Last active
July 10, 2019 15:42
-
-
Save chao-he/b99912ce50f84b3cda6f to your computer and use it in GitHub Desktop.
simrank in python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def read_matrix(fname): | |
x,y,z = [],[],[] | |
with open(fname) as f: | |
max_v, max_u = -1, -1 | |
for l in open(fname): | |
u,v,c = l.strip().split() | |
u,v,c = (int(u), int(v), float(c)) | |
max_u = max(u, max_u) | |
max_v = max(v, max_v) | |
x.append(u) | |
y.append(v) | |
z.append(c) | |
m = np.zeros([max_v + 1, max_u + 1]) | |
m[y,x] = z | |
return m | |
def print_matrix(title, m): | |
print title | |
print m | |
def load_graph(fname): | |
P = read_matrix(fname) | |
# set P[i,j] = Spread[i] * NormalizedWeight(P[i,j]) | |
col_sums, row_sums = P.sum(axis=0), P.sum(axis=1) | |
Q = P / P.sum(axis=0)[np.newaxis, :] | |
A = np.transpose(P / P.sum(axis=1)[:, np.newaxis]) | |
W = np.vstack([ | |
np.column_stack([np.zeros([A.shape[0], A.shape[0]]), A]), | |
np.column_stack([Q, np.zeros([Q.shape[0], Q.shape[0]])]), | |
]) | |
print_matrix("P =", P) | |
print_matrix("A =", A) | |
print_matrix("Q =", Q) | |
print_matrix("W =", W) | |
return (np.matrix(Q), np.matrix(A), np.matrix(W)) | |
def boosting(S): | |
for k in xrange(S.shape[0]): | |
S[k,k] = 1.0 | |
return S | |
def simrank(W, C=1.0, eps=1e-8, loop=1000): | |
Wt = np.transpose(W) | |
S = boosting(Wt * W * C) | |
for i in xrange(loop): | |
S0 = np.copy(S) | |
S = boosting(Wt * S0 * W * C) | |
#print_matrix("S" + str(i) + " = ", S) | |
if np.allclose(S, S0, atol=eps): | |
break | |
return S | |
def simrank_qa(Q, A, Cq=.9, Ca=.8, eps=1e-3, loop=20): | |
Qt = np.transpose(Q) | |
At = np.transpose(A) | |
Sq = boosting(Qt * Q * Cq) | |
Sa = boosting(At * A * Ca) | |
for i in xrange(loop): | |
S0 = np.copy(Sq) | |
Sq = boosting(Qt * Sa * Q * Cq) | |
Sa = boosting(At * Sq * A * Ca) | |
#print_matrix("S" + str(i) + " = ", S) | |
if np.allclose(Sq, S0, atol=eps): | |
break | |
return Sq, Sa | |
if __name__ == "__main__": | |
from tornado.options import options,define | |
from tornado.options import parse_command_line | |
define("c", default=20) | |
define("e", default=1e-4) | |
define("da", default=.9) | |
define("dq", default=.9) | |
define("dw", default=.9) | |
args = parse_command_line() | |
np.set_printoptions(linewidth=200, precision=5, suppress=True) | |
Q, A, W = load_graph(args[0]) | |
sq, sa = simrank_qa(Q, A, options.dq, options.da, options.e, options.c) | |
print_matrix("final Sq:", sq) | |
print_matrix("final Sa:", sa) | |
#print_matrix("final :", simrank(W, options.dw, options.e, options.c)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment