Created
January 10, 2016 18:04
-
-
Save charanpald/c216800e25480ee838e8 to your computer and use it in GitHub Desktop.
KDD CUP 99 Intrusion Detection Code
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas | |
import numpy | |
from sklearn.neighbors import KNeighborsClassifier | |
from sklearn.metrics import confusion_matrix, zero_one_loss | |
# Must declare data_dir as the directory of training and test files | |
train_data = data_dir + "kddcup.data.corrected" | |
train_labels = data_dir + "train_labels.txt" | |
test_data = data_dir + "corrected" | |
test_labels = data_dir + "test_labels.txt" | |
def process_data(X, y): | |
X = X.drop(41, 1) | |
X[1], uniques = pandas.factorize(X[1]) | |
X[2], uniques = pandas.factorize(X[2]) | |
X[3], uniques = pandas.factorize(X[3]) | |
num_examples = 10**6 | |
X = X[0:num_examples] | |
y = y[0:num_examples] | |
X = numpy.array(X) | |
y = numpy.array(y).ravel() | |
return X, y | |
print("Loading training data") | |
train_X = pandas.read_csv(train_data, header=None) | |
train_y = pandas.read_csv(train_labels, header=None) | |
train_X, train_y = process_data(train_X, train_y) | |
print("Loading test data") | |
test_X = pandas.read_csv(test_data, header=None) | |
test_y = pandas.read_csv(test_labels, header=None) | |
test_X, test_y = process_data(test_X, test_y) | |
print("Training and predicting") | |
learner = KNeighborsClassifier(1, n_jobs=-1) | |
learner.fit(train_X, train_y) | |
pred_y = learner.predict(test_X) | |
results = confusion_matrix(test_y, pred_y) | |
error = zero_one_loss(test_y, pred_y) | |
print(results) | |
print(error) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment