Created
June 21, 2019 11:16
-
-
Save chadmcrowell/6f1604ff5e6d451dbaf529430837f2a0 to your computer and use it in GitHub Desktop.
Modifying the Default Message Reader in Kafka
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Copyright 2018 Confluent Inc. | |
* | |
* Licensed under the Apache License, Version 2.0 (the "License"); | |
* you may not use this file except in compliance with the License. | |
* You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
*/ | |
package io.confluent.kafka.formatter; | |
import org.apache.avro.AvroRuntimeException; | |
import org.apache.avro.Schema; | |
import org.apache.avro.generic.GenericDatumReader; | |
import org.apache.avro.io.DatumReader; | |
import org.apache.avro.io.DecoderFactory; | |
import org.apache.avro.util.Utf8; | |
import org.apache.kafka.clients.producer.ProducerRecord; | |
import org.apache.kafka.common.config.ConfigException; | |
import org.apache.kafka.common.errors.SerializationException; | |
import java.io.BufferedReader; | |
import java.io.IOException; | |
import java.io.InputStreamReader; | |
import java.nio.charset.StandardCharsets; | |
import java.util.HashMap; | |
import java.util.Map; | |
import java.util.Properties; | |
import io.confluent.kafka.schemaregistry.client.CachedSchemaRegistryClient; | |
import io.confluent.kafka.schemaregistry.client.SchemaRegistryClient; | |
import io.confluent.kafka.serializers.AbstractKafkaAvroSerDeConfig; | |
import kafka.common.KafkaException; | |
import kafka.common.MessageReader; | |
import io.confluent.kafka.serializers.AbstractKafkaAvroSerializer; | |
/** | |
* Example | |
* To use AvroMessageReader, first make sure that Zookeeper, Kafka and schema registry server are | |
* all started. Second, make sure the jar for AvroMessageReader and its dependencies are included | |
* in the classpath of kafka-console-producer.sh. Then run the following | |
* command. | |
* | |
* <p>1. Send Avro string as value. (make sure there is no space in the schema string) | |
* bin/kafka-console-producer.sh --broker-list localhost:9092 --topic t1 \ | |
* --line-reader io.confluent.kafka.formatter.AvroMessageReader \ | |
* --property schema.registry.url=http://localhost:8081 \ | |
* --property value.schema='{"type":"string"}' | |
* | |
* <p>In the shell, type in the following. | |
* "a" | |
* "b" | |
* | |
* <p>2. Send Avro record as value. | |
* bin/kafka-console-producer.sh --broker-list localhost:9092 --topic t1 \ | |
* --line-reader io.confluent.kafka.formatter.AvroMessageReader \ | |
* --property schema.registry.url=http://localhost:8081 \ | |
* --property value.schema='{"type":"record","name":"myrecord","fields":[{"name":"f1","type":"string"}]}' | |
* | |
* <p>In the shell, type in the following. | |
* {"f1": "value1"} | |
* | |
* <p>3. Send Avro string as key and Avro record as value. | |
* bin/kafka-console-producer.sh --broker-list localhost:9092 --topic t1 \ | |
* --line-reader io.confluent.kafka.formatter.AvroMessageReader \ | |
* --property schema.registry.url=http://localhost:8081 \ | |
* --property parse.key=true \ | |
* --property key.schema='{"type":"string"}' \ | |
* --property value.schema='{"type":"record","name":"myrecord","fields":[{"name":"f1","type":"string"}]}' | |
* | |
* <p>In the shell, type in the following. | |
* "key1" \t {"f1": "value1"} | |
* | |
*/ | |
public class AvroMessageReader extends AbstractKafkaAvroSerializer implements MessageReader { | |
private String topic = null; | |
private BufferedReader reader = null; | |
private Boolean parseKey = false; | |
private String keySeparator = "\t"; | |
private boolean ignoreError = false; | |
private final DecoderFactory decoderFactory = DecoderFactory.get(); | |
private Schema keySchema = null; | |
private Schema valueSchema = null; | |
private String keySubject = null; | |
private String valueSubject = null; | |
/** | |
* Constructor needed by kafka console producer. | |
*/ | |
public AvroMessageReader() { | |
} | |
/** | |
* For testing only. | |
*/ | |
AvroMessageReader( | |
SchemaRegistryClient schemaRegistryClient, Schema keySchema, Schema valueSchema, | |
String topic, boolean parseKey, BufferedReader reader, boolean autoRegister | |
) { | |
this.schemaRegistry = schemaRegistryClient; | |
this.keySchema = keySchema; | |
this.valueSchema = valueSchema; | |
this.topic = topic; | |
this.keySubject = topic + "-key"; | |
this.valueSubject = topic + "-value"; | |
this.parseKey = parseKey; | |
this.reader = reader; | |
this.autoRegisterSchema = autoRegister; | |
} | |
@Override | |
public void init(java.io.InputStream inputStream, java.util.Properties props) { | |
topic = props.getProperty("topic"); | |
if (props.containsKey("parse.key")) { | |
parseKey = props.getProperty("parse.key").trim().toLowerCase().equals("true"); | |
} | |
if (props.containsKey("key.separator")) { | |
keySeparator = props.getProperty("key.separator"); | |
} | |
if (props.containsKey("ignore.error")) { | |
ignoreError = props.getProperty("ignore.error").trim().toLowerCase().equals("true"); | |
} | |
reader = new BufferedReader(new InputStreamReader(inputStream, StandardCharsets.UTF_8)); | |
String url = props.getProperty(AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG); | |
if (url == null) { | |
throw new ConfigException("Missing schema registry url!"); | |
} | |
Map<String, Object> originals = getPropertiesMap(props); | |
schemaRegistry = new CachedSchemaRegistryClient( | |
url, AbstractKafkaAvroSerDeConfig.MAX_SCHEMAS_PER_SUBJECT_DEFAULT, originals); | |
if (!props.containsKey("value.schema")) { | |
throw new ConfigException("Must provide the Avro schema string in value.schema"); | |
} | |
String valueSchemaString = props.getProperty("value.schema"); | |
Schema.Parser parser = new Schema.Parser(); | |
valueSchema = parser.parse(valueSchemaString); | |
if (parseKey) { | |
if (!props.containsKey("key.schema")) { | |
throw new ConfigException("Must provide the Avro schema string in key.schema"); | |
} | |
String keySchemaString = props.getProperty("key.schema"); | |
keySchema = parser.parse(keySchemaString); | |
} | |
keySubject = topic + "-key"; | |
valueSubject = topic + "-value"; | |
if (props.containsKey("auto.register")) { | |
this.autoRegisterSchema = Boolean.valueOf(props.getProperty("auto.register").trim()); | |
} else { | |
this.autoRegisterSchema = true; | |
} | |
} | |
private Map<String, Object> getPropertiesMap(Properties props) { | |
Map<String, Object> originals = new HashMap<>(); | |
for (final String name: props.stringPropertyNames()) { | |
originals.put(name, props.getProperty(name)); | |
} | |
return originals; | |
} | |
@Override | |
public ProducerRecord<byte[], byte[]> readMessage() { | |
try { | |
String line = reader.readLine(); | |
if (line == null) { | |
return null; | |
} | |
if (!parseKey) { | |
Object value = jsonToAvro(line, valueSchema); | |
byte[] serializedValue = serializeImpl(valueSubject, value); | |
return new ProducerRecord<>(topic, serializedValue); | |
} else { | |
int keyIndex = line.indexOf(keySeparator); | |
if (keyIndex < 0) { | |
if (ignoreError) { | |
Object value = jsonToAvro(line, valueSchema); | |
byte[] serializedValue = serializeImpl(valueSubject, value); | |
return new ProducerRecord<>(topic, serializedValue); | |
} else { | |
throw new KafkaException("No key found in line " + line); | |
} | |
} else { | |
String keyString = line.substring(0, keyIndex); | |
String valueString = (keyIndex + keySeparator.length() > line.length()) | |
? "" | |
: line.substring(keyIndex + keySeparator.length()); | |
Object key = jsonToAvro(keyString, keySchema); | |
byte[] serializedKey = serializeImpl(keySubject, key); | |
Object value = jsonToAvro(valueString, valueSchema); | |
byte[] serializedValue = serializeImpl(valueSubject, value); | |
return new ProducerRecord<>(topic, serializedKey, serializedValue); | |
} | |
} | |
} catch (IOException e) { | |
throw new KafkaException("Error reading from input", e); | |
} | |
} | |
private Object jsonToAvro(String jsonString, Schema schema) { | |
try { | |
DatumReader<Object> reader = new GenericDatumReader<Object>(schema); | |
Object object = reader.read(null, decoderFactory.jsonDecoder(schema, jsonString)); | |
if (schema.getType().equals(Schema.Type.STRING)) { | |
object = ((Utf8) object).toString(); | |
} | |
return object; | |
} catch (IOException e) { | |
throw new SerializationException( | |
String.format("Error deserializing json %s to Avro of schema %s", jsonString, schema), e); | |
} catch (AvroRuntimeException e) { | |
throw new SerializationException( | |
String.format("Error deserializing json %s to Avro of schema %s", jsonString, schema), e); | |
} | |
} | |
@Override | |
public void close() { | |
// nothing to do | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment