Skip to content

Instantly share code, notes, and snippets.

@cgawron
Created May 19, 2023 10:48
Show Gist options
  • Save cgawron/a0a107e2a6f3e081645f6d5f42ad45d9 to your computer and use it in GitHub Desktop.
Save cgawron/a0a107e2a6f3e081645f6d5f42ad45d9 to your computer and use it in GitHub Desktop.
Thomas' Matheproblem

Wir zeigen:

$$\frac{\partial}{\partial t} \int_0^{\phi(t)} f(x) dx = \frac{\partial \phi}{\partial t}(t) f(\phi(t))$$

Physikerargumentation

Nach Kettenregel gilt

$$\frac{\partial}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial}{\partial \phi}$$

Der Rest folgt aus dem Hauptsatz der Differential- und Integralrechnung:

$$\frac{\partial}{\partial t} \int_0^{t} f(x) dx = f(t)$$
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment