Created
August 21, 2023 01:17
-
-
Save changx03/3aeb490b10751583b520e3cb8d83ebda to your computer and use it in GitHub Desktop.
PyTorch Geometric example for FB15K
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import os.path as osp | |
import torch | |
import torch.optim as optim | |
from torch_geometric.datasets import FB15k_237 | |
from torch_geometric.nn import ComplEx, DistMult, RotatE, TransE | |
model_map = { | |
'transe': TransE, | |
'complex': ComplEx, | |
'distmult': DistMult, | |
'rotate': RotatE, | |
} | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model', choices=model_map.keys(), type=str.lower, | |
required=True) | |
args = parser.parse_args() | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'FB15k') | |
train_data = FB15k_237(path, split='train')[0].to(device) | |
val_data = FB15k_237(path, split='val')[0].to(device) | |
test_data = FB15k_237(path, split='test')[0].to(device) | |
model_arg_map = {'rotate': {'margin': 9.0}} | |
model = model_map[args.model]( | |
num_nodes=train_data.num_nodes, | |
num_relations=train_data.num_edge_types, | |
hidden_channels=50, | |
**model_arg_map.get(args.model, {}), | |
).to(device) | |
loader = model.loader( | |
head_index=train_data.edge_index[0], | |
rel_type=train_data.edge_type, | |
tail_index=train_data.edge_index[1], | |
batch_size=1000, | |
shuffle=True, | |
) | |
optimizer_map = { | |
'transe': optim.Adam(model.parameters(), lr=0.01), | |
'complex': optim.Adagrad(model.parameters(), lr=0.001, weight_decay=1e-6), | |
'distmult': optim.Adam(model.parameters(), lr=0.0001, weight_decay=1e-6), | |
'rotate': optim.Adam(model.parameters(), lr=1e-3), | |
} | |
optimizer = optimizer_map[args.model] | |
def train(): | |
model.train() | |
total_loss = total_examples = 0 | |
for head_index, rel_type, tail_index in loader: | |
optimizer.zero_grad() | |
loss = model.loss(head_index, rel_type, tail_index) | |
loss.backward() | |
optimizer.step() | |
total_loss += float(loss) * head_index.numel() | |
total_examples += head_index.numel() | |
return total_loss / total_examples | |
@torch.no_grad() | |
def test(data): | |
model.eval() | |
return model.test( | |
head_index=data.edge_index[0], | |
rel_type=data.edge_type, | |
tail_index=data.edge_index[1], | |
batch_size=20000, | |
k=10, | |
) | |
for epoch in range(1, 501): | |
loss = train() | |
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}') | |
if epoch % 25 == 0: | |
rank, hits = test(val_data) | |
print(f'Epoch: {epoch:03d}, Val Mean Rank: {rank:.2f}, ' | |
f'Val Hits@10: {hits:.4f}') | |
rank, hits_at_10 = test(test_data) | |
print(f'Test Mean Rank: {rank:.2f}, Test Hits@10: {hits_at_10:.4f}') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment