Last active
April 2, 2024 02:49
-
-
Save chalg/d8ffcb0c4728676b67c5caa4d904b2e0 to your computer and use it in GitHub Desktop.
Leverage Great Tables (great_tables) python package to showcase month on month change percentage of Euro economic sentiment indicators.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from great_tables import GT, md, html, system_fonts | |
import pandas as pd | |
power_cie_prepared_tbl = pd.read_csv("./data/2023_cie_power_cons.csv") | |
# Create a Great Tables object | |
ciep_gt_tbl = GT(data=power_cie_prepared_tbl) | |
# Apply wider color ranges & formatting | |
gt_tbl = ciep_gt_tbl \ | |
.fmt_percent(columns=['Hydro', 'Nuclear', 'Wind', 'Solar', 'Geothermal', 'Biomass', 'Gas', | |
'Coal', 'Oil', 'Unknown', 'Hydro Discharge', 'Battery Discharge'], | |
decimals=1) \ | |
.fmt_number(columns=['CO2 Intensity'], | |
decimals=0) \ | |
.data_color( | |
columns=['CO2 Intensity'], | |
palette=[ | |
"#00A600", "#E6E600", "#E8C32E", "#D69C4E", "#Dc863B", "sienna", "sienna4", "tomato4", "brown"], | |
domain=[0, 900] | |
) \ | |
.data_color( | |
columns=['Hydro', 'Nuclear', 'Wind', 'Solar','Geothermal'], | |
palette=["#00A600", "chartreuse3", "chartreuse4", "snow"][::-1], | |
domain=[0, 1] | |
) \ | |
.data_color( | |
columns=['Hydro', 'Geothermal'], | |
palette=["#00A600", "chartreuse3", "chartreuse4", "snow"][::-1], | |
domain=[0, 1] | |
) \ | |
.data_color( | |
columns=['Biomass'], | |
palette=["snow", "#EEC900", "#E8C32E", "#D69C4E"], | |
domain=[0, 0.3] | |
) \ | |
.data_color( | |
columns=['Gas', 'Coal', 'Oil'], | |
palette=["tomato4", "sienna4", "#D69C4E", "#Dc863B", "snow"][::-1], | |
domain=[0, 1] | |
) \ | |
.data_color( | |
columns=['Zone','Unknown', 'Hydro Discharge', 'Battery Discharge'], | |
palette=["snow", "snow", "snow", 'snow'] | |
) \ | |
.cols_width( | |
{'CO2 Intensity': '58px','Hydro': '58px', 'Nuclear': '58px', 'Wind': '58px', 'Solar': '58px', | |
'Geothermal': '58px', 'Biomass': '58px', 'Gas': '58px', 'Coal': '58px', | |
'Oil': '58px', 'Unknown': '58px', 'Hydro Discharge': '58px', | |
'Battery Discharge': '58px'} | |
) \ | |
.tab_header( | |
title=md("2023 Mean **Carbon Intensity** (gCO2eq/kWh) and **Power Consumption** Breakdown (%)") | |
) \ | |
.tab_source_note( | |
md( | |
'<br><div style="text-align: left;">' | |
"**Source**: api.electricitymap.org" | |
" | **Methodology**: https://www.electricitymaps.com/methodology." | |
" Some emissions factors are based on IPCC 2014 defaults, while some are based on more accurate regional factors." | |
" <br>All zones are publicly available on the *Carbon intensity and emission factors* tab via Google docs link." | |
" Rooftop solar not included in California ISO figures for California" | |
"</div>" | |
"<br>" | |
) | |
) \ | |
.tab_options( | |
source_notes_font_size='x-small', | |
source_notes_padding=3, | |
table_font_names=system_fonts("humanist"), | |
data_row_padding='1px', | |
heading_background_color='antiquewhite', | |
source_notes_background_color='antiquewhite', | |
column_labels_background_color='antiquewhite', | |
table_background_color='snow', | |
data_row_padding_horizontal=3, | |
column_labels_padding_horizontal=58 | |
) \ | |
.cols_align( | |
align='center' | |
) \ | |
.cols_align( | |
align='left', | |
columns=['Zone'] | |
) \ | |
.opt_table_outline() | |
gt_tbl |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment