-
-
Save chaonan99/b313bbe8f852ead8cf075dd9771bf991 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function []=bs() | |
x=[0,0]; | |
dfx_val = dfx(x); | |
normdfx = norm(dfx_val); | |
k = 0; | |
f_val = zeros(1000,1); | |
dfx_val_pre = [1,1]; | |
p_pre = [0,0]; | |
while normdfx>1e-10 | |
if mod(k,2) == 0 | |
p = -dfx_val; | |
else | |
p = -dfx_val + dfx_val*(dfx_val-dfx_val_pre)'/... | |
(p_pre*(dfx_val-dfx_val_pre)')*p_pre; | |
end | |
t = newton(x,p,1e-10); | |
p_pre = p; | |
dfx_val_pre = dfx_val; | |
x = x+t*p; | |
dfx_val = dfx(x); | |
normdfx = norm(dfx_val); | |
k = k+1; | |
f_val(k) = f(x); | |
end | |
format long; | |
disp('最优解:');x | |
disp('最优函数值:');f(x) | |
fprintf('总迭代次数:%d\n',k); | |
plot((1:k),f_val(1:k));title('函数值与迭代次数关系图'); | |
end | |
function [val] = f(x) | |
val=(1-x(1))^2+2*(x(2)-x(1)^2)^2; | |
end | |
function [val] = dfx(x) | |
val(1)=-2*(1-x(1))-8*x(1)*(x(2)-x(1)^2); | |
val(2)=4*(x(2)-x(1)^2); | |
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function []=fr() | |
x=[0,0]; | |
dfx_val = dfx(x); | |
normdfx = norm(dfx_val); | |
k = 0; | |
f_val = zeros(1000,1); | |
normdfx_pre = normdfx; | |
p_pre = [0,0]; | |
while normdfx>1e-10 | |
if mod(k,2) == 0 | |
p = -dfx_val; | |
else | |
p = -dfx_val + normdfx^2/normdfx_pre^2*p_pre; | |
end | |
t = goldstein(x,p,[0.3,0.7]); | |
p_pre = p; | |
normdfx_pre = normdfx; | |
x = x+t*p; | |
dfx_val = dfx(x); | |
normdfx = norm(dfx_val); | |
k = k+1; | |
f_val(k) = f(x); | |
end | |
format long; | |
disp('最优解:');x | |
disp('最优函数值:');f(x) | |
fprintf('总迭代次数:%d\n',k); | |
plot((1:k),f_val(1:k));title('函数值与迭代次数关系图'); | |
end | |
function [val] = f(x) | |
val=(1-x(1))^2+2*(x(2)-x(1)^2)^2; | |
end | |
function [val] = dfx(x) | |
val(1)=-2*(1-x(1))-8*x(1)*(x(2)-x(1)^2); | |
val(2)=4*(x(2)-x(1)^2); | |
end | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [ a ] = goldstein( x,p,m ) | |
syms t; | |
alpha = 1.5; | |
ff = (1-(x(1)+t*p(1)))^2+2*((x(2)+t*p(2))-(x(1)+t*p(1))^2)^2; | |
ff0 = double(subs(ff,t,0)); | |
df = diff(ff); | |
df0 = double(subs(df,t,0)); | |
a = 0; b = Inf; k = 0; q = 1; | |
while (1) | |
phit = double(subs(ff,t,q)); | |
if phit<= ff0+m(1)*q*df0 | |
if phit>= ff0+m(2)*q*df0 | |
a = q; | |
break; | |
else | |
a = q; | |
end | |
else | |
b = q; | |
end | |
if b == Inf | |
q = alpha*q; | |
else | |
q = (a+b)/2; | |
end | |
k = k + 1; | |
end | |
end | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function []=gradient() | |
x=[0,0]; | |
dfx_val = dfx(x); | |
normdfx = norm(dfx_val); | |
k = 0; | |
f_val = zeros(1000,1); | |
while normdfx>1e-10 | |
t = newton(x,-dfx_val,1e-10); | |
x = x-t*dfx_val; | |
dfx_val = dfx(x); | |
normdfx = norm(dfx_val); | |
k = k+1; | |
f_val(k) = f(x); | |
end | |
format long; | |
disp('最优解:');x | |
disp('最优函数值:');f(x) | |
fprintf('总迭代次数:%d\n',k); | |
plot((1:k),f_val(1:k));title('函数值与迭代次数关系图'); | |
end | |
function [val] = f(x) | |
val=(1-x(1))^2+2*(x(2)-x(1)^2)^2; | |
end | |
function [val] = dfx(x) | |
val(1)=-2*(1-x(1))-8*x(1)*(x(2)-x(1)^2); | |
val(2)=4*(x(2)-x(1)^2); | |
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [a] = newton(x,p,eps) | |
syms t; | |
ff = (1-(x(1)+t*p(1)))^2+2*((x(2)+t*p(2))-(x(1)+t*p(1))^2)^2; | |
df = diff(ff); | |
phi = t-df/diff(df); | |
a=10;nexta=0; | |
while abs(a-nexta)>eps | |
a=nexta; | |
nexta = double(subs(phi,t,a)); | |
end | |
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function []=pr() | |
x=[0,0]; | |
dfx_val = dfx(x); | |
normdfx = norm(dfx_val); | |
k = 0; | |
f_val = zeros(1000,1); | |
dfx_val_pre = [0,0]; | |
normdfx_pre = normdfx; | |
p_pre = [0,0]; | |
while normdfx>1e-10 | |
if mod(k,2) == 0 | |
p = -dfx_val; | |
else | |
p = -dfx_val + dfx_val*(dfx_val-dfx_val_pre)'/normdfx_pre^2*p_pre; | |
end | |
t = newton(x,p,1e-10); | |
p_pre = p; | |
normdfx_pre = normdfx; | |
dfx_val_pre = dfx_val; | |
x = x+t*p; | |
dfx_val = dfx(x); | |
normdfx = norm(dfx_val); | |
k = k+1; | |
f_val(k) = f(x); | |
end | |
format long; | |
disp('最优解:');x | |
disp('最优函数值:');f(x) | |
fprintf('总迭代次数:%d\n',k); | |
plot((1:k),f_val(1:k));title('函数值与迭代次数关系图'); | |
end | |
function [val] = f(x) | |
val=(1-x(1))^2+2*(x(2)-x(1)^2)^2; | |
end | |
function [val] = dfx(x) | |
val(1)=-2*(1-x(1))-8*x(1)*(x(2)-x(1)^2); | |
val(2)=4*(x(2)-x(1)^2); | |
end | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment