Last active
November 3, 2023 20:51
-
-
Save chand1012/ed0a2bee8d1826704fe9f602490c3125 to your computer and use it in GitHub Desktop.
Basically ripped right out of their docs with a few modifications. https://modal.com/docs/examples/stable_diffusion_xl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pathlib import Path | |
from modal import Image, Mount, Stub, asgi_app, gpu, method | |
from pydantic import BaseModel | |
def download_models(): | |
from huggingface_hub import snapshot_download | |
ignore = ["*.bin", "*.onnx_data", "*/diffusion_pytorch_model.safetensors"] | |
snapshot_download( | |
"stabilityai/stable-diffusion-xl-base-1.0", ignore_patterns=ignore | |
) | |
snapshot_download( | |
"stabilityai/stable-diffusion-xl-refiner-1.0", ignore_patterns=ignore | |
) | |
image = ( | |
Image.debian_slim() | |
.apt_install( | |
"libglib2.0-0", "libsm6", "libxrender1", "libxext6", "ffmpeg", "libgl1" | |
) | |
.pip_install( | |
"diffusers~=0.19", | |
"invisible_watermark~=0.1", | |
"transformers~=4.31", | |
"accelerate~=0.21", | |
"safetensors~=0.3", | |
"xformers" | |
) | |
.run_function(download_models) | |
) | |
stub = Stub("stable-diffusion-xl", image=image) | |
@stub.cls(gpu=gpu.A10G(), container_idle_timeout=60) | |
class Model: | |
def __enter__(self): | |
import torch | |
from diffusers import DiffusionPipeline | |
load_options = dict( | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16", | |
device_map="auto", | |
) | |
# Load base model | |
self.base = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", **load_options | |
) | |
# Load refiner model | |
self.refiner = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-refiner-1.0", | |
text_encoder_2=self.base.text_encoder_2, | |
vae=self.base.vae, | |
**load_options, | |
) | |
self.base.enable_xformers_memory_efficient_attention() | |
self.refiner.enable_xformers_memory_efficient_attention() | |
# Compiling the model graph is JIT so this will increase inference time for the first run | |
# but speed up subsequent runs. Uncomment to enable. | |
# self.base.unet = torch.compile( | |
# self.base.unet, mode="reduce-overhead", fullgraph=True) | |
# self.refiner.unet = torch.compile( | |
# self.refiner.unet, mode="reduce-overhead", fullgraph=True) | |
@method() | |
def inference(self, prompt, negative_prompt="disfigured, ugly, deformed", n_steps=24, high_noise_frac=0.8, guidance_scale=7.5, width=1024, height=1024): | |
image = self.base( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=n_steps, | |
denoising_end=high_noise_frac, | |
height=height, | |
width=width, | |
guidance_scale=guidance_scale, | |
output_type="latent", | |
).images | |
image = self.refiner( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=n_steps, | |
denoising_start=high_noise_frac, | |
image=image, | |
).images[0] | |
import io | |
byte_stream = io.BytesIO() | |
image.save(byte_stream, format="JPEG", quality=85) | |
image_bytes = byte_stream.getvalue() | |
return image_bytes | |
@stub.local_entrypoint() | |
def main(prompt: str): | |
image_bytes = Model().inference.remote(prompt) | |
dir = Path(".") | |
if not dir.exists(): | |
dir.mkdir(exist_ok=True, parents=True) | |
output_path = dir / "output.png" | |
print(f"Saving it to {output_path}") | |
with open(output_path, "wb") as f: | |
f.write(image_bytes) | |
class DiffusionReq(BaseModel): | |
prompt: str | |
negative_prompt: str = "disfigured, ugly, deformed" | |
n_steps: int = 24 | |
width: int = 1024 | |
height: int = 1024 | |
guidance_scale: float = 7.5 | |
@stub.function() | |
@asgi_app() | |
def fastapi_app(): | |
from fastapi import FastAPI | |
import base64 | |
app = FastAPI() | |
@app.post("/generate_image/") | |
def generate_image(req: DiffusionReq): | |
image_bytes = Model().inference.remote( | |
req.prompt, req.negative_prompt, req.n_steps | |
) | |
# encode image as base64 | |
image_bytes = base64.b64encode(image_bytes) | |
return {'b64_json': image_bytes} | |
return app |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment