Created
October 25, 2024 15:50
-
-
Save charles-cooper/eed70340aee2a47478ca0fc2ea6d5140 to your computer and use it in GitHub Desktop.
vyper compiler benchmark
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## pragma optimize codesize | |
# pragma enable-decimals | |
""" | |
@title CurveStableSwapNG | |
@author Curve.Fi | |
@license Copyright (c) Curve.Fi, 2020-2023 - all rights reserved | |
@notice Stableswap implementation for up to 8 coins with no rehypothecation, | |
i.e. the AMM does not deposit tokens into other contracts. The Pool contract also | |
records exponential moving averages for coins relative to coin 0. | |
@dev Asset Types: | |
0. Standard ERC20 token with no additional features. | |
Note: Users are advised to do careful due-diligence on | |
ERC20 tokens that they interact with, as this | |
contract cannot differentiate between harmless and | |
malicious ERC20 tokens. | |
1. Oracle - token with rate oracle (e.g. wstETH) | |
Note: Oracles may be controlled externally by an EOA. Users | |
are advised to proceed with caution. | |
2. Rebasing - token with rebase (e.g. stETH). | |
Note: Users and Integrators are advised to understand how | |
the AMM contract works with rebasing balances. | |
3. ERC4626 - token with convertToAssets method (e.g. sDAI). | |
Note: Some ERC4626 implementations may be susceptible to | |
Donation/Inflation attacks. Users are advised to | |
proceed with caution. | |
Supports: | |
1. ERC20 support for return True/revert, return True/False, return None | |
2. ERC20 tokens can have arbitrary decimals (<=18). | |
3. ERC20 tokens that rebase (either positive or fee on transfer) | |
4. ERC20 tokens that have a rate oracle (e.g. wstETH, cbETH, sDAI, etc.) | |
Note: Oracle precision _must_ be 10**18. | |
5. ERC4626 tokens with arbitrary precision (<=18) of Vault token and underlying | |
asset. | |
Additional features include: | |
1. Adds price oracles based on AMM State Price (and _not_ last traded price). | |
2. Adds TVL oracle based on D. | |
3. `exchange_received`: swaps that expect an ERC20 transfer to have occurred | |
prior to executing the swap. | |
Note: a. If pool contains rebasing tokens and one of the `asset_types` is 2 (Rebasing) | |
then calling `exchange_received` will REVERT. | |
b. If pool contains rebasing token and `asset_types` does not contain 2 (Rebasing) | |
then this is an incorrect implementation and rebases can be | |
stolen. | |
4. Adds `get_dx`: Similar to `get_dy` which returns an expected output | |
of coin[j] for given `dx` amount of coin[i], `get_dx` returns expected | |
input of coin[i] for an output amount of coin[j]. | |
5. Fees are dynamic: AMM will charge a higher fee if pool depegs. This can cause very | |
slight discrepancies between calculated fees and realised fees. | |
""" | |
from ethereum.ercs import IERC20 | |
from ethereum.ercs import IERC20Detailed | |
from ethereum.ercs import IERC4626 | |
implements: IERC20 | |
# ------------------------------- Interfaces --------------------------------- | |
interface Factory: | |
def fee_receiver() -> address: view | |
def admin() -> address: view | |
def views_implementation() -> address: view | |
interface IERC1271: | |
def isValidSignature(_hash: bytes32, _signature: Bytes[65]) -> bytes32: view | |
interface StableSwapViews: | |
def get_dx(i: int128, j: int128, dy: uint256, pool: address) -> uint256: view | |
def get_dy(i: int128, j: int128, dx: uint256, pool: address) -> uint256: view | |
def dynamic_fee(i: int128, j: int128, pool: address) -> uint256: view | |
def calc_token_amount( | |
_amounts: DynArray[uint256, MAX_COINS], | |
_is_deposit: bool, | |
_pool: address | |
) -> uint256: view | |
# --------------------------------- Events ----------------------------------- | |
event Transfer: | |
sender: indexed(address) | |
receiver: indexed(address) | |
value: uint256 | |
event Approval: | |
owner: indexed(address) | |
spender: indexed(address) | |
value: uint256 | |
event TokenExchange: | |
buyer: indexed(address) | |
sold_id: uint128 | |
tokens_sold: uint256 | |
bought_id: uint128 | |
tokens_bought: uint256 | |
event TokenExchangeUnderlying: | |
buyer: indexed(address) | |
sold_id: int128 | |
tokens_sold: uint256 | |
bought_id: int128 | |
tokens_bought: uint256 | |
event AddLiquidity: | |
provider: indexed(address) | |
token_amounts: DynArray[uint256, MAX_COINS] | |
fees: DynArray[uint256, MAX_COINS] | |
invariant: uint256 | |
token_supply: uint256 | |
event RemoveLiquidity: | |
provider: indexed(address) | |
token_amounts: DynArray[uint256, MAX_COINS] | |
fees: DynArray[uint256, MAX_COINS] | |
token_supply: uint256 | |
event RemoveLiquidityOne: | |
provider: indexed(address) | |
token_id: uint128 | |
token_amount: uint256 | |
coin_amount: uint256 | |
token_supply: uint256 | |
event RemoveLiquidityImbalance: | |
provider: indexed(address) | |
token_amounts: DynArray[uint256, MAX_COINS] | |
fees: DynArray[uint256, MAX_COINS] | |
invariant: uint256 | |
token_supply: uint256 | |
event RampA: | |
old_A: uint256 | |
new_A: uint256 | |
initial_time: uint256 | |
future_time: uint256 | |
event StopRampA: | |
A: uint256 | |
t: uint256 | |
event ApplyNewFee: | |
fee: uint256 | |
offpeg_fee_multiplier: uint256 | |
MAX_COINS: constant(uint256) = 8 # max coins is 8 in the factory | |
MAX_COINS_128: constant(uint128) = 8 | |
# ---------------------------- Pool Variables -------------------------------- | |
N_COINS: public(immutable(uint256)) | |
N_COINS_128: immutable(uint128) | |
PRECISION: constant(uint256) = 10 ** 18 | |
factory: immutable(Factory) | |
coins: public(immutable(DynArray[address, MAX_COINS])) | |
asset_types: immutable(DynArray[uint8, MAX_COINS]) | |
stored_balances: DynArray[uint256, MAX_COINS] | |
# Fee specific vars | |
FEE_DENOMINATOR: constant(uint256) = 10 ** 10 | |
fee: public(uint256) # fee * 1e10 | |
offpeg_fee_multiplier: public(uint256) # * 1e10 | |
admin_fee: public(constant(uint256)) = 5000000000 | |
MAX_FEE: constant(uint256) = 5 * 10 ** 9 | |
# ---------------------- Pool Amplification Parameters ----------------------- | |
A_PRECISION: constant(uint256) = 100 | |
MAX_A: constant(uint256) = 10 ** 6 | |
MAX_A_CHANGE: constant(uint256) = 10 | |
initial_A: public(uint256) | |
future_A: public(uint256) | |
initial_A_time: public(uint256) | |
future_A_time: public(uint256) | |
# ---------------------------- Admin Variables ------------------------------- | |
MIN_RAMP_TIME: constant(uint256) = 86400 | |
admin_balances: public(DynArray[uint256, MAX_COINS]) | |
# ----------------------- Oracle Specific vars ------------------------------- | |
rate_multipliers: immutable(DynArray[uint256, MAX_COINS]) | |
# [bytes4 method_id][bytes8 <empty>][bytes20 oracle] | |
oracles: DynArray[uint256, MAX_COINS] | |
# For ERC4626 tokens, we need: | |
call_amount: immutable(DynArray[uint256, MAX_COINS]) | |
scale_factor: immutable(DynArray[uint256, MAX_COINS]) | |
last_prices_packed: DynArray[uint256, MAX_COINS] # packing: last_price, ma_price | |
last_D_packed: uint256 # packing: last_D, ma_D | |
ma_exp_time: public(uint256) | |
D_ma_time: public(uint256) | |
ma_last_time: public(uint256) # packing: ma_last_time_p, ma_last_time_D | |
# ma_last_time has a distinction for p and D because p is _not_ updated if | |
# users remove_liquidity, but D is. | |
# shift(2**32 - 1, 224) | |
ORACLE_BIT_MASK: constant(uint256) = (2**32 - 1) * 256**28 | |
# --------------------------- ERC20 Specific Vars ---------------------------- | |
name: public(immutable(String[64])) | |
symbol: public(immutable(String[32])) | |
decimals: public(constant(uint8)) = 18 | |
version: public(constant(String[8])) = "v7.0.0" | |
balanceOf: public(HashMap[address, uint256]) | |
allowance: public(HashMap[address, HashMap[address, uint256]]) | |
total_supply: uint256 | |
nonces: public(HashMap[address, uint256]) | |
# keccak256("isValidSignature(bytes32,bytes)")[:4] << 224 | |
ERC1271_MAGIC_VAL: constant(bytes32) = 0x1626ba7e00000000000000000000000000000000000000000000000000000000 | |
EIP712_TYPEHASH: constant(bytes32) = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract,bytes32 salt)") | |
EIP2612_TYPEHASH: constant(bytes32) = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)") | |
VERSION_HASH: constant(bytes32) = keccak256(version) | |
NAME_HASH: immutable(bytes32) | |
CACHED_CHAIN_ID: immutable(uint256) | |
salt: public(immutable(bytes32)) | |
CACHED_DOMAIN_SEPARATOR: immutable(bytes32) | |
# ------------------------------ AMM Setup ----------------------------------- | |
#@foooo | |
@deploy | |
def __init__( | |
_name: String[32], | |
_symbol: String[10], | |
_A: uint256, | |
_fee: uint256, | |
_offpeg_fee_multiplier: uint256, | |
_ma_exp_time: uint256, | |
_coins: DynArray[address, MAX_COINS], | |
_rate_multipliers: DynArray[uint256, MAX_COINS], | |
_asset_types: DynArray[uint8, MAX_COINS], | |
_method_ids: DynArray[bytes4, MAX_COINS], | |
_oracles: DynArray[address, MAX_COINS], | |
): | |
""" | |
@notice Initialize the pool contract | |
@param _name Name of the new plain pool. | |
@param _symbol Symbol for the new plain pool. | |
@param _A Amplification co-efficient - a lower value here means | |
less tolerance for imbalance within the pool's assets. | |
Suggested values include: | |
* Uncollateralized algorithmic stablecoins: 5-10 | |
* Non-redeemable, collateralized assets: 100 | |
* Redeemable assets: 200-400 | |
@param _fee Trade fee, given as an integer with 1e10 precision. The | |
the maximum is 1% (100000000). | |
50% of the fee is distributed to veCRV holders. | |
@param _offpeg_fee_multiplier A multiplier that determines how much to increase | |
Fees by when assets in the AMM depeg. Example value: 20000000000 | |
@param _ma_exp_time Averaging window of oracle. Set as time_in_seconds // ln(2) | |
Example: for 10 minute EMA, _ma_exp_time is 600 // ln(2) ~= 866 | |
@param _coins List of addresses of the coins being used in the pool. | |
@param _rate_multipliers An array of: [10 ** (36 - _coins[n].decimals()), ... for n in range(N_COINS)] | |
@param _asset_types Array of uint8 representing tokens in pool | |
@param _method_ids Array of first four bytes of the Keccak-256 hash of the function signatures | |
of the oracle addresses that gives rate oracles. | |
Calculated as: keccak(text=event_signature.replace(" ", ""))[:4] | |
@param _oracles Array of rate oracle addresses. | |
""" | |
coins = _coins | |
asset_types = _asset_types | |
__n_coins: uint256 = len(_coins) | |
N_COINS = __n_coins | |
N_COINS_128 = convert(__n_coins, uint128) | |
rate_multipliers = _rate_multipliers | |
factory = Factory(msg.sender) | |
A: uint256 = _A * A_PRECISION | |
self.initial_A = A | |
self.future_A = A | |
self.fee = _fee | |
self.offpeg_fee_multiplier = _offpeg_fee_multiplier | |
assert _ma_exp_time != 0 | |
self.ma_exp_time = _ma_exp_time | |
self.D_ma_time = 62324 # <--------- 12 hours default on contract start. | |
self.ma_last_time = self.pack_2(block.timestamp, block.timestamp) | |
# ------------------- initialize storage for DynArrays ------------------ | |
_call_amount: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS]) | |
_scale_factor: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS]) | |
for i: uint128 in range(MAX_COINS_128): | |
if i == N_COINS_128: | |
break | |
if i < N_COINS_128 - 1: | |
self.last_prices_packed.append(self.pack_2(10**18, 10**18)) | |
self.oracles.append(convert(_method_ids[i], uint256) * 2**224 | convert(_oracles[i], uint256)) | |
self.stored_balances.append(0) | |
self.admin_balances.append(0) | |
if _asset_types[i] == 3: | |
_call_amount.append(10**convert(staticcall IERC20Detailed(_coins[i]).decimals(), uint256)) | |
_underlying_asset: address = staticcall IERC4626(_coins[i]).asset() | |
_scale_factor.append(10**(18 - convert(staticcall IERC20Detailed(_underlying_asset).decimals(), uint256))) | |
else: | |
_call_amount.append(0) | |
_scale_factor.append(0) | |
call_amount = _call_amount | |
scale_factor = _scale_factor | |
# ----------------------------- ERC20 stuff ------------------------------ | |
name = _name | |
symbol = _symbol | |
# EIP712 related params ----------------- | |
NAME_HASH = keccak256(name) | |
salt = block.prevhash | |
CACHED_CHAIN_ID = chain.id | |
CACHED_DOMAIN_SEPARATOR = keccak256( | |
abi_encode( | |
EIP712_TYPEHASH, | |
NAME_HASH, | |
VERSION_HASH, | |
chain.id, | |
self, | |
salt, | |
) | |
) | |
# ------------------------ Fire a transfer event ------------------------- | |
log Transfer(sender=empty(address), receiver=msg.sender, value=0) | |
# ------------------ Token transfers in and out of the AMM ------------------- | |
@internal | |
def _transfer_in( | |
coin_idx: uint128, | |
dx: uint256, | |
sender: address, | |
expect_optimistic_transfer: bool, | |
) -> uint256: | |
""" | |
@notice Contains all logic to handle ERC20 token transfers. | |
@param coin_idx Index of the coin to transfer in. | |
@param dx amount of `_coin` to transfer into the pool. | |
@param dy amount of `_coin` to transfer out of the pool. | |
@param sender address to transfer `_coin` from. | |
@param receiver address to transfer `_coin` to. | |
@param expect_optimistic_transfer True if contract expects an optimistic coin transfer | |
""" | |
_dx: uint256 = staticcall IERC20(coins[coin_idx]).balanceOf(self) | |
# ------------------------- Handle Transfers ----------------------------- | |
if expect_optimistic_transfer: | |
_dx = _dx - self.stored_balances[coin_idx] | |
assert _dx >= dx | |
else: | |
assert dx > 0 # dev : do not transferFrom 0 tokens into the pool | |
assert extcall IERC20(coins[coin_idx]).transferFrom( | |
sender, self, dx, default_return_value=True | |
) | |
_dx = staticcall IERC20(coins[coin_idx]).balanceOf(self) - _dx | |
# --------------------------- Store transferred in amount --------------------------- | |
self.stored_balances[coin_idx] += _dx | |
return _dx | |
@internal | |
def _transfer_out(_coin_idx: uint128, _amount: uint256, receiver: address): | |
""" | |
@notice Transfer a single token from the pool to receiver. | |
@dev This function is called by `remove_liquidity` and | |
`remove_liquidity_one`, `_exchange` and `_withdraw_admin_fees` methods. | |
@param _coin_idx Index of the token to transfer out | |
@param _amount Amount of token to transfer out | |
@param receiver Address to send the tokens to | |
""" | |
coin_balance: uint256 = staticcall IERC20(coins[_coin_idx]).balanceOf(self) | |
# ------------------------- Handle Transfers ----------------------------- | |
assert extcall IERC20(coins[_coin_idx]).transfer( | |
receiver, _amount, default_return_value=True | |
) | |
# ----------------------- Update Stored Balances ------------------------- | |
self.stored_balances[_coin_idx] = coin_balance - _amount | |
# -------------------------- AMM Special Methods ----------------------------- | |
@view | |
@internal | |
def _stored_rates() -> DynArray[uint256, MAX_COINS]: | |
""" | |
@notice Gets rate multipliers for each coin. | |
@dev If the coin has a rate oracle that has been properly initialised, | |
this method queries that rate by static-calling an external | |
contract. | |
""" | |
rates: DynArray[uint256, MAX_COINS] = rate_multipliers | |
oracles: DynArray[uint256, MAX_COINS] = self.oracles | |
for i: uint128 in range(MAX_COINS_128): | |
if i == N_COINS_128: | |
break | |
if asset_types[i] == 1 and not oracles[i] == 0: | |
# NOTE: fetched_rate is assumed to be 10**18 precision | |
fetched_rate: uint256 = convert( | |
raw_call( | |
convert(oracles[i] % 2**160, address), | |
abi_encode(oracles[i] & ORACLE_BIT_MASK), | |
max_outsize=32, | |
is_static_call=True, | |
), | |
uint256 | |
) | |
rates[i] = unsafe_div(rates[i] * fetched_rate, PRECISION) | |
elif asset_types[i] == 3: # ERC4626 | |
# fetched_rate: uint256 = ERC4626(coins[i]).convertToAssets(call_amount[i]) * scale_factor[i] | |
# here: call_amount has ERC4626 precision, but the returned value is scaled up to 18 | |
# using scale_factor which is (18 - n) if underlying asset has n decimals. | |
rates[i] = unsafe_div( | |
rates[i] * (staticcall IERC4626(coins[i]).convertToAssets(call_amount[i])) * scale_factor[i], | |
PRECISION | |
) # 1e18 precision | |
return rates | |
@view | |
@internal | |
def _balances() -> DynArray[uint256, MAX_COINS]: | |
""" | |
@notice Calculates the pool's balances _excluding_ the admin's balances. | |
@dev If the pool contains rebasing tokens, this method ensures LPs keep all | |
rebases and admin only claims swap fees. This also means that, since | |
admin's balances are stored in an array and not inferred from read balances, | |
the fees in the rebasing token that the admin collects is immune to | |
slashing events. | |
""" | |
result: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS]) | |
balances_i: uint256 = 0 | |
for i: uint128 in range(MAX_COINS_128): | |
if i == N_COINS_128: | |
break | |
if 2 in asset_types: | |
balances_i = staticcall IERC20(coins[i]).balanceOf(self) - self.admin_balances[i] | |
else: | |
balances_i = self.stored_balances[i] - self.admin_balances[i] | |
result.append(balances_i) | |
return result | |
# -------------------------- AMM Main Functions ------------------------------ | |
@external | |
@nonreentrant | |
def exchange( | |
i: uint128, | |
j: uint128, | |
_dx: uint256, | |
_min_dy: uint256, | |
_receiver: address = msg.sender, | |
) -> uint256: | |
""" | |
@notice Perform an exchange between two coins | |
@dev Index values can be found via the `coins` public getter method | |
@param i Index value for the coin to send | |
@param j Index value of the coin to recieve | |
@param _dx Amount of `i` being exchanged | |
@param _min_dy Minimum amount of `j` to receive | |
@return Actual amount of `j` received | |
""" | |
return self._exchange( | |
msg.sender, | |
i, | |
j, | |
_dx, | |
_min_dy, | |
_receiver, | |
False | |
) | |
@external | |
@nonreentrant | |
def exchange_received( | |
i: uint128, | |
j: uint128, | |
_dx: uint256, | |
_min_dy: uint256, | |
_receiver: address = msg.sender, | |
) -> uint256: | |
""" | |
@notice Perform an exchange between two coins without transferring token in | |
@dev The contract swaps tokens based on a change in balance of coin[i]. The | |
dx = ERC20(coin[i]).balanceOf(self) - self.stored_balances[i]. Users of | |
this method are dex aggregators, arbitrageurs, or other users who do not | |
wish to grant approvals to the contract: they would instead send tokens | |
directly to the contract and call `exchange_received`. | |
Note: This is disabled if pool contains rebasing tokens. | |
@param i Index value for the coin to send | |
@param j Index valie of the coin to recieve | |
@param _dx Amount of `i` being exchanged | |
@param _min_dy Minimum amount of `j` to receive | |
@return Actual amount of `j` received | |
""" | |
assert not 2 in asset_types # dev: exchange_received not supported if pool contains rebasing tokens | |
return self._exchange( | |
msg.sender, | |
i, | |
j, | |
_dx, | |
_min_dy, | |
_receiver, | |
True, # <--------------------------------------- swap optimistically. | |
) | |
@external | |
@nonreentrant | |
def add_liquidity( | |
_amounts: DynArray[uint256, MAX_COINS], | |
_min_mint_amount: uint256, | |
_receiver: address = msg.sender | |
) -> uint256: | |
""" | |
@notice Deposit coins into the pool | |
@param _amounts List of amounts of coins to deposit | |
@param _min_mint_amount Minimum amount of LP tokens to mint from the deposit | |
@param _receiver Address that owns the minted LP tokens | |
@return Amount of LP tokens received by depositing | |
""" | |
amp: uint256 = self._A() | |
old_balances: DynArray[uint256, MAX_COINS] = self._balances() | |
rates: DynArray[uint256, MAX_COINS] = self._stored_rates() | |
# Initial invariant | |
D0: uint256 = self.get_D_mem(rates, old_balances, amp) | |
total_supply: uint256 = self.total_supply | |
new_balances: DynArray[uint256, MAX_COINS] = old_balances | |
# -------------------------- Do Transfers In ----------------------------- | |
for i: uint128 in range(MAX_COINS_128): | |
if i == N_COINS_128: | |
break | |
if _amounts[i] > 0: | |
new_balances[i] += self._transfer_in( | |
i, | |
_amounts[i], | |
msg.sender, | |
False, # expect_optimistic_transfer | |
) | |
else: | |
assert total_supply != 0 # dev: initial deposit requires all coins | |
# ------------------------------------------------------------------------ | |
# Invariant after change | |
D1: uint256 = self.get_D_mem(rates, new_balances, amp) | |
assert D1 > D0 | |
# We need to recalculate the invariant accounting for fees | |
# to calculate fair user's share | |
fees: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS]) | |
mint_amount: uint256 = 0 | |
if total_supply > 0: | |
ideal_balance: uint256 = 0 | |
difference: uint256 = 0 | |
new_balance: uint256 = 0 | |
ys: uint256 = (D0 + D1) // N_COINS | |
xs: uint256 = 0 | |
_dynamic_fee_i: uint256 = 0 | |
# Only account for fees if we are not the first to deposit | |
base_fee: uint256 = self.fee * N_COINS // (4 * (N_COINS - 1)) | |
for i: uint128 in range(MAX_COINS_128): | |
if i == N_COINS_128: | |
break | |
ideal_balance = D1 * old_balances[i] // D0 | |
difference = 0 | |
new_balance = new_balances[i] | |
if ideal_balance > new_balance: | |
difference = ideal_balance - new_balance | |
else: | |
difference = new_balance - ideal_balance | |
# fee[i] = _dynamic_fee(i, j) * difference // FEE_DENOMINATOR | |
xs = unsafe_div(rates[i] * (old_balances[i] + new_balance), PRECISION) | |
_dynamic_fee_i = self._dynamic_fee(xs, ys, base_fee) | |
fees.append(_dynamic_fee_i * difference // FEE_DENOMINATOR) | |
self.admin_balances[i] += fees[i] * admin_fee // FEE_DENOMINATOR | |
new_balances[i] -= fees[i] | |
xp: DynArray[uint256, MAX_COINS] = self._xp_mem(rates, new_balances) | |
D1 = self.get_D(xp, amp) # <--------------- Reuse D1 for new D value. | |
mint_amount = total_supply * (D1 - D0) // D0 | |
self.upkeep_oracles(xp, amp, D1) | |
else: | |
mint_amount = D1 # Take the dust if there was any | |
# (re)instantiate D oracle if totalSupply is zero. | |
self.last_D_packed = self.pack_2(D1, D1) | |
assert mint_amount >= _min_mint_amount, "Slippage screwed you" | |
# Mint pool tokens | |
total_supply += mint_amount | |
self.balanceOf[_receiver] += mint_amount | |
self.total_supply = total_supply | |
log Transfer(sender=empty(address), receiver=_receiver, value=mint_amount) | |
log AddLiquidity(provider=msg.sender, token_amounts=_amounts, fees=fees, invariant=D1, token_supply=total_supply) | |
return mint_amount | |
@external | |
@nonreentrant | |
def remove_liquidity_one_coin( | |
_burn_amount: uint256, | |
i: uint128, | |
_min_received: uint256, | |
_receiver: address = msg.sender, | |
) -> uint256: | |
""" | |
@notice Withdraw a single coin from the pool | |
@param _burn_amount Amount of LP tokens to burn in the withdrawal | |
@param i Index value of the coin to withdraw | |
@param _min_received Minimum amount of coin to receive | |
@param _receiver Address that receives the withdrawn coins | |
@return Amount of coin received | |
""" | |
assert _burn_amount > 0 # dev: do not remove 0 LP tokens | |
dy: uint256 = 0 | |
fee: uint256 = 0 | |
xp: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS]) | |
amp: uint256 = empty(uint256) | |
D: uint256 = empty(uint256) | |
dy, fee, xp, amp, D = self._calc_withdraw_one_coin(_burn_amount, i) | |
assert dy >= _min_received, "Not enough coins removed" | |
self.admin_balances[i] += fee * admin_fee // FEE_DENOMINATOR | |
self._burnFrom(msg.sender, _burn_amount) | |
self._transfer_out(i, dy, _receiver) | |
log RemoveLiquidityOne(provider=msg.sender, token_id=i, token_amount=_burn_amount, coin_amount=dy, token_supply=self.total_supply) | |
self.upkeep_oracles(xp, amp, D) | |
return dy | |
@external | |
@nonreentrant | |
def remove_liquidity_imbalance( | |
_amounts: DynArray[uint256, MAX_COINS], | |
_max_burn_amount: uint256, | |
_receiver: address = msg.sender | |
) -> uint256: | |
""" | |
@notice Withdraw coins from the pool in an imbalanced amount | |
@param _amounts List of amounts of underlying coins to withdraw | |
@param _max_burn_amount Maximum amount of LP token to burn in the withdrawal | |
@param _receiver Address that receives the withdrawn coins | |
@return Actual amount of the LP token burned in the withdrawal | |
""" | |
amp: uint256 = self._A() | |
rates: DynArray[uint256, MAX_COINS] = self._stored_rates() | |
old_balances: DynArray[uint256, MAX_COINS] = self._balances() | |
D0: uint256 = self.get_D_mem(rates, old_balances, amp) | |
new_balances: DynArray[uint256, MAX_COINS] = old_balances | |
for i: uint128 in range(MAX_COINS_128): | |
if i == N_COINS_128: | |
break | |
if _amounts[i] != 0: | |
new_balances[i] -= _amounts[i] | |
self._transfer_out(i, _amounts[i], _receiver) | |
D1: uint256 = self.get_D_mem(rates, new_balances, amp) | |
base_fee: uint256 = self.fee * N_COINS // (4 * (N_COINS - 1)) | |
ys: uint256 = (D0 + D1) // N_COINS | |
fees: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS]) | |
dynamic_fee: uint256 = 0 | |
xs: uint256 = 0 | |
ideal_balance: uint256 = 0 | |
difference: uint256 = 0 | |
new_balance: uint256 = 0 | |
for i: uint128 in range(MAX_COINS_128): | |
if i == N_COINS_128: | |
break | |
ideal_balance = D1 * old_balances[i] // D0 | |
difference = 0 | |
new_balance = new_balances[i] | |
if ideal_balance > new_balance: | |
difference = ideal_balance - new_balance | |
else: | |
difference = new_balance - ideal_balance | |
xs = unsafe_div(rates[i] * (old_balances[i] + new_balance), PRECISION) | |
dynamic_fee = self._dynamic_fee(xs, ys, base_fee) | |
fees.append(dynamic_fee * difference // FEE_DENOMINATOR) | |
self.admin_balances[i] += fees[i] * admin_fee // FEE_DENOMINATOR | |
new_balances[i] -= fees[i] | |
D1 = self.get_D_mem(rates, new_balances, amp) # dev: reuse D1 for new D. | |
self.upkeep_oracles(new_balances, amp, D1) | |
total_supply: uint256 = self.total_supply | |
burn_amount: uint256 = ((D0 - D1) * total_supply // D0) + 1 | |
assert burn_amount > 1 # dev: zero tokens burned | |
assert burn_amount <= _max_burn_amount, "Slippage screwed you" | |
total_supply -= burn_amount | |
self._burnFrom(msg.sender, burn_amount) | |
log RemoveLiquidityImbalance(provider=msg.sender, token_amounts=_amounts, fees=fees, invariant=D1, token_supply=total_supply) | |
return burn_amount | |
@external | |
@nonreentrant | |
def remove_liquidity( | |
_burn_amount: uint256, | |
_min_amounts: DynArray[uint256, MAX_COINS], | |
_receiver: address = msg.sender, | |
_claim_admin_fees: bool = True, | |
) -> DynArray[uint256, MAX_COINS]: | |
""" | |
@notice Withdraw coins from the pool | |
@dev Withdrawal amounts are based on current deposit ratios | |
@param _burn_amount Quantity of LP tokens to burn in the withdrawal | |
@param _min_amounts Minimum amounts of underlying coins to receive | |
@param _receiver Address that receives the withdrawn coins | |
@return List of amounts of coins that were withdrawn | |
""" | |
total_supply: uint256 = self.total_supply | |
assert _burn_amount > 0 # dev: invalid burn amount | |
amounts: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS]) | |
balances: DynArray[uint256, MAX_COINS] = self._balances() | |
value: uint256 = 0 | |
for i: uint128 in range(MAX_COINS_128): | |
if i == N_COINS_128: | |
break | |
value = balances[i] * _burn_amount // total_supply | |
assert value >= _min_amounts[i], "Withdrawal resulted in fewer coins than expected" | |
amounts.append(value) | |
self._transfer_out(i, value, _receiver) | |
self._burnFrom(msg.sender, _burn_amount) # <---- Updates self.total_supply | |
# --------------------------- Upkeep D_oracle ---------------------------- | |
ma_last_time_unpacked: uint256[2] = self.unpack_2(self.ma_last_time) | |
last_D_packed_current: uint256 = self.last_D_packed | |
old_D: uint256 = last_D_packed_current & (2**128 - 1) | |
self.last_D_packed = self.pack_2( | |
old_D - unsafe_div(old_D * _burn_amount, total_supply), # new_D = proportionally reduce D. | |
self._calc_moving_average( | |
last_D_packed_current, | |
self.D_ma_time, | |
ma_last_time_unpacked[1] | |
) | |
) | |
if ma_last_time_unpacked[1] < block.timestamp: | |
ma_last_time_unpacked[1] = block.timestamp | |
self.ma_last_time = self.pack_2(ma_last_time_unpacked[0], ma_last_time_unpacked[1]) | |
# ------------------------------- Log event ------------------------------ | |
log RemoveLiquidity( | |
provider=msg.sender, | |
token_amounts=amounts, | |
fees=empty(DynArray[uint256, MAX_COINS]), | |
token_supply=total_supply - _burn_amount | |
) | |
# ------- Withdraw admin fees if _claim_admin_fees is set to True -------- | |
if _claim_admin_fees: | |
self._withdraw_admin_fees() | |
return amounts | |
@external | |
def withdraw_admin_fees(): | |
""" | |
@notice Claim admin fees. Callable by anyone. | |
""" | |
self._withdraw_admin_fees() | |
# ------------------------ AMM Internal Functions ---------------------------- | |
@view | |
@internal | |
def _dynamic_fee(xpi: uint256, xpj: uint256, _fee: uint256) -> uint256: | |
_offpeg_fee_multiplier: uint256 = self.offpeg_fee_multiplier | |
if _offpeg_fee_multiplier <= FEE_DENOMINATOR: | |
return _fee | |
xps2: uint256 = (xpi + xpj) ** 2 | |
return ( | |
(_offpeg_fee_multiplier * _fee) // | |
((_offpeg_fee_multiplier - FEE_DENOMINATOR) * 4 * xpi * xpj // xps2 + FEE_DENOMINATOR) | |
) | |
@internal | |
def __exchange( | |
x: uint256, | |
_xp: DynArray[uint256, MAX_COINS], | |
rates: DynArray[uint256, MAX_COINS], | |
i: uint128, | |
j: uint128, | |
) -> uint256: | |
amp: uint256 = self._A() | |
D: uint256 = self.get_D(_xp, amp) | |
y: uint256 = self.get_y(i, j, x, _xp, amp, D) | |
dy: uint256 = _xp[j] - y - 1 # -1 just in case there were some rounding errors | |
dy_fee: uint256 = dy * self._dynamic_fee((_xp[i] + x) // 2, (_xp[j] + y) // 2, self.fee) // FEE_DENOMINATOR | |
# Convert all to real units | |
dy = (dy - dy_fee) * PRECISION // rates[j] | |
self.admin_balances[j] += ( | |
dy_fee * admin_fee // FEE_DENOMINATOR | |
) * PRECISION // rates[j] | |
# Calculate and store state prices: | |
xp: DynArray[uint256, MAX_COINS] = _xp | |
xp[i] = x | |
xp[j] = y | |
# D is not changed because we did not apply a fee | |
self.upkeep_oracles(xp, amp, D) | |
return dy | |
@internal | |
def _exchange( | |
sender: address, | |
i: uint128, | |
j: uint128, | |
_dx: uint256, | |
_min_dy: uint256, | |
receiver: address, | |
expect_optimistic_transfer: bool | |
) -> uint256: | |
assert i != j # dev: coin index out of range | |
assert _dx > 0 # dev: do not exchange 0 coins | |
rates: DynArray[uint256, MAX_COINS] = self._stored_rates() | |
old_balances: DynArray[uint256, MAX_COINS] = self._balances() | |
xp: DynArray[uint256, MAX_COINS] = self._xp_mem(rates, old_balances) | |
# --------------------------- Do Transfer in ----------------------------- | |
# `dx` is whatever the pool received after ERC20 transfer: | |
dx: uint256 = self._transfer_in( | |
i, | |
_dx, | |
sender, | |
expect_optimistic_transfer | |
) | |
# ------------------------------- Exchange ------------------------------- | |
x: uint256 = xp[i] + dx * rates[i] // PRECISION | |
dy: uint256 = self.__exchange(x, xp, rates, i, j) | |
assert dy >= _min_dy, "Exchange resulted in fewer coins than expected" | |
# --------------------------- Do Transfer out ---------------------------- | |
self._transfer_out(j, dy, receiver) | |
# ------------------------------------------------------------------------ | |
log TokenExchange(buyer=msg.sender, sold_id=i, tokens_sold=_dx, bought_id=j, tokens_bought=dy) | |
return dy | |
@internal | |
def _withdraw_admin_fees(): | |
fee_receiver: address = staticcall factory.fee_receiver() | |
assert fee_receiver != empty(address) # dev: fee receiver not set | |
admin_balances: DynArray[uint256, MAX_COINS] = self.admin_balances | |
for i: uint128 in range(MAX_COINS_128): | |
if i == N_COINS_128: | |
break | |
if admin_balances[i] > 0: | |
self._transfer_out(i, admin_balances[i], fee_receiver) | |
admin_balances[i] = 0 | |
self.admin_balances = admin_balances | |
# --------------------------- AMM Math Functions ----------------------------- | |
@view | |
@internal | |
def get_y( | |
i: uint128, | |
j: uint128, | |
x: uint256, | |
xp: DynArray[uint256, MAX_COINS], | |
_amp: uint256, | |
_D: uint256 | |
) -> uint256: | |
""" | |
Calculate x[j] if one makes x[i] = x | |
Done by solving quadratic equation iteratively. | |
x_1**2 + x_1 * (sum' - (A*n**n - 1) * D // (A * n**n)) = D ** (n + 1) // (n ** (2 * n) * prod' * A) | |
x_1**2 + b*x_1 = c | |
x_1 = (x_1**2 + c) // (2*x_1 + b) | |
""" | |
# x in the input is converted to the same price/precision | |
assert i != j # dev: same coin | |
assert j >= 0 # dev: j below zero | |
assert j < N_COINS_128 # dev: j above N_COINS | |
# should be unreachable, but good for safety | |
assert i >= 0 | |
assert i < N_COINS_128 | |
amp: uint256 = _amp | |
D: uint256 = _D | |
S_: uint256 = 0 | |
_x: uint256 = 0 | |
y_prev: uint256 = 0 | |
c: uint256 = D | |
Ann: uint256 = amp * N_COINS | |
for _i: uint128 in range(MAX_COINS_128): | |
if _i == N_COINS_128: | |
break | |
if _i == i: | |
_x = x | |
elif _i != j: | |
_x = xp[_i] | |
else: | |
continue | |
S_ += _x | |
c = c * D // (_x * N_COINS) | |
c = c * D * A_PRECISION // (Ann * N_COINS) | |
b: uint256 = S_ + D * A_PRECISION // Ann # - D | |
y: uint256 = D | |
for _i: uint256 in range(255): | |
y_prev = y | |
y = (y*y + c) // (2 * y + b - D) | |
# Equality with the precision of 1 | |
if y > y_prev: | |
if y - y_prev <= 1: | |
return y | |
else: | |
if y_prev - y <= 1: | |
return y | |
raise | |
@view | |
@internal | |
def get_D(_xp: DynArray[uint256, MAX_COINS], _amp: uint256) -> uint256: | |
""" | |
D invariant calculation in non-overflowing integer operations | |
iteratively | |
A * sum(x_i) * n**n + D = A * D * n**n + D**(n+1) // (n**n * prod(x_i)) | |
Converging solution: | |
D[j+1] = (A * n**n * sum(x_i) - D[j]**(n+1) // (n**n prod(x_i))) // (A * n**n - 1) | |
""" | |
S: uint256 = 0 | |
for x: uint256 in _xp: | |
S += x | |
if S == 0: | |
return 0 | |
D: uint256 = S | |
Ann: uint256 = _amp * N_COINS | |
D_P: uint256 = 0 | |
Dprev: uint256 = 0 | |
for i: uint256 in range(255): | |
D_P = D | |
for x: uint256 in _xp: | |
D_P = D_P * D // (x * N_COINS) | |
Dprev = D | |
# (Ann * S // A_PRECISION + D_P * N_COINS) * D // ((Ann - A_PRECISION) * D // A_PRECISION + (N_COINS + 1) * D_P) | |
D = ( | |
(unsafe_div(Ann * S, A_PRECISION) + D_P * N_COINS) * | |
D // ( | |
unsafe_div((Ann - A_PRECISION) * D, A_PRECISION) + | |
unsafe_add(N_COINS, 1) * D_P | |
) | |
) | |
# Equality with the precision of 1 | |
if D > Dprev: | |
if D - Dprev <= 1: | |
return D | |
else: | |
if Dprev - D <= 1: | |
return D | |
# convergence typically occurs in 4 rounds or less, this should be unreachable! | |
# if it does happen the pool is borked and LPs can withdraw via `remove_liquidity` | |
raise | |
@view | |
@internal | |
def get_y_D( | |
A: uint256, | |
i: uint128, | |
xp: DynArray[uint256, MAX_COINS], | |
D: uint256 | |
) -> uint256: | |
""" | |
Calculate x[i] if one reduces D from being calculated for xp to D | |
Done by solving quadratic equation iteratively. | |
x_1**2 + x_1 * (sum' - (A*n**n - 1) * D // (A * n**n)) = D ** (n + 1) // (n ** (2 * n) * prod' * A) | |
x_1**2 + b*x_1 = c | |
x_1 = (x_1**2 + c) // (2*x_1 + b) | |
""" | |
# x in the input is converted to the same price/precision | |
assert i >= 0 # dev: i below zero | |
assert i < N_COINS_128 # dev: i above N_COINS | |
S_: uint256 = 0 | |
_x: uint256 = 0 | |
y_prev: uint256 = 0 | |
c: uint256 = D | |
Ann: uint256 = A * N_COINS | |
for _i: uint128 in range(MAX_COINS_128): | |
if _i == N_COINS_128: | |
break | |
if _i != i: | |
_x = xp[_i] | |
else: | |
continue | |
S_ += _x | |
c = c * D // (_x * N_COINS) | |
c = c * D * A_PRECISION // (Ann * N_COINS) | |
b: uint256 = S_ + D * A_PRECISION // Ann | |
y: uint256 = D | |
for _i: uint256 in range(255): | |
y_prev = y | |
y = (y*y + c) // (2 * y + b - D) | |
# Equality with the precision of 1 | |
if y > y_prev: | |
if y - y_prev <= 1: | |
return y | |
else: | |
if y_prev - y <= 1: | |
return y | |
raise | |
@view | |
@internal | |
def _A() -> uint256: | |
""" | |
Handle ramping A up or down | |
""" | |
t1: uint256 = self.future_A_time | |
A1: uint256 = self.future_A | |
if block.timestamp < t1: | |
A0: uint256 = self.initial_A | |
t0: uint256 = self.initial_A_time | |
# Expressions in uint256 cannot have negative numbers, thus "if" | |
if A1 > A0: | |
return A0 + (A1 - A0) * (block.timestamp - t0) // (t1 - t0) | |
else: | |
return A0 - (A0 - A1) * (block.timestamp - t0) // (t1 - t0) | |
else: # when t1 == 0 or block.timestamp >= t1 | |
return A1 | |
@view | |
@internal | |
def _xp_mem( | |
_rates: DynArray[uint256, MAX_COINS], | |
_balances: DynArray[uint256, MAX_COINS] | |
) -> DynArray[uint256, MAX_COINS]: | |
result: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS]) | |
for i: uint128 in range(MAX_COINS_128): | |
if i == N_COINS_128: | |
break | |
result.append(_rates[i] * _balances[i] // PRECISION) | |
return result | |
@view | |
@internal | |
def get_D_mem( | |
_rates: DynArray[uint256, MAX_COINS], | |
_balances: DynArray[uint256, MAX_COINS], | |
_amp: uint256 | |
) -> uint256: | |
xp: DynArray[uint256, MAX_COINS] = self._xp_mem(_rates, _balances) | |
return self.get_D(xp, _amp) | |
@view | |
@internal | |
def _calc_withdraw_one_coin( | |
_burn_amount: uint256, | |
i: uint128 | |
) -> ( | |
uint256, | |
uint256, | |
DynArray[uint256, MAX_COINS], | |
uint256, | |
uint256 | |
): | |
# First, need to calculate | |
# * Get current D | |
# * Solve Eqn against y_i for D - _token_amount | |
amp: uint256 = self._A() | |
rates: DynArray[uint256, MAX_COINS] = self._stored_rates() | |
xp: DynArray[uint256, MAX_COINS] = self._xp_mem(rates, self._balances()) | |
D0: uint256 = self.get_D(xp, amp) | |
total_supply: uint256 = self.total_supply | |
D1: uint256 = D0 - _burn_amount * D0 // total_supply | |
new_y: uint256 = self.get_y_D(amp, i, xp, D1) | |
base_fee: uint256 = self.fee * N_COINS // (4 * (N_COINS - 1)) | |
ys: uint256 = (D0 + D1) // (2 * N_COINS) | |
xp_reduced: DynArray[uint256, MAX_COINS] = xp | |
dx_expected: uint256 = 0 | |
xp_j: uint256 = 0 | |
xavg: uint256 = 0 | |
dynamic_fee: uint256 = 0 | |
for j: uint128 in range(MAX_COINS_128): | |
if j == N_COINS_128: | |
break | |
dx_expected = 0 | |
xp_j = xp[j] | |
if j == i: | |
dx_expected = xp_j * D1 // D0 - new_y | |
xavg = (xp_j + new_y) // 2 | |
else: | |
dx_expected = xp_j - xp_j * D1 // D0 | |
xavg = xp_j | |
dynamic_fee = self._dynamic_fee(xavg, ys, base_fee) | |
xp_reduced[j] = xp_j - dynamic_fee * dx_expected // FEE_DENOMINATOR | |
dy: uint256 = xp_reduced[i] - self.get_y_D(amp, i, xp_reduced, D1) | |
dy_0: uint256 = (xp[i] - new_y) * PRECISION // rates[i] # w/o fees | |
dy = (dy - 1) * PRECISION // rates[i] # Withdraw less to account for rounding errors | |
# update xp with new_y for p calculations. | |
xp[i] = new_y | |
return dy, dy_0 - dy, xp, amp, D1 | |
# -------------------------- AMM Price Methods ------------------------------- | |
@pure | |
@internal | |
def pack_2(p1: uint256, p2: uint256) -> uint256: | |
assert p1 < 2**128 | |
assert p2 < 2**128 | |
return p1 | (p2 << 128) | |
@pure | |
@internal | |
def unpack_2(packed: uint256) -> uint256[2]: | |
return [packed & (2**128 - 1), packed >> 128] | |
@internal | |
@view | |
def _get_p( | |
xp: DynArray[uint256, MAX_COINS], | |
amp: uint256, | |
D: uint256, | |
) -> DynArray[uint256, MAX_COINS]: | |
# dx_0 // dx_1 only, however can have any number of coins in pool | |
ANN: uint256 = unsafe_mul(amp, N_COINS) | |
Dr: uint256 = unsafe_div(D, pow_mod256(N_COINS, N_COINS)) | |
for i: uint128 in range(MAX_COINS_128): | |
if i == N_COINS_128: | |
break | |
Dr = Dr * D // xp[i] | |
p: DynArray[uint256, MAX_COINS] = empty(DynArray[uint256, MAX_COINS]) | |
xp0_A: uint256 = ANN * xp[0] // A_PRECISION | |
for i: uint256 in range(1, MAX_COINS): | |
if i == N_COINS: | |
break | |
p.append(10**18 * (xp0_A + Dr * xp[0] // xp[i]) // (xp0_A + Dr)) | |
return p | |
@internal | |
def upkeep_oracles(xp: DynArray[uint256, MAX_COINS], amp: uint256, D: uint256): | |
""" | |
@notice Upkeeps price and D oracles. | |
""" | |
ma_last_time_unpacked: uint256[2] = self.unpack_2(self.ma_last_time) | |
last_prices_packed_current: DynArray[uint256, MAX_COINS] = self.last_prices_packed | |
last_prices_packed_new: DynArray[uint256, MAX_COINS] = last_prices_packed_current | |
spot_price: DynArray[uint256, MAX_COINS] = self._get_p(xp, amp, D) | |
# -------------------------- Upkeep price oracle ------------------------- | |
for i: uint256 in range(MAX_COINS): | |
if i == N_COINS - 1: | |
break | |
if spot_price[i] != 0: | |
# Upate packed prices ----------------- | |
last_prices_packed_new[i] = self.pack_2( | |
spot_price[i], | |
self._calc_moving_average( | |
last_prices_packed_current[i], | |
self.ma_exp_time, | |
ma_last_time_unpacked[0], # index 0 is ma_exp_time for prices | |
) | |
) | |
self.last_prices_packed = last_prices_packed_new | |
# ---------------------------- Upkeep D oracle --------------------------- | |
last_D_packed_current: uint256 = self.last_D_packed | |
self.last_D_packed = self.pack_2( | |
D, | |
self._calc_moving_average( | |
last_D_packed_current, | |
self.D_ma_time, | |
ma_last_time_unpacked[1], # index 1 is ma_exp_time for D | |
) | |
) | |
# Housekeeping: Update ma_last_time for p and D oracles ------------------ | |
for i: uint256 in range(2): | |
if ma_last_time_unpacked[i] < block.timestamp: | |
ma_last_time_unpacked[i] = block.timestamp | |
self.ma_last_time = self.pack_2(ma_last_time_unpacked[0], ma_last_time_unpacked[1]) | |
@internal | |
@view | |
def _calc_moving_average( | |
packed_value: uint256, | |
averaging_window: uint256, | |
ma_last_time: uint256 | |
) -> uint256: | |
last_spot_value: uint256 = packed_value & (2**128 - 1) | |
last_ema_value: uint256 = (packed_value >> 128) | |
if ma_last_time < block.timestamp: # calculate new_ema_value and return that. | |
alpha: uint256 = self.exp( | |
-convert( | |
(block.timestamp - ma_last_time) * 10**18 // averaging_window, int256 | |
) | |
) | |
return (last_spot_value * (10**18 - alpha) + last_ema_value * alpha) // 10**18 | |
return last_ema_value | |
@view | |
@external | |
def last_price(i: uint256) -> uint256: | |
return self.last_prices_packed[i] & (2**128 - 1) | |
@view | |
@external | |
def ema_price(i: uint256) -> uint256: | |
return (self.last_prices_packed[i] >> 128) | |
@external | |
@view | |
def get_p(i: uint256) -> uint256: | |
""" | |
@notice Returns the AMM State price of token | |
@dev if i = 0, it will return the state price of coin[1]. | |
@param i index of state price (0 for coin[1], 1 for coin[2], ...) | |
@return uint256 The state price quoted by the AMM for coin[i+1] | |
""" | |
amp: uint256 = self._A() | |
xp: DynArray[uint256, MAX_COINS] = self._xp_mem( | |
self._stored_rates(), self._balances() | |
) | |
D: uint256 = self.get_D(xp, amp) | |
return self._get_p(xp, amp, D)[i] | |
@external | |
@view | |
@nonreentrant | |
def price_oracle(i: uint256) -> uint256: | |
return self._calc_moving_average( | |
self.last_prices_packed[i], | |
self.ma_exp_time, | |
self.ma_last_time & (2**128 - 1) | |
) | |
@external | |
@view | |
@nonreentrant | |
def D_oracle() -> uint256: | |
return self._calc_moving_average( | |
self.last_D_packed, | |
self.D_ma_time, | |
self.ma_last_time >> 128 | |
) | |
# ----------------------------- Math Utils ----------------------------------- | |
@internal | |
@pure | |
def exp(x: int256) -> uint256: | |
""" | |
@dev Calculates the natural exponential function of a signed integer with | |
a precision of 1e18. | |
@notice Note that this function consumes about 810 gas units. The implementation | |
is inspired by Remco Bloemen's implementation under the MIT license here: | |
https://xn--2-umb.com/22/exp-ln. | |
@dev This implementation is derived from Snekmate, which is authored | |
by pcaversaccio (Snekmate), distributed under the AGPL-3.0 license. | |
https://github.com/pcaversaccio/snekmate | |
@param x The 32-byte variable. | |
@return int256 The 32-byte calculation result. | |
""" | |
value: int256 = x | |
# If the result is `< 0.5`, we return zero. This happens when we have the following: | |
# "x <= floor(log(0.5e18) * 1e18) ~ -42e18". | |
if (x <= -42139678854452767551): | |
return 0 | |
# When the result is "> (2 ** 255 - 1) // 1e18" we cannot represent it as a signed integer. | |
# This happens when "x >= floor(log((2 ** 255 - 1) // 1e18) * 1e18) ~ 135". | |
assert x < 135305999368893231589, "wad_exp overflow" | |
# `x` is now in the range "(-42, 136) * 1e18". Convert to "(-42, 136) * 2 ** 96" for higher | |
# intermediate precision and a binary base. This base conversion is a multiplication with | |
# "1e18 // 2 ** 96 = 5 ** 18 // 2 ** 78". | |
value = unsafe_div(x << 78, 5 ** 18) | |
# Reduce the range of `x` to "(-½ ln 2, ½ ln 2) * 2 ** 96" by factoring out powers of two | |
# so that "exp(x) = exp(x') * 2 ** k", where `k` is a signer integer. Solving this gives | |
# "k = round(x // log(2))" and "x' = x - k * log(2)". Thus, `k` is in the range "[-61, 195]". | |
k: int256 = unsafe_add(unsafe_div(value << 96, 54916777467707473351141471128), 2 ** 95) >> 96 | |
value = unsafe_sub(value, unsafe_mul(k, 54916777467707473351141471128)) | |
# Evaluate using a "(6, 7)"-term rational approximation. Since `p` is monic, | |
# we will multiply by a scaling factor later. | |
y: int256 = unsafe_add(unsafe_mul(unsafe_add(value, 1346386616545796478920950773328), value) >> 96, 57155421227552351082224309758442) | |
p: int256 = unsafe_add(unsafe_mul(unsafe_add(unsafe_mul(unsafe_sub(unsafe_add(y, value), 94201549194550492254356042504812), y) >> 96,\ | |
28719021644029726153956944680412240), value), 4385272521454847904659076985693276 << 96) | |
# We leave `p` in the "2 ** 192" base so that we do not have to scale it up | |
# again for the division. | |
q: int256 = unsafe_add(unsafe_mul(unsafe_sub(value, 2855989394907223263936484059900), value) >> 96, 50020603652535783019961831881945) | |
q = unsafe_sub(unsafe_mul(q, value) >> 96, 533845033583426703283633433725380) | |
q = unsafe_add(unsafe_mul(q, value) >> 96, 3604857256930695427073651918091429) | |
q = unsafe_sub(unsafe_mul(q, value) >> 96, 14423608567350463180887372962807573) | |
q = unsafe_add(unsafe_mul(q, value) >> 96, 26449188498355588339934803723976023) | |
# The polynomial `q` has no zeros in the range because all its roots are complex. | |
# No scaling is required, as `p` is already "2 ** 96" too large. Also, | |
# `r` is in the range "(0.09, 0.25) * 2**96" after the division. | |
r: int256 = unsafe_div(p, q) | |
# To finalise the calculation, we have to multiply `r` by: | |
# - the scale factor "s = ~6.031367120", | |
# - the factor "2 ** k" from the range reduction, and | |
# - the factor "1e18 // 2 ** 96" for the base conversion. | |
# We do this all at once, with an intermediate result in "2**213" base, | |
# so that the final right shift always gives a positive value. | |
# Note that to circumvent Vyper's safecast feature for the potentially | |
# negative parameter value `r`, we first convert `r` to `bytes32` and | |
# subsequently to `uint256`. Remember that the EVM default behaviour is | |
# to use two's complement representation to handle signed integers. | |
return unsafe_mul(convert(convert(r, bytes32), uint256), 3822833074963236453042738258902158003155416615667) >> convert(unsafe_sub(195, k), uint256) | |
# ---------------------------- ERC20 Utils ----------------------------------- | |
@view | |
@internal | |
def _domain_separator() -> bytes32: | |
if chain.id != CACHED_CHAIN_ID: | |
return keccak256( | |
abi_encode( | |
EIP712_TYPEHASH, | |
NAME_HASH, | |
VERSION_HASH, | |
chain.id, | |
self, | |
salt, | |
) | |
) | |
return CACHED_DOMAIN_SEPARATOR | |
@internal | |
def _transfer(_from: address, _to: address, _value: uint256): | |
# # NOTE: vyper does not allow underflows | |
# # so the following subtraction would revert on insufficient balance | |
self.balanceOf[_from] -= _value | |
self.balanceOf[_to] += _value | |
log Transfer(sender=_from, receiver=_to, value=_value) | |
@internal | |
def _burnFrom(_from: address, _burn_amount: uint256): | |
self.total_supply -= _burn_amount | |
self.balanceOf[_from] -= _burn_amount | |
log Transfer(sender=_from, receiver=empty(address), value=_burn_amount) | |
@external | |
def transfer(_to : address, _value : uint256) -> bool: | |
""" | |
@dev Transfer token for a specified address | |
@param _to The address to transfer to. | |
@param _value The amount to be transferred. | |
""" | |
self._transfer(msg.sender, _to, _value) | |
return True | |
@external | |
def transferFrom(_from : address, _to : address, _value : uint256) -> bool: | |
""" | |
@dev Transfer tokens from one address to another. | |
@param _from address The address which you want to send tokens from | |
@param _to address The address which you want to transfer to | |
@param _value uint256 the amount of tokens to be transferred | |
""" | |
self._transfer(_from, _to, _value) | |
_allowance: uint256 = self.allowance[_from][msg.sender] | |
if _allowance != max_value(uint256): | |
self.allowance[_from][msg.sender] = _allowance - _value | |
return True | |
@external | |
def approve(_spender : address, _value : uint256) -> bool: | |
""" | |
@notice Approve the passed address to transfer the specified amount of | |
tokens on behalf of msg.sender | |
@dev Beware that changing an allowance via this method brings the risk that | |
someone may use both the old and new allowance by unfortunate transaction | |
ordering: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 | |
@param _spender The address which will transfer the funds | |
@param _value The amount of tokens that may be transferred | |
@return bool success | |
""" | |
self.allowance[msg.sender][_spender] = _value | |
log Approval(owner=msg.sender, spender=_spender, value=_value) | |
return True | |
@external | |
def permit( | |
_owner: address, | |
_spender: address, | |
_value: uint256, | |
_deadline: uint256, | |
_v: uint8, | |
_r: bytes32, | |
_s: bytes32 | |
) -> bool: | |
""" | |
@notice Approves spender by owner's signature to expend owner's tokens. | |
See https://eips.ethereum.org/EIPS/eip-2612. | |
@dev Inspired by https://github.com/yearn/yearn-vaults/blob/main/contracts/Vault.vy#L753-L793 | |
@dev Supports smart contract wallets which implement ERC1271 | |
https://eips.ethereum.org/EIPS/eip-1271 | |
@param _owner The address which is a source of funds and has signed the Permit. | |
@param _spender The address which is allowed to spend the funds. | |
@param _value The amount of tokens to be spent. | |
@param _deadline The timestamp after which the Permit is no longer valid. | |
@param _v The bytes[64] of the valid secp256k1 signature of permit by owner | |
@param _r The bytes[0:32] of the valid secp256k1 signature of permit by owner | |
@param _s The bytes[32:64] of the valid secp256k1 signature of permit by owner | |
@return True, if transaction completes successfully | |
""" | |
assert _owner != empty(address) | |
assert block.timestamp <= _deadline | |
nonce: uint256 = self.nonces[_owner] | |
digest: bytes32 = keccak256( | |
concat( | |
b"\x19\x01", | |
self._domain_separator(), | |
keccak256(abi_encode(EIP2612_TYPEHASH, _owner, _spender, _value, nonce, _deadline)) | |
) | |
) | |
if _owner.is_contract: | |
sig: Bytes[65] = concat(abi_encode(_r, _s), slice(convert(_v, bytes32), 31, 1)) | |
# reentrancy not a concern since this is a staticcall | |
assert staticcall IERC1271(_owner).isValidSignature(digest, sig) == ERC1271_MAGIC_VAL | |
else: | |
assert ecrecover(digest, convert(_v, uint256), convert(_r, uint256), convert(_s, uint256)) == _owner | |
self.allowance[_owner][_spender] = _value | |
self.nonces[_owner] = nonce + 1 | |
log Approval(owner=_owner, spender=_spender, value=_value) | |
return True | |
@view | |
@external | |
def DOMAIN_SEPARATOR() -> bytes32: | |
""" | |
@notice EIP712 domain separator. | |
@return bytes32 Domain Separator set for the current chain. | |
""" | |
return self._domain_separator() | |
# ------------------------- AMM View Functions ------------------------------- | |
@view | |
@external | |
def get_dx(i: int128, j: int128, dy: uint256) -> uint256: | |
""" | |
@notice Calculate the current input dx given output dy | |
@dev Index values can be found via the `coins` public getter method | |
@param i Index value for the coin to send | |
@param j Index valie of the coin to recieve | |
@param dy Amount of `j` being received after exchange | |
@return Amount of `i` predicted | |
""" | |
return staticcall StableSwapViews(staticcall factory.views_implementation()).get_dx(i, j, dy, self) | |
@view | |
@external | |
def get_dy(i: int128, j: int128, dx: uint256) -> uint256: | |
""" | |
@notice Calculate the current output dy given input dx | |
@dev Index values can be found via the `coins` public getter method | |
@param i Index value for the coin to send | |
@param j Index valie of the coin to recieve | |
@param dx Amount of `i` being exchanged | |
@return Amount of `j` predicted | |
""" | |
return staticcall StableSwapViews(staticcall factory.views_implementation()).get_dy(i, j, dx, self) | |
@view | |
@external | |
def calc_withdraw_one_coin(_burn_amount: uint256, i: uint128) -> uint256: | |
""" | |
@notice Calculate the amount received when withdrawing a single coin | |
@param _burn_amount Amount of LP tokens to burn in the withdrawal | |
@param i Index value of the coin to withdraw | |
@return Amount of coin received | |
""" | |
return self._calc_withdraw_one_coin(_burn_amount, i)[0] | |
@view | |
@external | |
@nonreentrant | |
def totalSupply() -> uint256: | |
""" | |
@notice The total supply of pool LP tokens | |
@return self.total_supply, 18 decimals. | |
""" | |
return self.total_supply | |
@view | |
@external | |
@nonreentrant | |
def get_virtual_price() -> uint256: | |
""" | |
@notice The current virtual price of the pool LP token | |
@dev Useful for calculating profits. | |
The method may be vulnerable to donation-style attacks if implementation | |
contains rebasing tokens. For integrators, caution is advised. | |
@return LP token virtual price normalized to 1e18 | |
""" | |
amp: uint256 = self._A() | |
xp: DynArray[uint256, MAX_COINS] = self._xp_mem( | |
self._stored_rates(), self._balances() | |
) | |
D: uint256 = self.get_D(xp, amp) | |
# D is in the units similar to DAI (e.g. converted to precision 1e18) | |
# When balanced, D = n * x_u - total virtual value of the portfolio | |
return D * PRECISION // self.total_supply | |
@view | |
@external | |
def calc_token_amount( | |
_amounts: DynArray[uint256, MAX_COINS], | |
_is_deposit: bool | |
) -> uint256: | |
""" | |
@notice Calculate addition or reduction in token supply from a deposit or withdrawal | |
@param _amounts Amount of each coin being deposited | |
@param _is_deposit set True for deposits, False for withdrawals | |
@return Expected amount of LP tokens received | |
""" | |
return staticcall StableSwapViews(staticcall factory.views_implementation()).calc_token_amount(_amounts, _is_deposit, self) | |
@view | |
@external | |
def A() -> uint256: | |
return self._A() // A_PRECISION | |
@view | |
@external | |
def A_precise() -> uint256: | |
return self._A() | |
@view | |
@external | |
def balances(i: uint256) -> uint256: | |
""" | |
@notice Get the current balance of a coin within the | |
pool, less the accrued admin fees | |
@param i Index value for the coin to query balance of | |
@return Token balance | |
""" | |
return self._balances()[i] | |
@view | |
@external | |
def get_balances() -> DynArray[uint256, MAX_COINS]: | |
return self._balances() | |
@view | |
@external | |
def stored_rates() -> DynArray[uint256, MAX_COINS]: | |
return self._stored_rates() | |
@view | |
@external | |
def dynamic_fee(i: int128, j: int128) -> uint256: | |
""" | |
@notice Return the fee for swapping between `i` and `j` | |
@param i Index value for the coin to send | |
@param j Index value of the coin to recieve | |
@return Swap fee expressed as an integer with 1e10 precision | |
""" | |
return staticcall StableSwapViews(staticcall factory.views_implementation()).dynamic_fee(i, j, self) | |
# --------------------------- AMM Admin Functions ---------------------------- | |
@external | |
def ramp_A(_future_A: uint256, _future_time: uint256): | |
assert msg.sender == staticcall factory.admin() # dev: only owner | |
assert block.timestamp >= self.initial_A_time + MIN_RAMP_TIME | |
assert _future_time >= block.timestamp + MIN_RAMP_TIME # dev: insufficient time | |
_initial_A: uint256 = self._A() | |
_future_A_p: uint256 = _future_A * A_PRECISION | |
assert _future_A > 0 and _future_A < MAX_A | |
if _future_A_p < _initial_A: | |
assert _future_A_p * MAX_A_CHANGE >= _initial_A | |
else: | |
assert _future_A_p <= _initial_A * MAX_A_CHANGE | |
self.initial_A = _initial_A | |
self.future_A = _future_A_p | |
self.initial_A_time = block.timestamp | |
self.future_A_time = _future_time | |
log RampA(old_A=_initial_A, new_A=_future_A_p, initial_time=block.timestamp, future_time=_future_time) | |
@external | |
def stop_ramp_A(): | |
assert msg.sender == staticcall factory.admin() # dev: only owner | |
current_A: uint256 = self._A() | |
self.initial_A = current_A | |
self.future_A = current_A | |
self.initial_A_time = block.timestamp | |
self.future_A_time = block.timestamp | |
# now (block.timestamp < t1) is always False, so we return saved A | |
log StopRampA(A=current_A, t=block.timestamp) | |
@external | |
def set_new_fee(_new_fee: uint256, _new_offpeg_fee_multiplier: uint256): | |
assert msg.sender == staticcall factory.admin() | |
# set new fee: | |
assert _new_fee <= MAX_FEE | |
self.fee = _new_fee | |
# set new offpeg_fee_multiplier: | |
assert _new_offpeg_fee_multiplier * _new_fee <= MAX_FEE * FEE_DENOMINATOR # dev: offpeg multiplier exceeds maximum | |
self.offpeg_fee_multiplier = _new_offpeg_fee_multiplier | |
log ApplyNewFee(fee=_new_fee, offpeg_fee_multiplier=_new_offpeg_fee_multiplier) | |
@external | |
def set_ma_exp_time(_ma_exp_time: uint256, _D_ma_time: uint256): | |
""" | |
@notice Set the moving average window of the price oracles. | |
@param _ma_exp_time Moving average window. It is time_in_seconds // ln(2) | |
""" | |
assert msg.sender == staticcall factory.admin() # dev: only owner | |
assert 0 not in [_ma_exp_time, _D_ma_time] | |
self.ma_exp_time = _ma_exp_time | |
self.D_ma_time = _D_ma_time |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment