Created
January 26, 2016 13:34
-
-
Save charanpald/ce73d9511994bc9f472f to your computer and use it in GitHub Desktop.
Generate MovieLens recommendations using the SVD
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Run some recommendation experiments using MovieLens 100K | |
import pandas | |
import numpy | |
import scipy.sparse | |
import scipy.sparse.linalg | |
import matplotlib.pyplot as plt | |
from sklearn.metrics import mean_absolute_error | |
data_dir = "data/ml-100k/" | |
data_shape = (943, 1682) | |
df = pandas.read_csv(data_dir + "ua.base", sep="\t", header=-1) | |
values = df.values | |
values[:, 0:2] -= 1 | |
X_train = scipy.sparse.csr_matrix((values[:, 2], (values[:, 0], values[:, 1])), dtype=numpy.float, shape=data_shape) | |
df = pandas.read_csv(data_dir + "ua.test", sep="\t", header=-1) | |
values = df.values | |
values[:, 0:2] -= 1 | |
X_test = scipy.sparse.csr_matrix((values[:, 2], (values[:, 0], values[:, 1])), dtype=numpy.float, shape=data_shape) | |
# Compute means of nonzero elements | |
X_row_mean = numpy.zeros(data_shape[0]) | |
X_row_sum = numpy.zeros(data_shape[0]) | |
train_rows, train_cols = X_train.nonzero() | |
# Iterate through nonzero elements to compute sums and counts of rows elements | |
for i in range(train_rows.shape[0]): | |
X_row_mean[train_rows[i]] += X_train[train_rows[i], train_cols[i]] | |
X_row_sum[train_rows[i]] += 1 | |
# Note that (X_row_sum == 0) is required to prevent divide by zero | |
X_row_mean /= X_row_sum + (X_row_sum == 0) | |
# Subtract mean rating for each user | |
for i in range(train_rows.shape[0]): | |
X_train[train_rows[i], train_cols[i]] -= X_row_mean[train_rows[i]] | |
test_rows, test_cols = X_test.nonzero() | |
for i in range(test_rows.shape[0]): | |
X_test[test_rows[i], test_cols[i]] -= X_row_mean[test_rows[i]] | |
X_train = numpy.array(X_train.toarray()) | |
X_test = numpy.array(X_test.toarray()) | |
ks = numpy.arange(2, 50) | |
train_mae = numpy.zeros(ks.shape[0]) | |
test_mae = numpy.zeros(ks.shape[0]) | |
train_scores = X_train[(train_rows, train_cols)] | |
test_scores = X_test[(test_rows, test_cols)] | |
# Now take SVD of X_train | |
U, s, Vt = numpy.linalg.svd(X_train, full_matrices=False) | |
for j, k in enumerate(ks): | |
X_pred = U[:, 0:k].dot(numpy.diag(s[0:k])).dot(Vt[0:k, :]) | |
pred_train_scores = X_pred[(train_rows, train_cols)] | |
pred_test_scores = X_pred[(test_rows, test_cols)] | |
train_mae[j] = mean_absolute_error(train_scores, pred_train_scores) | |
test_mae[j] = mean_absolute_error(test_scores, pred_test_scores) | |
print(k, train_mae[j], test_mae[j]) | |
plt.plot(ks, train_mae, 'k', label="Train") | |
plt.plot(ks, test_mae, 'r', label="Test") | |
plt.xlabel("k") | |
plt.ylabel("MAE") | |
plt.legend() | |
plt.show() |
Numpy SVD is quite different from the "Funk SVD" that you need in recommender systems.
Why ? See
https://github.com/aaw/IncrementalSVD.jl#great-but-julia-already-has-an-svd-function-ill-just-use-that
(admirably clear)
cheers
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Your statement "The empty values in R will still be empty in the reconstruction." is wrong unfortunately. Are you able to prove it for k < rank(R)?