+5dk0alFxoCc7cjghEcNh569pFxjG4x\n+PvcH6bz+VDEYHGqJjQhW2eNppPWrWdRQZPYjeBIKgk4qQjMnfUvj5BNeZjuGvkhamPXsUub46MZ\nLG6mN37sqx9Pcp00iifYyZ4IwVx3j8r7y50g5UJHYO6Qoa60/9ot957kRwiWLk9gRcaq4pDA721n\nyb0eTCRBooy3QvD3see8YKxkSh0DpeS8lATmtmjaSo8IxrLEg880vKg+4+bSUBNtlHzYNArDDgmd\nytJIM/++UJxTVhsNLWMoLYFNY/pBkkss/wXXIs3OeAVWS29kxrirClRETk6aucRXPwxzMXMVleWG\n6gJLksZBuHHDwlATmBsPotkNXvAlLCBs/SjGcuO3NSD6CxwT/aOBmsDFWFOSvTSKfF0QSmWYiOt2\nLgI9gbkBCOq19iCbzXJbADEGIXtrdYhei7sCc64JlMWxlZ+hsZ40Us8fzT4fBshv3AxFgbO7Muuk\ntrkTEks2uVuGlq4kc115KLWGJCfpzjLQAH2EcJdCpdzkAP5UlWuZbhRrQVEUmMtoIT00+I7tRNT7\nKQzCLTRteQyUWkv4mM9cGgydbbO8C27MyHfLWgJH+N7erGlJJWluHjQF5p7X1UuufrwPJNnduGF+\nkps8mhYKtb+UYd17NsnLMAQxbtJ3OPlxckmPfIXv7d36uhRLjVMWmPuvhvtBqW0GExUg6hEtscG5\nAXpowXtJYHD3Hb3XOKRnQVQPmYfilsI+nncPuNegW6qYrsDcw4reUic5qxNDUP+hjahfe8b25ozH\nW0ThlTbc6K3xmohglavcVuaBHhflW3s54l0RxSkQA8oCc3dL+Uo5eWZ0hHHYz+FGIul17kwLh+Jz\naBXHutSF8ZkgKfGr2JZTGwZpeVwOjvuWppQwLh/aAnO3Y/yklpayBsMbuAvm8UIZ7rL2JGiZpttp\nlss43YnxfveO+DZNeB+g6PzI8qwEn/CLoV7hi7rA3I0SAZKLhx9qcUPrq/F7QZ0dGQLBo1HHvsic\n7anxGiG6QNZaXrqsJ1El7aeLvweUpFuZKQf6AnNXI/0kg5YOhBg+xLroKnSwf++fedVAm7CFMHmw\nOJf6GnQ9RNYq3pDjAsgZ2+ntH2Sn/CJpuVtboIDA3PWoQEmTwf02UFPCJdiKsp1tG1hcV8PU/oj2\nI6uAO2N9maY7hSbVnWUVcpvAY/Q7ERBF//pVRmDuarTfL5IbbQxhu6LfW8t0tfzr8rzaWqgw9Qp+\n13D474NQKLGEfxm0i5zKkiuYnnbv/eIbfU1Gk4IoIjD3T4yvtMLPEj013U9KbpZL2S7mVyn7RpYC\npvJU6bVe+aR/XhN8R/K5yXcWT/0uyhc8tqpffErQTJFYgDICczdKeSOUP77znhfUXoOU6abCC9+H\nrF9mNDCAZ/OlCl+7Fhzr7AZNt9gJ0qECcYsrNQ3sBliHvEspcX/mFBOYuxPrjuKz/eDDsuDT5Utp\n78YqbR5+O76RLzCxw3fQ8EXD4OGsaAgbZeNA00Y4llWc7AlMSztb5B73WIlpGTFKCcw9qqxHyith\nPNInCLS1R+8QngFm/bVpir8bgL7K0A3yS5ETkLWnrQ7qL7e0fjStTdbU49bQ3+52sElfWZEa5jko\nJjD3sKZmFdqWxqMT6ugAQhq9NWfdoXP/5l3Oz+9e+XnX2km9GkexAKxH0Q+PqHzlWnFvbgXQd9qa\nH5xRhyAnm4nvI/T2ibE+1cRRtk9aoJzA3LMGjFgNK2vSjy3o+0oxsEMTVKfD2PWnUolvifQ4PSIY\nfN7cnqtxFbxM3rk87seUtp9Afsg0oFByUQgFBeZS2+DUYMsh5dKhLctnTx9jYvrsTzbsPnHFfMlI\nriapQfYPfQPBt+N60706Gn81KW1ZgGaMfXzWeGhDMX2tHUoKzGX2gMHENZCtGSG9HqwK2T8MDAW2\n7gwv3JzZSfPDoYX91C57MPSUF+EtgaICc8Z3oAsdS+IMRhGLJAlZxydUA/B+c9UV9B/viXf9oeFB\n+/fTu8C7FP1zeFBW4JwHTCPSCC8rVoAydgBCTkF8EEBgm9n7pWu7GM9MjAVdDz7Lz+NGLPowhQyl\nBeY26CvhZg/nY4dUMgt1+RV2Gi+s7VmSAbZc17lb/xa6llN+W9ItCJj4FbxuGrdj9bJCalFQXGBu\nn1c0ejljQU4SVWJVjC2Qa2N9+N30N6IZAF2p17pPWLZp/59XHj428e+V0wc3Lxr+eqwGoHin9QKT\n9zPRXnxeO3RRXmDuVLif/Dibh2j1adViHlhYJp7+vmZyt9phOtspnmds22lbhe03h/zC8UssYqOC\nwNzN8oY1shvxpZfDlwJD+crh3D/149efL18+f+Hy5eu+Pnxewji1xlCeMGE1FmoIzD1ryoyXO1as\nLprNQm2a15DZgHE801RB80YBqgjMZfSFriTlESygltiGCnJS/uSQ0gX60nRvF0YdgTnuA02cvPWS\n6SxVf3B5JLFIidoFuROnIXEOJ0EtgbmtXgRVmy3YDtIuBKpxTF6FgpMRXqrNCVQTmDsZ7rlZxu7X\n6YXMyucjuC5j782eagyf81BPYO7Oq0yiDMt0YF96XZFLXxmV+rITmVeVWt3nQUWBubTe0AqjarMN\nLSvJ74FEdRZkYskLFDxtBX1opH9ARU2BOW6htvxF0n1nsPKN2pLVWdB4QlahK4cL5bTYNZ5loa7A\n3IEg/+2Eux4EguKqNkhXZ0FiJxwk3HO7f9AB+cfHQWWBuRu1mESyOKJUN7G8jmggVGdB4T03siX6\nrESmlhrWK0vUFphL6wctyDzMGsh/CCNVZ5GmEplD1qMW0E/Nx+8LVBeY49Z6RhEt/c1hZK87olVn\nkeI2M5dkt18iPSVzmNDHAQJz50rrPyAwTf8hUpUDEdTqLOIsB+zEaTn1E/Vl6CQnxMMRAnP/dYbX\nCW7TMbKrp6FVZ5GiBUFe1EevQ2e6uRkQcYjAnHGpPgI/k9hIAxXvH7k80eOP9o5E6Jcq63slhGME\n5rjfS2tn4Jq1fkWu0qQon2F7D2VP15ZGyaitBI4SmHvWA5pg5iswlpSVM54WjUpiXou3mkAPVdZ+\n+XCYwKYrwbsIZlXcKaxCIXg43GAxc6BtKuIt36GFGAcKzF2tDX2x4o2us5MV6goGk/F+Zcl9If6a\nQl1BwZECc+mTtCUO4uzQoriiUQAoZIZhjeUPltBOcqjLvkMF5rhjMWwihuvKLvhKub6gsRFQSszk\nkTGOjXGwn4KDBeaSBjCV0d2ms0vHKdgXJOJKow/+z1RmBlCqoEWMowXmuL0h+mnIN7GPASEzhJIc\nhE9QN02fpg/Zq2RfkHC8wNyT/0Es6iwxLaSBon2R5LVQ1OWC3ytC90JgmCkEAnPcN8X1kxDP23z+\nJMtqcQS1JkHaRH1xWY55tCgUAnPPekFZtBopKeF1Fe6LKHXC0dy7D5eFXg6zbVhROATmuG+jmQFI\nN7QVQOoSQoFtsBJlsycDmGjHP31zKSwCc89HaUNQ3GozK5SUGSNBTkqJCijz8M0h2lGFxku/0AjM\ncSdrQEMEl7zvQX65BEKmwvfSG11sCDVQ8/epQCESmMta4G8YL/3T72wgKygpm4sG24yo9jxPNPgv\npJm8Wi6FSWCOe9CDiZQsX3SvSB1KmV3wyH61iGQatm2RTI8HanQGmcIlMMftrwxNpWpnrSGunyaL\nBSC1KHSuKVTZr0pf0ClsAnOZS4rohkiMp9sYKCSFwOW0QSL32ZPBuiJLHL4YYkuhE5jj7g9lAxaL\nrkDcDymnelrD5HIhorWIMxYFsEPFqxU7hEIosOlW1xhKi852D2q7in2sBF21olbw7aWhsSOcJiUp\nlAJz3O7y8OpPIp/PASLXZHLmih7wp1ehPMYqopoUUoG5zI/DIIEv1Xouxi6sqpbe7WwXYUesCwkQ\n9nFhmhpZUlgF5rikmX7a3oJx1slxnlIFuCjym2ec4EP/em+t30xHr/oKU3gF5riHI9wM/YQyGN6L\nCSAsRYzPuYAYoRnwP/0MbiOUy/Ysn8IsMMfdHmpwHyrg4/Z3SCiNYoUI/BUaIlAj4sZQd8NQ6sXK\nqFK4BTadwn46wyD+0/tnUJgqCv8VFsRf4eXKIIOuXyFw5BWlsAtsesYNNOh7896NzxQtpoJV/2Sx\norxmlXO99W4D5eRiUYfCLzDH3RrhqWn/G88HF8P9FLcM7vcL51vi+q29xvOdW0ofnAIvg8Ac92iS\nP9TZY7/EcLOSfrWyR16lr2Qfk5+951Xwn6RYoRSqvBwCmyZN8yKh1CK7zAn/tYChCvqVpw+FlnZB\nn6mLSkHk/MI7MbLmZRGY47I21YTAsbYPvaxhUE+xYeztejDM1oBxfWwg1NxUWM0a9rw8Apv4tYeb\npu1e82hUfAAAA4lJREFUm5O70SNATgY9ETYHeNgEUmTtbatx61mocs9L8VIJzHEPZkZB2CTrMrvn\nK0MfyZLs+DzuA5WtB+9XJ4VB1MzCtZ4vyUsmsOki+qYZy7ayqhaZNllXfAvt42wJ002x9NXO2NyK\nZZt98/Lcm/N46QQ2cXNyCAQOtTRFH68OLagaLs+3gOqWB/htaCCETFY7xxUNXkaBOc743ZsGKDut\nYLUpc56/ZjC15fb7gzX+8wt8My5MKwuGN79zTI4NubycApt4uroxC3Ez840Q9wbrvCdQsfo/HO+t\nG5y/uHBxZhywjVeTJ1F1MC+twCbuLKjNQvlEc+7ly11Y75Gy76I3R3qzXS7n/XEqsTywtReomP2X\nOi+zwCb+WfwaC8WH7sy1gJztrtV2PirjVmo82lmr7Z67tJC6Y2hxYF9bXKgqruHzkgts4v7K9j7g\n3mTuiRxL5s1RAVBmDqHl4/acMhAwKucekH1ibhM38Gm/shB60WHy8gtsIv374eUYCGy39PdMLnVN\nHYZpsOgubht3FzVgmDprUrnM35e2CwSm3PDvC005TDk4hcA53FnbMwbAo8n0XXevTq4AbK2pvyLH\nP2T/OrUWCxUmX727a3oTD4CYnmtf5seuFU4jcA7XNgyvzpj0SZi+YEw1BtxbTJYuDvp0/+QW7sBU\nG7NgeoLpF8JUH77hmgpdVQ2nEjiHtJ/ndyqnAdCVrVc9jAUmql3iF8d5b9h3j3+e2C6KATaser2y\nOgBNuU7zf1Y9n7PSOJ3AL3h2Yt2ohCgDmK5ID4Ppmgb30NhmHXoOGTNx9uyJY4b07NAsNtQ951OD\nR86nhqiEUetOFI6IfNo4p8C5ZFw/uDqxX+v4IMa2LmguTFB8636Jqw9eV6fInGNwZoELyHp85eKJ\n43s3fLlm9eqV677ed/zExSuPX7p1AyL+fwj8/xiXwE6OS2AnxyWwk+MS2MlxCezkuAR2clwCOzku\ngZ0cl8BOjktgJ8clsJPjEtjJcQns5LgEdnJcAjs5LoGdHJfATo5LYCfHJbCT4xLYyXEJ7OS4BHZy\nXAI7OS6BnRyXwE6OS2AnxyWwk+MS2MlxCezkuAR2clwCOzkugZ0cl8BOjktgJ8clsJPjEtjJcQns\n5LgEdnJcAjs5LoGdHJfATo5LYCfHJbCT4xLYyXEJ7OS4BHZyXAI7OS6BnRyXwE6OS2AnxyWwk+MS\n2Mn5P3AKPpEV/1SDAAAAAElFTkSuQmCC\n",
"text/plain": "<IPython.core.display.Image object>"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "boxplot_data = {}\nfor key, val in bf_outliers.items():\n val = val.sort(inplace=False, ascending=False)\n boxplot_data[key] = {val.index[0]: val[0]}",
"execution_count": 1217,
"outputs": []
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "boxplot_data",
"execution_count": 1218,
"outputs": [
{
"execution_count": 1218,
"output_type": "execute_result",
"data": {
"text/plain": "{u'AI_Q1': {'0-11252-01-353': 182.49000000000001},\n u'AI_Q2': {'2-10309-01-389': 85.611000000000004},\n u'AI_Q3': {'2-10390-01-65': 24.484000000000002},\n u'AI_Q4': {'UMN-6288-01-39': 108.73}}"
},
"metadata": {}
}
]
},
{
"metadata": {
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "",
"execution_count": 1225,
"outputs": [
{
"execution_count": 1225,
"output_type": "execute_result",
"data": {
"text/plain": " county state lat long countyid 0-10037-01-257 \\\n0 COLUMBUS NC 34.33010 -78.70453 11 NA \n1 COLUMBUS NC 34.33010 -78.70453 11 A/G \n2 COLUMBUS NC 34.33010 -78.70453 11 A/G \n3 COLUMBUS NC 34.33010 -78.70453 11 A/A \n4 COLUMBUS NC 34.33010 -78.70453 11 A/G \n5 COLUMBUS NC 34.33010 -78.70453 11 A/A \n6 ONSLOW NC 34.75963 -77.40977 26 A/A \n7 ONSLOW NC 34.75963 -77.40977 26 A/A \n8 ONSLOW NC 34.75963 -77.40977 26 A/A \n9 ONSLOW NC 34.75963 -77.40977 26 A/A \n10 ONSLOW NC 34.75963 -77.40977 26 A/A \n11 ONSLOW NC 34.75963 -77.40977 26 A/G \n12 ONSLOW NC 34.75963 -77.40977 26 A/A \n13 ONSLOW NC 34.75963 -77.40977 26 NA \n14 ONSLOW NC 34.75963 -77.40977 26 A/A \n15 ONSLOW NC 34.75963 -77.40977 26 A/G \n16 ONSLOW NC 34.64551 -77.41295 26 A/G \n17 ONSLOW NC 34.64551 -77.41295 26 G/G \n18 ONSLOW NC 34.64551 -77.41295 26 A/A \n19 GEORGETOWN SC 33.36318 -79.30539 14 NA \n20 GEORGETOWN SC 33.36318 -79.30539 14 A/G \n21 GEORGETOWN SC 33.36318 -79.30539 14 G/G \n22 GEORGETOWN SC 33.36318 -79.30539 14 A/A \n23 GEORGETOWN SC 33.36318 -79.30539 14 A/A \n24 GEORGETOWN SC 33.36318 -79.30539 14 A/A \n25 GEORGETOWN SC 33.36318 -79.30539 14 A/A \n26 GEORGETOWN SC 33.36318 -79.30539 14 A/A \n27 GEORGETOWN SC 33.36318 -79.30539 14 A/G \n28 GEORGETOWN SC 33.36318 -79.30539 14 A/A \n29 BEAUFORT NC 35.55349 -77.05205 2 A/A \n.. ... ... ... ... ... ... \n358 MECKLENBURG VA 36.66800 -78.38900 23 G/G \n359 MECKLENBURG VA 36.66800 -78.38900 23 A/G \n360 MECKLENBURG VA 36.66800 -78.38900 23 G/G \n361 MECKLENBURG VA 36.66800 -78.38900 23 A/A \n362 MECKLENBURG VA 36.66800 -78.38900 23 A/A \n363 HALIFAX NC 36.32840 -77.59073 16 A/A \n364 HALIFAX NC 36.32840 -77.59073 16 A/A \n365 HALIFAX NC 36.32840 -77.59073 16 A/A \n366 HALIFAX NC 36.32840 -77.59073 16 A/G \n367 HALIFAX NC 36.32840 -77.59073 16 G/G \n368 HALIFAX NC 36.32840 -77.59073 16 A/G \n369 BERKELEY SC 33.19661 -80.00666 3 A/A \n370 BERKELEY SC 33.19661 -80.00666 3 A/A \n371 BERKELEY SC 33.19661 -80.00666 3 A/G \n372 BERKELEY SC 33.19661 -80.00666 3 A/A \n373 BERKELEY SC 33.19661 -80.00666 3 A/A \n374 BERKELEY SC 33.19661 -80.00666 3 A/A \n375 BERKELEY SC 33.19661 -80.00666 3 G/G \n376 WILCOX AL 31.98678 -87.28057 34 A/A \n377 WILCOX AL 31.98678 -87.28057 34 A/A \n378 WILCOX AL 31.98678 -87.28057 34 A/A \n379 WILCOX AL 31.98678 -87.28057 34 G/G \n380 WILCOX AL 31.98678 -87.28057 34 A/G \n381 WILCOX AL 31.98678 -87.28057 34 A/G \n382 WILCOX AL 31.98678 -87.28057 34 A/G \n383 SPOTSYLVANIA VA 38.20208 -77.58750 29 A/A \n384 SPOTSYLVANIA VA 38.20208 -77.58750 29 A/A \n385 SPOTSYLVANIA VA 38.20208 -77.58750 29 A/G \n386 SPOTSYLVANIA VA 38.20208 -77.58750 29 A/G \n387 SPOTSYLVANIA VA 38.20208 -77.58750 29 A/G \n\n 0-10040-02-394 0-10044-01-392 0-10048-01-60 0-10051-02-166 0-10054-01-402 \\\n0 A/A C/C G/G G/G G/G \n1 C/C C/C G/A G/G G/A \n2 C/C G/G G/G G/A G/A \n3 C/A C/G G/G G/A G/G \n4 C/A C/G G/G G/G G/G \n5 C/C C/C G/G G/G A/A \n6 A/A C/G G/G G/G G/A \n7 C/A NA G/A G/G G/A \n8 C/C C/C G/G G/G A/A \n9 A/A C/C G/G G/G G/A \n10 C/A C/G G/A G/G G/A \n11 C/A G/G G/G G/G G/A \n12 C/A G/G A/A G/G A/A \n13 C/C G/G G/A G/G G/A \n14 C/A NA G/G G/G G/G \n15 A/A C/G G/G G/A A/A \n16 C/C C/C G/A G/G G/A \n17 C/A C/C G/A G/G A/A \n18 C/A C/G G/A G/G G/G \n19 C/A NA NA G/G G/A \n20 C/C C/G G/A G/G G/A \n21 C/C C/G G/G G/A A/A \n22 C/C C/G G/G G/G G/A \n23 C/A G/G G/A G/G G/A \n24 C/C C/C A/A G/G G/G \n25 C/A C/C G/G G/G G/A \n26 C/A C/G G/A G/G G/A \n27 C/A C/G G/G G/G A/A \n28 C/C G/G G/G G/G G/A \n29 NA C/G G/A G/G A/A \n.. ... ... ... ... ... \n358 C/A C/C G/G G/G G/A \n359 C/C C/G G/A G/G G/G \n360 A/A C/C G/A G/A G/A \n361 C/A G/G G/G G/G G/G \n362 C/C G/G G/G G/A G/A \n363 A/A NA G/A G/A G/A \n364 A/A C/C G/G G/G G/A \n365 C/A C/G G/G G/A A/A \n366 A/A NA G/G G/G G/A \n367 C/A C/G G/G G/G A/A \n368 C/A G/G G/G G/G A/A \n369 C/A C/C G/A G/G G/G \n370 C/A C/G G/G G/G G/A \n371 C/A G/G G/G G/G G/A \n372 C/A C/C G/A G/G G/A \n373 C/A C/G A/A G/G G/G \n374 A/A C/C G/G G/A A/A \n375 C/A C/G G/G G/G G/G \n376 A/A C/C G/A G/G G/A \n377 C/A G/G G/A G/G A/A \n378 C/A NA G/A G/G A/A \n379 C/C G/G G/G G/G G/G \n380 A/A G/G G/A G/G G/A \n381 C/A C/G G/A G/G G/G \n382 C/C G/G G/A G/G G/A \n383 C/A G/G G/G G/G G/G \n384 A/A G/G G/G G/A G/A \n385 C/A NA G/G G/G G/A \n386 C/A C/G G/G G/A G/G \n387 C/A G/G G/A G/A G/A \n\n 0-10067-03-111 0-10079-02-168 0-10112-01-169 0-10113-01-119 ... \\\n0 A/A G/G A/A A/G ... \n1 A/A G/G A/A A/A ... \n2 A/A G/G A/A A/G ... \n3 A/A G/A A/A A/G ... \n4 A/A G/G A/A A/A ... \n5 A/A G/G A/A A/G ... \n6 A/A G/G A/A A/A ... \n7 A/A G/G A/A A/G ... \n8 A/G G/G A/C A/A ... \n9 A/A G/G A/A A/G ... \n10 A/A G/A A/A A/G ... \n11 A/A G/G A/C A/A ... \n12 A/A G/G A/A A/A ... \n13 A/A G/G A/A A/A ... \n14 A/A G/G A/A A/A ... \n15 A/G G/G A/A A/A ... \n16 A/A G/G A/A A/G ... \n17 A/A G/G A/A A/A ... \n18 A/A G/G A/C A/A ... \n19 A/A G/G A/C A/G ... \n20 A/A G/G A/A A/G ... \n21 A/A G/G A/A A/A ... \n22 A/A G/G A/A A/A ... \n23 A/A G/A A/A A/A ... \n24 A/A G/G A/A A/G ... \n25 A/A G/G A/A A/G ... \n26 A/A G/A A/C A/A ... \n27 A/A G/G A/A A/G ... \n28 A/A A/A A/A G/G ... \n29 A/A G/G A/A A/G ... \n.. ... ... ... ... ... \n358 A/A G/G A/A A/A ... \n359 A/A G/G A/A A/A ... \n360 A/A G/G A/A G/G ... \n361 A/A G/G A/A A/G ... \n362 A/A G/G A/C A/A ... \n363 A/A G/G A/C A/A ... \n364 A/A G/G A/C A/G ... \n365 A/G G/G A/A A/A ... \n366 A/A G/G A/A A/A ... \n367 A/A G/G A/A A/A ... \n368 A/A G/G A/A A/G ... \n369 A/A G/G A/A G/G ... \n370 A/A G/G A/A A/G ... \n371 A/A G/G A/A A/A ... \n372 A/A G/A A/A A/A ... \n373 A/A G/G A/A A/G ... \n374 A/A G/G A/A A/G ... \n375 A/A G/G A/A A/A ... \n376 A/A G/G A/A A/G ... \n377 A/A G/G A/A A/A ... \n378 A/A G/G A/A A/G ... \n379 A/A G/G A/A A/G ... \n380 A/A G/G A/A A/A ... \n381 A/A G/G A/A A/A ... \n382 A/G G/G A/A A/A ... \n383 A/A G/G A/A A/A ... \n384 A/A G/G A/A A/A ... \n385 A/A G/G A/A A/G ... \n386 A/G G/G A/C A/A ... \n387 A/A G/G A/A A/A ... \n\n UMN-CL353Contig1-04-64 UMN-CL362Contig1-07-133 UMN-CL363Contig1-01-233 \\\n0 A/A NA G/G \n1 A/A C/A G/G \n2 A/A C/C G/A \n3 A/A C/C G/G \n4 A/A C/C G/G \n5 A/A C/C G/G \n6 A/A C/A G/G \n7 A/A C/C G/G \n8 A/A C/A G/G \n9 A/A C/A G/G \n10 A/A NA NA \n11 A/A C/C G/G \n12 A/A C/C G/A \n13 A/A C/C G/G \n14 A/A C/C G/G \n15 A/A A/A G/G \n16 A/A C/C G/A \n17 A/G C/A G/A \n18 A/A C/A G/G \n19 A/A C/A G/G \n20 A/A C/A G/A \n21 A/A C/C G/G \n22 A/A C/C G/A \n23 A/A C/C G/G \n24 A/A C/A G/G \n25 A/A C/C G/G \n26 A/A C/C G/G \n27 A/A C/C G/G \n28 A/A C/C G/A \n29 A/A C/A G/G \n.. ... ... ... \n358 A/G A/A G/G \n359 A/A C/A G/G \n360 A/A C/C G/G \n361 A/A C/A G/G \n362 A/A C/C G/A \n363 A/A C/C G/G \n364 A/A C/C G/G \n365 A/G C/C G/G \n366 A/A C/C G/G \n367 A/A C/C G/G \n368 A/A C/C G/G \n369 A/A C/C A/A \n370 A/A NA G/G \n371 A/A NA G/G \n372 A/A C/A G/G \n373 A/A C/C G/G \n374 A/A NA G/G \n375 A/A C/A NA \n376 A/A C/A G/G \n377 A/A NA G/G \n378 A/A C/A G/A \n379 A/A C/A G/G \n380 A/A C/C G/G \n381 A/A C/A G/G \n382 A/A A/A G/G \n383 A/A C/A G/G \n384 A/A C/C G/G \n385 A/A C/A G/A \n386 A/A C/A G/G \n387 A/A C/C G/G \n\n UMN-CL379Contig1-12-117 UMN-CL424Contig1-03-94 UMN-CL54Contig1-07-88 \\\n0 A/A C/A G/G \n1 A/A C/A G/A \n2 A/A C/C G/G \n3 A/A C/C G/G \n4 A/A C/A A/A \n5 A/A C/A G/A \n6 A/A C/C G/A \n7 A/A C/C G/A \n8 A/A C/C G/G \n9 A/A C/A G/G \n10 A/A A/A G/G \n11 A/A A/A G/G \n12 A/A C/C G/A \n13 A/A C/C G/A \n14 A/A C/C G/A \n15 A/A C/C G/A \n16 A/A C/C G/G \n17 A/A C/A G/A \n18 A/A C/C G/A \n19 A/A C/C NA \n20 A/A C/A G/G \n21 A/A C/A G/A \n22 A/A C/C G/G \n23 A/A C/C G/G \n24 A/A C/C G/A \n25 A/A C/C G/G \n26 A/A C/C G/G \n27 A/A C/C G/G \n28 A/A C/A G/G \n29 A/A A/A G/G \n.. ... ... ... \n358 A/A C/A G/G \n359 A/A C/A G/A \n360 A/A A/A G/G \n361 A/A C/C G/A \n362 A/A C/C A/A \n363 A/A C/C G/A \n364 A/A C/A G/G \n365 A/A C/A A/A \n366 A/A C/C G/G \n367 A/A C/C G/A \n368 A/A C/C G/A \n369 A/A C/A G/G \n370 A/A C/A G/G \n371 A/A C/A G/G \n372 A/A C/A G/G \n373 A/A C/C G/G \n374 A/A A/A G/A \n375 A/A A/A G/A \n376 A/A C/C G/A \n377 A/A A/A G/G \n378 A/A C/A G/G \n379 A/A C/A G/A \n380 A/A C/C G/A \n381 A/A C/A G/G \n382 A/A C/C G/G \n383 A/A C/C G/G \n384 A/A C/A A/A \n385 A/A C/C G/A \n386 A/A C/C G/A \n387 A/A C/A G/G \n\n UMN-CL91Contig1-02-246 UMN-CL97Contig county_state County \\\n0 C/A A/A COLUMBUS_NC COLUMBUS \n1 C/C G/A COLUMBUS_NC COLUMBUS \n2 C/C G/G COLUMBUS_NC COLUMBUS \n3 C/C G/A COLUMBUS_NC COLUMBUS \n4 C/C G/A COLUMBUS_NC COLUMBUS \n5 C/C G/A COLUMBUS_NC COLUMBUS \n6 C/C G/G ONSLOW_NC ONSLOW \n7 C/C G/A ONSLOW_NC ONSLOW \n8 C/C G/G ONSLOW_NC ONSLOW \n9 C/C G/G ONSLOW_NC ONSLOW \n10 C/C G/G ONSLOW_NC ONSLOW \n11 C/A G/G ONSLOW_NC ONSLOW \n12 C/C G/A ONSLOW_NC ONSLOW \n13 C/C G/G ONSLOW_NC ONSLOW \n14 C/C G/A ONSLOW_NC ONSLOW \n15 C/C G/G ONSLOW_NC ONSLOW \n16 C/C G/G ONSLOW_NC ONSLOW \n17 C/C G/G ONSLOW_NC ONSLOW \n18 C/C G/G ONSLOW_NC ONSLOW \n19 C/C NA GEORGETOWN_SC GEORGETOWN \n20 C/A G/G GEORGETOWN_SC GEORGETOWN \n21 C/C A/A GEORGETOWN_SC GEORGETOWN \n22 C/C G/A GEORGETOWN_SC GEORGETOWN \n23 C/C G/G GEORGETOWN_SC GEORGETOWN \n24 C/C G/A GEORGETOWN_SC GEORGETOWN \n25 C/A G/G GEORGETOWN_SC GEORGETOWN \n26 C/A G/G GEORGETOWN_SC GEORGETOWN \n27 C/C G/A GEORGETOWN_SC GEORGETOWN \n28 C/A G/G GEORGETOWN_SC GEORGETOWN \n29 C/A G/G BEAUFORT_NC BEAUFORT \n.. ... ... ... ... \n358 C/C G/A MECKLENBURG_VA MECKLENBURG \n359 C/C G/A MECKLENBURG_VA MECKLENBURG \n360 C/C G/G MECKLENBURG_VA MECKLENBURG \n361 C/A G/G MECKLENBURG_VA MECKLENBURG \n362 C/A G/G MECKLENBURG_VA MECKLENBURG \n363 C/A G/G HALIFAX_NC HALIFAX \n364 C/C G/G HALIFAX_NC HALIFAX \n365 C/C G/G HALIFAX_NC HALIFAX \n366 C/A G/G HALIFAX_NC HALIFAX \n367 C/C G/G HALIFAX_NC HALIFAX \n368 C/A A/A HALIFAX_NC HALIFAX \n369 C/C G/G BERKELEY_SC BERKELEY \n370 C/C G/G BERKELEY_SC BERKELEY \n371 C/C G/A BERKELEY_SC BERKELEY \n372 C/C G/A BERKELEY_SC BERKELEY \n373 C/C G/A BERKELEY_SC BERKELEY \n374 C/A G/A BERKELEY_SC BERKELEY \n375 C/C G/G BERKELEY_SC BERKELEY \n376 C/C G/G WILCOX_AL WILCOX \n377 C/C G/G WILCOX_AL WILCOX \n378 C/A G/G WILCOX_AL WILCOX \n379 C/A G/A WILCOX_AL WILCOX \n380 C/C G/G WILCOX_AL WILCOX \n381 C/C G/G WILCOX_AL WILCOX \n382 C/C G/G WILCOX_AL WILCOX \n383 C/C G/A SPOTSYLVANIA_VA SPOTSYLVANIA \n384 C/A G/G SPOTSYLVANIA_VA SPOTSYLVANIA \n385 C/C G/G SPOTSYLVANIA_VA SPOTSYLVANIA \n386 C/C G/G SPOTSYLVANIA_VA SPOTSYLVANIA \n387 C/C G/G SPOTSYLVANIA_VA SPOTSYLVANIA \n\n State AI_Q1 AI_Q2 AI_Q3 AI_Q4 \n0 NC 6.737349 1.031164 1.017138 2.443279 \n1 NC 6.737349 1.031164 1.017138 2.443279 \n2 NC 6.737349 1.031164 1.017138 2.443279 \n3 NC 6.737349 1.031164 1.017138 2.443279 \n4 NC 6.737349 1.031164 1.017138 2.443279 \n5 NC 6.737349 1.031164 1.017138 2.443279 \n6 NC 6.094570 1.059794 1.153282 2.515655 \n7 NC 6.094570 1.059794 1.153282 2.515655 \n8 NC 6.094570 1.059794 1.153282 2.515655 \n9 NC 6.094570 1.059794 1.153282 2.515655 \n10 NC 6.094570 1.059794 1.153282 2.515655 \n11 NC 6.094570 1.059794 1.153282 2.515655 \n12 NC 6.094570 1.059794 1.153282 2.515655 \n13 NC 6.094570 1.059794 1.153282 2.515655 \n14 NC 6.094570 1.059794 1.153282 2.515655 \n15 NC 6.094570 1.059794 1.153282 2.515655 \n16 NC 6.094570 1.059794 1.153282 2.515655 \n17 NC 6.094570 1.059794 1.153282 2.515655 \n18 NC 6.094570 1.059794 1.153282 2.515655 \n19 SC 6.051620 1.024486 1.129748 2.631683 \n20 SC 6.051620 1.024486 1.129748 2.631683 \n21 SC 6.051620 1.024486 1.129748 2.631683 \n22 SC 6.051620 1.024486 1.129748 2.631683 \n23 SC 6.051620 1.024486 1.129748 2.631683 \n24 SC 6.051620 1.024486 1.129748 2.631683 \n25 SC 6.051620 1.024486 1.129748 2.631683 \n26 SC 6.051620 1.024486 1.129748 2.631683 \n27 SC 6.051620 1.024486 1.129748 2.631683 \n28 SC 6.051620 1.024486 1.129748 2.631683 \n29 NC 6.241730 1.048126 0.994917 2.433338 \n.. ... ... ... ... ... \n358 VA 5.839441 0.899897 0.711595 2.700255 \n359 VA 5.839441 0.899897 0.711595 2.700255 \n360 VA 5.839441 0.899897 0.711595 2.700255 \n361 VA 5.839441 0.899897 0.711595 2.700255 \n362 VA 5.839441 0.899897 0.711595 2.700255 \n363 NC 5.674788 0.920890 0.798284 2.431289 \n364 NC 5.674788 0.920890 0.798284 2.431289 \n365 NC 5.674788 0.920890 0.798284 2.431289 \n366 NC 5.674788 0.920890 0.798284 2.431289 \n367 NC 5.674788 0.920890 0.798284 2.431289 \n368 NC 5.674788 0.920890 0.798284 2.431289 \n369 SC 6.181043 1.048869 1.042944 2.354930 \n370 SC 6.181043 1.048869 1.042944 2.354930 \n371 SC 6.181043 1.048869 1.042944 2.354930 \n372 SC 6.181043 1.048869 1.042944 2.354930 \n373 SC 6.181043 1.048869 1.042944 2.354930 \n374 SC 6.181043 1.048869 1.042944 2.354930 \n375 SC 6.181043 1.048869 1.042944 2.354930 \n376 AL 9.683140 1.140042 0.806234 3.265560 \n377 AL 9.683140 1.140042 0.806234 3.265560 \n378 AL 9.683140 1.140042 0.806234 3.265560 \n379 AL 9.683140 1.140042 0.806234 3.265560 \n380 AL 9.683140 1.140042 0.806234 3.265560 \n381 AL 9.683140 1.140042 0.806234 3.265560 \n382 AL 9.683140 1.140042 0.806234 3.265560 \n383 VA 5.494060 0.888762 0.709162 2.838240 \n384 VA 5.494060 0.888762 0.709162 2.838240 \n385 VA 5.494060 0.888762 0.709162 2.838240 \n386 VA 5.494060 0.888762 0.709162 2.838240 \n387 VA 5.494060 0.888762 0.709162 2.838240 \n\n[388 rows x 3094 columns]",
"text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>county</th>\n <th>state</th>\n <th>lat</th>\n <th>long</th>\n <th>countyid</th>\n <th>0-10037-01-257</th>\n <th>0-10040-02-394</th>\n <th>0-10044-01-392</th>\n <th>0-10048-01-60</th>\n <th>0-10051-02-166</th>\n <th>0-10054-01-402</th>\n <th>0-10067-03-111</th>\n <th>0-10079-02-168</th>\n <th>0-10112-01-169</th>\n <th>0-10113-01-119</th>\n <th>...</th>\n <th>UMN-CL353Contig1-04-64</th>\n <th>UMN-CL362Contig1-07-133</th>\n <th>UMN-CL363Contig1-01-233</th>\n <th>UMN-CL379Contig1-12-117</th>\n <th>UMN-CL424Contig1-03-94</th>\n <th>UMN-CL54Contig1-07-88</th>\n <th>UMN-CL91Contig1-02-246</th>\n <th>UMN-CL97Contig</th>\n <th>county_state</th>\n <th>County</th>\n <th>State</th>\n <th>AI_Q1</th>\n <th>AI_Q2</th>\n <th>AI_Q3</th>\n <th>AI_Q4</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0 </th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> NA</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> NA</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> C/A</td>\n <td> A/A</td>\n <td> COLUMBUS_NC</td>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 6.737349</td>\n <td> 1.031164</td>\n <td> 1.017138</td>\n <td> 2.443279</td>\n </tr>\n <tr>\n <th>1 </th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> COLUMBUS_NC</td>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 6.737349</td>\n <td> 1.031164</td>\n <td> 1.017138</td>\n <td> 2.443279</td>\n </tr>\n <tr>\n <th>2 </th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> COLUMBUS_NC</td>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 6.737349</td>\n <td> 1.031164</td>\n <td> 1.017138</td>\n <td> 2.443279</td>\n </tr>\n <tr>\n <th>3 </th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> COLUMBUS_NC</td>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 6.737349</td>\n <td> 1.031164</td>\n <td> 1.017138</td>\n <td> 2.443279</td>\n </tr>\n <tr>\n <th>4 </th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> A/G</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> COLUMBUS_NC</td>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 6.737349</td>\n <td> 1.031164</td>\n <td> 1.017138</td>\n <td> 2.443279</td>\n </tr>\n <tr>\n <th>5 </th>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 34.33010</td>\n <td>-78.70453</td>\n <td> 11</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> COLUMBUS_NC</td>\n <td> COLUMBUS</td>\n <td> NC</td>\n <td> 6.737349</td>\n <td> 1.031164</td>\n <td> 1.017138</td>\n <td> 2.443279</td>\n </tr>\n <tr>\n <th>6 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>7 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> NA</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>8 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>9 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>10 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> NA</td>\n <td> NA</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>11 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> A/G</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>12 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>13 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> NA</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>14 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> NA</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>15 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.75963</td>\n <td>-77.40977</td>\n <td> 26</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>16 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.64551</td>\n <td>-77.41295</td>\n <td> 26</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>17 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.64551</td>\n <td>-77.41295</td>\n <td> 26</td>\n <td> G/G</td>\n <td> C/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/G</td>\n <td> C/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>18 </th>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 34.64551</td>\n <td>-77.41295</td>\n <td> 26</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> ONSLOW_NC</td>\n <td> ONSLOW</td>\n <td> NC</td>\n <td> 6.094570</td>\n <td> 1.059794</td>\n <td> 1.153282</td>\n <td> 2.515655</td>\n </tr>\n <tr>\n <th>19 </th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> 14</td>\n <td> NA</td>\n <td> C/A</td>\n <td> NA</td>\n <td> NA</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> NA</td>\n <td> C/C</td>\n <td> NA</td>\n <td> GEORGETOWN_SC</td>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 6.051620</td>\n <td> 1.024486</td>\n <td> 1.129748</td>\n <td> 2.631683</td>\n </tr>\n <tr>\n <th>20 </th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> 14</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> C/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> GEORGETOWN_SC</td>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 6.051620</td>\n <td> 1.024486</td>\n <td> 1.129748</td>\n <td> 2.631683</td>\n </tr>\n <tr>\n <th>21 </th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> 14</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> A/A</td>\n <td> GEORGETOWN_SC</td>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 6.051620</td>\n <td> 1.024486</td>\n <td> 1.129748</td>\n <td> 2.631683</td>\n </tr>\n <tr>\n <th>22 </th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> 14</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> GEORGETOWN_SC</td>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 6.051620</td>\n <td> 1.024486</td>\n <td> 1.129748</td>\n <td> 2.631683</td>\n </tr>\n <tr>\n <th>23 </th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> 14</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> GEORGETOWN_SC</td>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 6.051620</td>\n <td> 1.024486</td>\n <td> 1.129748</td>\n <td> 2.631683</td>\n </tr>\n <tr>\n <th>24 </th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> 14</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> C/C</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> GEORGETOWN_SC</td>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 6.051620</td>\n <td> 1.024486</td>\n <td> 1.129748</td>\n <td> 2.631683</td>\n </tr>\n <tr>\n <th>25 </th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> 14</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> GEORGETOWN_SC</td>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 6.051620</td>\n <td> 1.024486</td>\n <td> 1.129748</td>\n <td> 2.631683</td>\n </tr>\n <tr>\n <th>26 </th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> 14</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/A</td>\n <td> A/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> GEORGETOWN_SC</td>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 6.051620</td>\n <td> 1.024486</td>\n <td> 1.129748</td>\n <td> 2.631683</td>\n </tr>\n <tr>\n <th>27 </th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> 14</td>\n <td> A/G</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> GEORGETOWN_SC</td>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 6.051620</td>\n <td> 1.024486</td>\n <td> 1.129748</td>\n <td> 2.631683</td>\n </tr>\n <tr>\n <th>28 </th>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 33.36318</td>\n <td>-79.30539</td>\n <td> 14</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> GEORGETOWN_SC</td>\n <td> GEORGETOWN</td>\n <td> SC</td>\n <td> 6.051620</td>\n <td> 1.024486</td>\n <td> 1.129748</td>\n <td> 2.631683</td>\n </tr>\n <tr>\n <th>29 </th>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 35.55349</td>\n <td>-77.05205</td>\n <td> 2</td>\n <td> A/A</td>\n <td> NA</td>\n <td> C/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> BEAUFORT_NC</td>\n <td> BEAUFORT</td>\n <td> NC</td>\n <td> 6.241730</td>\n <td> 1.048126</td>\n <td> 0.994917</td>\n <td> 2.433338</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>358</th>\n <td> MECKLENBURG</td>\n <td> VA</td>\n <td> 36.66800</td>\n <td>-78.38900</td>\n <td> 23</td>\n <td> G/G</td>\n <td> C/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> MECKLENBURG_VA</td>\n <td> MECKLENBURG</td>\n <td> VA</td>\n <td> 5.839441</td>\n <td> 0.899897</td>\n <td> 0.711595</td>\n <td> 2.700255</td>\n </tr>\n <tr>\n <th>359</th>\n <td> MECKLENBURG</td>\n <td> VA</td>\n <td> 36.66800</td>\n <td>-78.38900</td>\n <td> 23</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> C/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> MECKLENBURG_VA</td>\n <td> MECKLENBURG</td>\n <td> VA</td>\n <td> 5.839441</td>\n <td> 0.899897</td>\n <td> 0.711595</td>\n <td> 2.700255</td>\n </tr>\n <tr>\n <th>360</th>\n <td> MECKLENBURG</td>\n <td> VA</td>\n <td> 36.66800</td>\n <td>-78.38900</td>\n <td> 23</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> G/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> MECKLENBURG_VA</td>\n <td> MECKLENBURG</td>\n <td> VA</td>\n <td> 5.839441</td>\n <td> 0.899897</td>\n <td> 0.711595</td>\n <td> 2.700255</td>\n </tr>\n <tr>\n <th>361</th>\n <td> MECKLENBURG</td>\n <td> VA</td>\n <td> 36.66800</td>\n <td>-78.38900</td>\n <td> 23</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> MECKLENBURG_VA</td>\n <td> MECKLENBURG</td>\n <td> VA</td>\n <td> 5.839441</td>\n <td> 0.899897</td>\n <td> 0.711595</td>\n <td> 2.700255</td>\n </tr>\n <tr>\n <th>362</th>\n <td> MECKLENBURG</td>\n <td> VA</td>\n <td> 36.66800</td>\n <td>-78.38900</td>\n <td> 23</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> MECKLENBURG_VA</td>\n <td> MECKLENBURG</td>\n <td> VA</td>\n <td> 5.839441</td>\n <td> 0.899897</td>\n <td> 0.711595</td>\n <td> 2.700255</td>\n </tr>\n <tr>\n <th>363</th>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 36.32840</td>\n <td>-77.59073</td>\n <td> 16</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> NA</td>\n <td> G/A</td>\n <td> G/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> HALIFAX_NC</td>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 5.674788</td>\n <td> 0.920890</td>\n <td> 0.798284</td>\n <td> 2.431289</td>\n </tr>\n <tr>\n <th>364</th>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 36.32840</td>\n <td>-77.59073</td>\n <td> 16</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> HALIFAX_NC</td>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 5.674788</td>\n <td> 0.920890</td>\n <td> 0.798284</td>\n <td> 2.431289</td>\n </tr>\n <tr>\n <th>365</th>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 36.32840</td>\n <td>-77.59073</td>\n <td> 16</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> A/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> HALIFAX_NC</td>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 5.674788</td>\n <td> 0.920890</td>\n <td> 0.798284</td>\n <td> 2.431289</td>\n </tr>\n <tr>\n <th>366</th>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 36.32840</td>\n <td>-77.59073</td>\n <td> 16</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> NA</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> HALIFAX_NC</td>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 5.674788</td>\n <td> 0.920890</td>\n <td> 0.798284</td>\n <td> 2.431289</td>\n </tr>\n <tr>\n <th>367</th>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 36.32840</td>\n <td>-77.59073</td>\n <td> 16</td>\n <td> G/G</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> HALIFAX_NC</td>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 5.674788</td>\n <td> 0.920890</td>\n <td> 0.798284</td>\n <td> 2.431289</td>\n </tr>\n <tr>\n <th>368</th>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 36.32840</td>\n <td>-77.59073</td>\n <td> 16</td>\n <td> A/G</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/A</td>\n <td> A/A</td>\n <td> HALIFAX_NC</td>\n <td> HALIFAX</td>\n <td> NC</td>\n <td> 5.674788</td>\n <td> 0.920890</td>\n <td> 0.798284</td>\n <td> 2.431289</td>\n </tr>\n <tr>\n <th>369</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n <td> 3</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> BERKELEY_SC</td>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 6.181043</td>\n <td> 1.048869</td>\n <td> 1.042944</td>\n <td> 2.354930</td>\n </tr>\n <tr>\n <th>370</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n <td> 3</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> NA</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> BERKELEY_SC</td>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 6.181043</td>\n <td> 1.048869</td>\n <td> 1.042944</td>\n <td> 2.354930</td>\n </tr>\n <tr>\n <th>371</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n <td> 3</td>\n <td> A/G</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> NA</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> BERKELEY_SC</td>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 6.181043</td>\n <td> 1.048869</td>\n <td> 1.042944</td>\n <td> 2.354930</td>\n </tr>\n <tr>\n <th>372</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n <td> 3</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> BERKELEY_SC</td>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 6.181043</td>\n <td> 1.048869</td>\n <td> 1.042944</td>\n <td> 2.354930</td>\n </tr>\n <tr>\n <th>373</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n <td> 3</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> BERKELEY_SC</td>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 6.181043</td>\n <td> 1.048869</td>\n <td> 1.042944</td>\n <td> 2.354930</td>\n </tr>\n <tr>\n <th>374</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n <td> 3</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> NA</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/A</td>\n <td> C/A</td>\n <td> G/A</td>\n <td> BERKELEY_SC</td>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 6.181043</td>\n <td> 1.048869</td>\n <td> 1.042944</td>\n <td> 2.354930</td>\n </tr>\n <tr>\n <th>375</th>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 33.19661</td>\n <td>-80.00666</td>\n <td> 3</td>\n <td> G/G</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> NA</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> BERKELEY_SC</td>\n <td> BERKELEY</td>\n <td> SC</td>\n <td> 6.181043</td>\n <td> 1.048869</td>\n <td> 1.042944</td>\n <td> 2.354930</td>\n </tr>\n <tr>\n <th>376</th>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 31.98678</td>\n <td>-87.28057</td>\n <td> 34</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> WILCOX_AL</td>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 9.683140</td>\n <td> 1.140042</td>\n <td> 0.806234</td>\n <td> 3.265560</td>\n </tr>\n <tr>\n <th>377</th>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 31.98678</td>\n <td>-87.28057</td>\n <td> 34</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> NA</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> WILCOX_AL</td>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 9.683140</td>\n <td> 1.140042</td>\n <td> 0.806234</td>\n <td> 3.265560</td>\n </tr>\n <tr>\n <th>378</th>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 31.98678</td>\n <td>-87.28057</td>\n <td> 34</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> NA</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> WILCOX_AL</td>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 9.683140</td>\n <td> 1.140042</td>\n <td> 0.806234</td>\n <td> 3.265560</td>\n </tr>\n <tr>\n <th>379</th>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 31.98678</td>\n <td>-87.28057</td>\n <td> 34</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/A</td>\n <td> C/A</td>\n <td> G/A</td>\n <td> WILCOX_AL</td>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 9.683140</td>\n <td> 1.140042</td>\n <td> 0.806234</td>\n <td> 3.265560</td>\n </tr>\n <tr>\n <th>380</th>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 31.98678</td>\n <td>-87.28057</td>\n <td> 34</td>\n <td> A/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> WILCOX_AL</td>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 9.683140</td>\n <td> 1.140042</td>\n <td> 0.806234</td>\n <td> 3.265560</td>\n </tr>\n <tr>\n <th>381</th>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 31.98678</td>\n <td>-87.28057</td>\n <td> 34</td>\n <td> A/G</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> WILCOX_AL</td>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 9.683140</td>\n <td> 1.140042</td>\n <td> 0.806234</td>\n <td> 3.265560</td>\n </tr>\n <tr>\n <th>382</th>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 31.98678</td>\n <td>-87.28057</td>\n <td> 34</td>\n <td> A/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> WILCOX_AL</td>\n <td> WILCOX</td>\n <td> AL</td>\n <td> 9.683140</td>\n <td> 1.140042</td>\n <td> 0.806234</td>\n <td> 3.265560</td>\n </tr>\n <tr>\n <th>383</th>\n <td> SPOTSYLVANIA</td>\n <td> VA</td>\n <td> 38.20208</td>\n <td>-77.58750</td>\n <td> 29</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> SPOTSYLVANIA_VA</td>\n <td> SPOTSYLVANIA</td>\n <td> VA</td>\n <td> 5.494060</td>\n <td> 0.888762</td>\n <td> 0.709162</td>\n <td> 2.838240</td>\n </tr>\n <tr>\n <th>384</th>\n <td> SPOTSYLVANIA</td>\n <td> VA</td>\n <td> 38.20208</td>\n <td>-77.58750</td>\n <td> 29</td>\n <td> A/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> SPOTSYLVANIA_VA</td>\n <td> SPOTSYLVANIA</td>\n <td> VA</td>\n <td> 5.494060</td>\n <td> 0.888762</td>\n <td> 0.709162</td>\n <td> 2.838240</td>\n </tr>\n <tr>\n <th>385</th>\n <td> SPOTSYLVANIA</td>\n <td> VA</td>\n <td> 38.20208</td>\n <td>-77.58750</td>\n <td> 29</td>\n <td> A/G</td>\n <td> C/A</td>\n <td> NA</td>\n <td> G/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/G</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> SPOTSYLVANIA_VA</td>\n <td> SPOTSYLVANIA</td>\n <td> VA</td>\n <td> 5.494060</td>\n <td> 0.888762</td>\n <td> 0.709162</td>\n <td> 2.838240</td>\n </tr>\n <tr>\n <th>386</th>\n <td> SPOTSYLVANIA</td>\n <td> VA</td>\n <td> 38.20208</td>\n <td>-77.58750</td>\n <td> 29</td>\n <td> A/G</td>\n <td> C/A</td>\n <td> C/G</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> G/G</td>\n <td> A/G</td>\n <td> G/G</td>\n <td> A/C</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> SPOTSYLVANIA_VA</td>\n <td> SPOTSYLVANIA</td>\n <td> VA</td>\n <td> 5.494060</td>\n <td> 0.888762</td>\n <td> 0.709162</td>\n <td> 2.838240</td>\n </tr>\n <tr>\n <th>387</th>\n <td> SPOTSYLVANIA</td>\n <td> VA</td>\n <td> 38.20208</td>\n <td>-77.58750</td>\n <td> 29</td>\n <td> A/G</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> G/A</td>\n <td> G/A</td>\n <td> G/A</td>\n <td> A/A</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> A/A</td>\n <td>...</td>\n <td> A/A</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> A/A</td>\n <td> C/A</td>\n <td> G/G</td>\n <td> C/C</td>\n <td> G/G</td>\n <td> SPOTSYLVANIA_VA</td>\n <td> SPOTSYLVANIA</td>\n <td> VA</td>\n <td> 5.494060</td>\n <td> 0.888762</td>\n <td> 0.709162</td>\n <td> 2.838240</td>\n </tr>\n </tbody>\n</table>\n<p>388 rows × 3094 columns</p>\n</div>"
},
"metadata": {}
}
]
},
{
"metadata": {
"scrolled": false,
"collapsed": false,
"trusted": false
},
"cell_type": "code",
"source": "bayenv_df_ai_basegt = bayenv_df_ai.apply(convert_to_snpassoc)\nfor env in boxplot_data:\n for snp in boxplot_data[env]:\n vals = {}\n for gt, group in bayenv_df_ai_basegt.groupby(snp):\n if not gt == 'NA':\n vals[gt.replace(\"/\", \"\")] = group[env]\n vals = pd.DataFrame(vals, dtype=float)\n vals.index.name = env\n\n sns.boxplot([vals[x].dropna() for x in vals], \n names=vals.columns)\n plt.title(\"%s/%s (%.4f)\" % (testsnp, vals.index.name, boxplot_data[env][snp]))\n plt.show()\n\n sns.violinplot([vals[x].dropna() for x in vals], \n names=vals.columns)\n plt.title(\"%s/%s (%.4f)\" % (testsnp, vals.index.name, boxplot_data[env][snp]))\n plt.show()",
"execution_count": 1228,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAHDCAYAAACZN0aDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4ZFWd//F3Q0OnbWURHEBHBQ18QRzBBVSUHwiuaAZF\nRVFpFRdwHFwYRhBHBmUbF3BBcUNk6HGDcSPiuAEq4+4gOIJ8myCIgyzSCkLbgU53fn+cGymLSlJN\n0l2nU+/X8+RJcu65t76Vrtv55Jx7T80bHx9HkiRJ9dqg1wVIkiRpagY2SZKkyhnYJEmSKmdgkyRJ\nqpyBTZIkqXIGNkmSpMrN73UB0lwQEUcDrwO2Aq4Ejs7Mr3ex3zzgKOAE4PjMfEfb9r8BPg/sBWyb\nmde1bX888C5gF2A58A3gLZm5rNl+FrC4w0N/OTMPaPoMAMcCBzb1LwVOyMwvdVH/K4G3Ag8BftPs\nt6Stz32BM4EXAHtn5ve6OO79gZOA5wBbAlcD78vMM5rt2wK/nmT3XTPzF02//YG3AY8A7gQuAN6c\nmde3Pd4FwNcz8z0tbQ8HrgJ+k5nbdajxOOCNmbn5dM+nw74vAV5L+XdbQPnZfRF4d2be1tb3KODV\nwIOB3wOfA96WmXdN8xg7A98HnpmZP4qIHYH3Ao8HVgPfA47MzN9Msv9pwOvp8Lqb4jHvsU/z+voX\nyuvrgZR/t9Mz86OTHOMhwBXAuZn5ypb2bYDTgKcB84D/Ag7PzJsjYpfm+Tw1M3/aTa3S+sYRNmmG\nIuJwyi+ktwB/B5wLfCUiHjXNfvcDvgC8CrgLGG/b/njgEmCL9m3N9h2AC4EEdgdeCuwN/Htb1x8A\nW7d9vKJl+4ea798A7Ap8Ezg3Inafpv4h4BPAqZTnfQrwyYh4VluNPwZ2nOpYHXwReCLwYkrY+gLw\n8Yh4Zlu/Azo8t8ubx9632e/LwKOA5zWf/7PteQw0j3VB27EXA78AHhQRe05S5xovZBkRHwM+Dnwd\n2IPyszkGGAJ+2gSTib7voATitzb9/hn4B+Cd0zzGQsrzfHcT1rYELgLGKK+R5wDbUl6nG3bYfzfg\nNWvy/KbY512UcPom4JGU18tpEfGqSQ71IWCj1uNExAbAeZQ/KJ4K7NN8/RWAzLyM8kfHuRGxSbc1\nS+sTR9ikGWgZIftgZn6+aT6xCRZH0nl0a8K+wH0pYavTaNGRlBGRa4BOo12vBW7OzEOb76+KiOOB\nMyPifpl5e9O+MjNvnqT+TYGXA4dm5tea5rdGxIuBFwE/maL+twLntIyUXNUEm7dSRj8ADgPOBz4L\n/M8Ux2qt6aGUkaehzPzvpvnYiHgRJaC1jlz+YbLnBjwX+GZmntR8/+smAH06IrbJzBua9icBo5l5\nSdv+LwU+COwPvAy4uMNjzOvmObU8t+dTRsuenpmtAfG6iPg28FPgw5TnSfPY787MiZB5bUQ8pdl+\n9BQP9XpgM0qIhhJ8NwFekpl/bmr5Z0rg3wn4ZUuNGwIfA86ivMa6eV5T7fMS4GMtr6+zIuKFlNfX\nJ9uO8zzgCcBX+euf7VOBxwI7ZubSpu+rKK+5fTLzQsrP7c3APwH/2k3d0vrEETZpZnakTPN8o639\nQkogm8oPKNNVf5xk+xsy8/1MHgreBuzW1nZT83mLaR4bgGb6bRvg022bbp7qGBFxH8rUWqfnvUdE\nLGi+f29mvoU1GKnJzN9k5uYtYW3CPGDVGhzn8Mzcr8MxaKtnX8ro019ExJMpI1DnAp8BXhARG3f7\n2FM4HPhGW1ibqPd24Hhg/4h4cNO2a0vgbH0Ok/4cImI+ZSTuw5l5Z9P8MeBhE2GtMfFa2bJDjQsp\nI2Hdmmqf1ZSRvVZ3Nu2tdd8X+ADlD5U/tfXflzI1vXSiITOvBq5rtpGZY5SA/YZm1FSaUwxs0swM\nNp+vaWu/BtimmZrqKDNvzszVU2y/YbJtzfY7M/OWtuZnATdl5rVT7dt2nFtafrETEQ+kTB1ONbr2\ncEpw6PS8NwAe1hz7d93WMZmIGGhGg7aiBI97e5xHUEalPpOZN7Zs2pcSNFstBi5q/g2+ANwHePa9\nfezm8edTQm6nkboJ36T8XJ/cYf8NmunmA7l75KyT3YEHcPcoJ5m5MjNvauv3LEpwuqzlMf4WeAfl\neswpr5Fbg30+BhwSEX/X9N+Tch3aGW39jgeuzsyzuecfKYPc87VG07Z9y/dfBzalw89PWt8Z2KSZ\nuV/z+fa29juaz+vsepqI2JtyfdPxbZv+JiI+HRG/iYjfRsQHmuvnOh1jQ+BTwI3N58msk+cdEZdT\nbqY4FHhGZl7a1uVlEfGziPh9RPwoIp7a4RgvjYgVwP9SRtJe3rJtU+AxtAS2ZnTwBcASgMy8lTKt\n+7IZPp0tKTcYTHoBf2b+HhgF/rbtOXy0af88cMTEzReTeHLTt32Kt/V4O1KugzutbYT3g5QbUr4z\n5TP5a1Puk5nHAt8CLouIu4DvAO9omeYlIh5NmUo9bJLHuB/3fK1BeW385bWcmVcAf6RMc0tzioFN\nmgOaKbzzgM9m5uktm26lTP8NU0ZUjgJeSJnqaz/GfMq1Zo8HDsjMFWu77i48kzJidD7w9Yh4YtO+\nijKlN04Z2XkO5e7cr0fEHm3H+ArlmrgDgf0oz3HC3sDvM/NXLW1/DwwA50XE/Obn8jlgvybgzdTK\nyTY0j7VRh01vp9wQ8lbggxHxj1McfyvKtY0dp6GbsHYh5WaQY1rah4D/R7kGrCvd7NPcTbsf5Tq6\nx1Gur3t7RBzUbN+AMgp3amZms9s49+KGjsYNlGl+aU7xpgNpZiaWYNiE8pf9hIlf7LdFxDGUX7QT\nXpuZraFhRiJiH0pY+yIto0cAmfmmtu5XRMRK4PMRsUPLBdwbA+cAe1IuiP95y/HvUT93T6O1j6T9\n5Xl3WftHKRf3T3hmZn6/pf7fAr8F/qe5GeFkytIgv+Wev5R/HBGPpVxP9YOWY9xBWapkaURcDVwS\nEXtl5neZfDp0APhDh5IPpNwZe2/cQpkyfNgUfR4IbEh5zn/RjLz9nvLvtxHwroj45CShehM6j0bR\n3Ln8Lcq/3/7NdV9ExCLK3Zlv6TDN3vEaym72ae5OPYbymj+n2faLiHgYZdmWz1JGhTcFTpziMW+j\nTPO22xS4vkPfzTrVLK3PHGGTZuaq5vPD29q3B67LzFHgI5QRnomP4dl68IjYlRLWlmTm4slGVdpc\n0XzetqXtk5SlLfbOzPZr19rrP49y7dAqOj/vMcq6ad14e9ux/yciHhoRr2juwG11JXdfMziZK4GH\nAkTEc5qlJtq303KcvwpsEfEA4BnAP1JGgyY+dqME2ns9LdqEox9TQt9k9qKMLF0cEYsi4qDmGrH2\n57CQEu46+RMdpqSbGxm+AfwIeHZb2HscZZ23j0XEyibUT7y2RyKiU0jtZp/tKAMDV7TtezXw0CZ8\nHkD597i95TgHA4sj4q4o67JdxT1fa1Beb1e2tW1GGVmW5hRH2KQZyMylEXENZbqxdaTmmTQXfTfX\nCE12J+i91txV92XgK5n5ug7bN6QsNHp+Zp7fsunRzedfN/0Op6xRtmdm/m/7cSarPyIupjzvM1ua\nnwlckJmTTvu1HXti5Kj1uDs2x0zghy2bdqa58Dwink2ZujxsIqQ2U2u7cPfNEm+jhJdntB0DyvIY\n21CWtGi9Y/MgYAVwRvvCtBHxKeBrEfHgZoTv3jgd+GxEvKD1Gq7m+JtQ1vP7UmZe34xg/TtliYqT\n257DatpG4VrcRNtoVPOz+QLlZ/r8iZG1Fj+lrJHW6kGUgPcsmrXtZrDPI/jrm1h2AG7MzJURcQjl\npo4J8ygLSY9Tfh6/o9xMcHRE7JyZE+vs7Qr8DS03VzS2olyDKc0pBjZp5k4APhwRP6H8EjuUMhpw\nwFQ7NcFk6+bb+cB2zY0DUILKxPVaE78Un9hMJf2xWSj0TZTRhOMiYuI4E27NzNFmSuqTEXEYZRps\nF8pCpl/NzJEm9L2TEiRuaDvOqiZQTeZEyjVjrwO+Rlkz7NmU68ImnuMTKNOLEyNaj27Cw2hm/miS\n434b+DllPbnXUy7Sf15z7IkRrusp078bRcTEHZNvoowaTvR5N/CFiHgnZdmSLSkB9grgu5R1wK5t\nW+l/MSXgdrrb8ULKdNvL+OsA1bXM/HyUtcaWNHetfpFyo8YulH+H+ZRrvMjM5RHxEUpQ+S1lmvfR\nlDtdz5zinQ4uBgYi4rGZObH23UuafZ8MbBkRrf1vz8zltI2CRcTEEiBLJ+5Ybq6dOzgzH98sEdLN\nPl8C3hkRN1EC4xMoC+y+q3me17Y/gYi4DRhvbiIA+F7zB8IZEXEoZdr4E5R19n7cst9OwP2Z+k5c\nab3U9ZRoRBwWEcsjYtoLUiPiCRGxKiJePl1faX2XmZ+iXKfzHsr0zL7Afpk52VsnTTiKEgIupIww\nvLz5+gJKkJvY9k7KaMNnm+/f1+y/D+UOuaSMQrR+TEy7vZISVt7X1PYhyujVC5vtj6VcB3Rkh2P8\n5RfhJM/7AkrAeSPlGrHXAge2XoPWUvPHm+fwvub7z0xx3FXA0ykB5RzgUsrI1ysz8zNNn0spF7Jv\nD/w3ZfRme+DJE1O6Wd5a6wWUIHkZ5Q7LX1HuNh1rfn5/GV1rftk/hjIS1amulZTp7Je0NN+bC+Nf\nQrkm8EDgZ5SRztMoP5fHtS2/8U+UYHMCJRz9G+Vn+YYpjv9Tyqjls1ra9qH8f/9D7vnvPNX/6e3P\nbwv+ehmNbvZ5OeVn+inKa/AEyrIkU4XeTjcdPJ/yFl4XU+72vYISuls9kzId2r6Gn7Temzc+Pv3/\nNxFxOmVF9h2Bz2XmpAsqRlmw8GdN/2ObNXUkSW2a68quoSySfPp0/dfguEcCRwDbta6xN5c1d9iO\nAGdl5nE9Lkeadd1OiZ6RmZdExEXTd+UEym30e7CGb9siSeuj5maFe7wnZ5tl7df2ZeZvI+Ic4PiI\nuI7y3qU3NzerzMSHKW+BdQT3cvp2PfQPzec1eYcGab3R1ZRo3vM99jpq1j/al7LqNdz7dXQkaX3y\nU+451dj6cT13X5PY7nWUC+eXUALbVMt+dKW5A/T5wFsi4vEzPV7tmuVKjqdMybe/rZU0J8zaTQdR\n3oLn48DizLyr7aJWSZqzMnPbGew7cSPDrGruptx8to9bo8z8BXevASjNSbO5DtsJlLcnaR2Nc0pU\nkiRphmZzWY8DgA0iYmLV8q2BR0bEozJzujtLRynvsSdJktTPOg52rWlgmzfZgTJzu9bvmxsUPtXl\nXaLbsg7fJFuSJGl9Mm1ga1ZLX065gWBjYI+IOIFygewtwPLMPHGKQ3TjRlyZWpIkqaOu1mGTJElS\n7/jm75IkSZUzsEmSJFXOwCZJklQ5A5skSVLlDGySJEmVM7BJkiRVzsAmSZJUOQObJElS5QxskiRJ\nlTOwSZIkVc7AJkmSVDkDmyRJUuUMbJIkSZUzsEmSJFXOwCZJklQ5A5skSVLlDGySJEmVM7BJkiRV\nzsAmSZJUOQObJElS5QxskiRJlTOwSZIkVW5+rwuQJKlfDA0NLQYO6XUdk9iq+XxTT6uY3JnDw8Nn\n97qIXjGwSZIkgG2az7UGtr42b3x8vNc1SJKkHhsaGvoOwPDw8N69rUSdeA2bJElS5QxskiRJlTOw\nSZIkVc7AJkmSVDkDmyRJUuUMbJIkSZUzsEmSJFXOwCZJklQ5A5skSVLlDGySJEmVM7BJkiRVzsAm\nSZJUOQObJElS5QxskiRJlTOwSZIkVW5+tx0j4jDgFODYzDxlkj5HAK8G5gF3AEdn5gWzUagkSVK/\n6mqELSJOB/YALgfGJ+nzXOBwYK/M3Al4F/CFiFg4S7VKkiT1pW6nRM/IzMXA8in6jAAHZebvm++/\nAWwCPHgG9UmSJPW9rqZEM/OSLvr8cuLriNgQeD3wC0qQkyRJ0r006zcdRMRxwE3AwcDizFw9248h\nSZLUT7q+6aBbmXkccFxE7Ad8JyJ2z8zpRtm2pkyfSpKkHhgYGJi45nyHnhaipZ0aZy2wRcRewO0T\n06eZ+bWIuAZ4CtNPi14LLJitWiRJ0poZHByc+DJ7WYeY16lxTQPbvMkOBOwOvDQi9s7MWyPikZSU\n/vMujrstjrBJktQzIyMjS5ovD+5pIepo2sDW3ECwnLKcx8bAHhFxArAEuAVYnpknAqcCWwCXRsSd\nwBhweGb+rIs6bmw+JM1hQ0NDi4FDel1HB1s1n2/qaRWTO3N4ePjsXhehuW10dHRF82XHKTn11rSB\nLTNXAQNd9ju6+ZCk9ck2zedaA5ukPjfrNx1I0mSaUaLqRoqGhoa+AzA8PLx3byuRpM58L1FJkqTK\nGdgkSZIqZ2CTJEmqnIFNkiSpcgY2SZKkyhnYJEmSKmdgkyRJqpyBTZIkqXIGNkmSpMoZ2CRJkipn\nYJMkSaqcgU2SJKlyBjZJkqTKGdgkSZIqZ2CTJEmqnIFNkiSpcgY2SZKkyhnYJEmSKmdgkyRJqpyB\nTZIkqXIGNkmSpMoZ2CRJkipnYJMkSaqcgU2SJKlyBjZJkqTKGdgkSZIqZ2CTJEmqnIFNkiSpcgY2\nSZKkyhnYJEmSKmdgkyRJqpyBTZIkqXIGNkmSpMoZ2CRJkipnYJMkSaqcgU2SJKlyBjZJkqTKGdgk\nSZIqZ2CTJEmq3PxuO0bEYcApwLGZecokfd4AvLY57p+Bt2Tmt2ejUEmSpH7V1QhbRJwO7AFcDoxP\n0mcIOAp4embuCJwM/GdEbDxLtUqSJPWlbqdEz8jMxcDyKfqMAC/MzN81338V2AR46AzqkyRJ6ntd\nTYlm5iVd9PlVW9MBwP8Bv74XdUmSJKnR9TVsayIi9gY+ALwoM1d1scvWlNE4SVrnBgYGFjZf7tDT\nQqQe8jyoxtJOjbMe2CJiMfAe4MDMvLDL3a4FFsx2LZLUjcHBwYkvs5d1SL3keVCNeZ0aZzWwRcSr\ngGOAvTLzyjXYdVscYZPUIyMjI0uaLw/uaSFSD3ke1G1NA9s8Jkl+EfEI4N+A3TLz2jU87o3NhySt\nc6OjoyuaLztORUj9wPOgbtMGtojYkHJ36DiwMbBHRJwALAFuAZZn5onAG5vt/xURrYd4c2Z+fbYL\nlyRJ6hfTBrbmpoGBLvodChw6G0VJkiTpbr41lSRJUuUMbJIkSZUzsEmSJFXOwCZJklQ5A5skSVLl\nDGySJEmVM7BJkiRVzsAmSZJUOQObJElS5QxskiRJlTOwSZIkVc7AJkmSVDkDmyRJUuUMbJIkSZUz\nsEmSJFXOwCZJklQ5A5skSVLlDGySJEmVm9/rAmbb0NDQYuCDva6jg4XAxr0uYj11F7Ci10V08Ibh\n4eGze12EJGnuc4RNkiSpcnNuhK0Z8XDUQ5IkzRmOsEmSJFXOwCZJklQ5A5skSVLlDGySJEmVM7BJ\nkiRVzsAmSZJUOQObJElS5QxskiRJlTOwSZIkVc7AJkmSVDkDmyRJUuUMbJIkSZUzsEmSJFXOwCZJ\nklQ5A5skSVLlDGySJEmVM7BJkiRVzsAmSZJUOQObJElS5boObBFxWEQsj4h/mqLPwoj4cESsjojH\nzE6JkiRJ/a2rwBYRpwN7AJcD41N0/RFwzSzUJUmSpEa3I2xnZOZiYPk0/V6Zme+dYU2SJElq0VVg\ny8xLZrOfJEmSuje/1wU0tgY26XURkvrTwMDAwubLHXpaiNRDngfVWNqpsZbAdi2woNdFSOpPg4OD\nE19mL+uQesnzoBrzOjXWEti2xRE2ST0yMjKypPny4J4WIvWQ50Hd1jSwzWOS5DchIua19O3Wjc2H\nJK1zo6OjK5ovO05FSP3A86Bu0wa2iNiQcnfoOLAxsEdEnAAsAW4BlmfmiRHxFOBrzW7jwPcjYhx4\ndWZ+eq1UL0mS1AemDWyZuQoY6KLfRcDC6fpJkiRpzfjWVJIkSZUzsEmSJFXOwCZJklQ5A5skSVLl\nDGySJEmVM7BJkiRVzsAmSZJUOQObJElS5QxskiRJlTOwSZIkVc7AJkmSVDkDmyRJUuUMbJIkSZUz\nsEmSJFXOwCZJklQ5A5skSVLlDGySJEmVM7BJkiRVzsAmSZJUOQObJElS5Q
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment