Last active
February 6, 2019 21:01
-
-
Save chao1224/efb7c7f5f4b713718e857db52ecdc78c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
class CrossEntropy(nn.Module): | |
def __init__(self, alpha=.5): | |
super(CrossEntropy, self).__init__() | |
self.alpha = alpha | |
def forward(self, y_pred, y_actual, size_average=True): | |
# sample_weight = y_actual * self.alpha * (1 - y_pred).pow(self.gamma) + (1 - y_actual) * (1 - self.alpha) * y_pred.pow(self.gamma) | |
# sample_weight = Variable(sample_weight.data) | |
criterion = nn.BCELoss(weight=sample_weight, size_average=size_average) | |
loss = criterion(y_pred, y_actual) | |
return loss | |
class FocalLoss(nn.Module): | |
def __init__(self, gamma, alpha=.5, reduce=False): | |
super(FocalLoss, self).__init__() | |
self.gamma = gamma | |
self.alpha = alpha | |
self.reduce = reduce | |
def forward(self, y_pred, y_actual, size_average=True): | |
sample_weight = y_actual * self.alpha * (1 - y_pred).pow(self.gamma) + (1 - y_actual) * (1 - self.alpha) * y_pred.pow(self.gamma) | |
sample_weight = Variable(sample_weight.data) | |
criterion = nn.BCELoss(weight=sample_weight, size_average=size_average, reduce=self.reduce) | |
loss = criterion(y_pred, y_actual) | |
return loss | |
class GHMLoss(nn.Module): | |
def __init__(self, bins=10): | |
super(GHMLoss, self).__init__() | |
self.bins = bins | |
self.intervals = [float(x) / bins for x in range(bins+1)] | |
self.intervals[-1] += 1e-6 | |
print('GHM intervals\t', self.intervals) | |
def forward(self, y_pred, y_actual, size_average=True): | |
margin = torch.abs(y_actual - y_pred)#.data.numpy() | |
sample_weight = torch.zeros_like(y_actual) | |
total = torch.FloatTensor([y_actual.size()[0]]) | |
for left,right in zip(self.intervals[:-1], self.intervals[1:]): | |
index = (margin >= left) & (margin < right) & 1 | |
if sum(index).float() > 0: | |
beta = total / sum(index).float() | |
sample_weight[index] = beta | |
criterion = nn.BCELoss(weight=sample_weight, size_average=size_average) | |
loss = criterion(y_pred, y_actual) | |
return loss | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment