-
-
Save charlesdckim/4833c7a461b8d879ba04034d6619b47c to your computer and use it in GitHub Desktop.
Example of 3D convolutional network with TensorFlow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
FC_SIZE = 1024 | |
DTYPE = tf.float32 | |
def _weight_variable(name, shape): | |
return tf.get_variable(name, shape, DTYPE, tf.truncated_normal_initializer(stddev=0.1)) | |
def _bias_variable(name, shape): | |
return tf.get_variable(name, shape, DTYPE, tf.constant_initializer(0.1, dtype=DTYPE)) | |
def inference(boxes, dataconfig): | |
prev_layer = boxes | |
in_filters = dataconfig.num_props | |
with tf.variable_scope('conv1') as scope: | |
out_filters = 16 | |
kernel = _weight_variable('weights', [5, 5, 5, in_filters, out_filters]) | |
conv = tf.nn.conv3d(prev_layer, kernel, [1, 1, 1, 1, 1], padding='SAME') | |
biases = _bias_variable('biases', [out_filters]) | |
bias = tf.nn.bias_add(conv, biases) | |
conv1 = tf.nn.relu(bias, name=scope.name) | |
prev_layer = conv1 | |
in_filters = out_filters | |
pool1 = tf.nn.max_pool3d(prev_layer, ksize=[1, 3, 3, 3, 1], strides=[1, 2, 2, 2, 1], padding='SAME') | |
norm1 = pool1 # tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta = 0.75, name='norm1') | |
prev_layer = norm1 | |
with tf.variable_scope('conv2') as scope: | |
out_filters = 32 | |
kernel = _weight_variable('weights', [5, 5, 5, in_filters, out_filters]) | |
conv = tf.nn.conv3d(prev_layer, kernel, [1, 1, 1, 1, 1], padding='SAME') | |
biases = _bias_variable('biases', [out_filters]) | |
bias = tf.nn.bias_add(conv, biases) | |
conv2 = tf.nn.relu(bias, name=scope.name) | |
prev_layer = conv2 | |
in_filters = out_filters | |
# normalize prev_layer here | |
prev_layer = tf.nn.max_pool3d(prev_layer, ksize=[1, 3, 3, 3, 1], strides=[1, 2, 2, 2, 1], padding='SAME') | |
with tf.variable_scope('conv3_1') as scope: | |
out_filters = 64 | |
kernel = _weight_variable('weights', [5, 5, 5, in_filters, out_filters]) | |
conv = tf.nn.conv3d(prev_layer, kernel, [1, 1, 1, 1, 1], padding='SAME') | |
biases = _bias_variable('biases', [out_filters]) | |
bias = tf.nn.bias_add(conv, biases) | |
prev_layer = tf.nn.relu(bias, name=scope.name) | |
in_filters = out_filters | |
with tf.variable_scope('conv3_2') as scope: | |
out_filters = 64 | |
kernel = _weight_variable('weights', [5, 5, 5, in_filters, out_filters]) | |
conv = tf.nn.conv3d(prev_layer, kernel, [1, 1, 1, 1, 1], padding='SAME') | |
biases = _bias_variable('biases', [out_filters]) | |
bias = tf.nn.bias_add(conv, biases) | |
prev_layer = tf.nn.relu(bias, name=scope.name) | |
in_filters = out_filters | |
with tf.variable_scope('conv3_3') as scope: | |
out_filters = 32 | |
kernel = _weight_variable('weights', [5, 5, 5, in_filters, out_filters]) | |
conv = tf.nn.conv3d(prev_layer, kernel, [1, 1, 1, 1, 1], padding='SAME') | |
biases = _bias_variable('biases', [out_filters]) | |
bias = tf.nn.bias_add(conv, biases) | |
prev_layer = tf.nn.relu(bias, name=scope.name) | |
in_filters = out_filters | |
# normalize prev_layer here | |
prev_layer = tf.nn.max_pool3d(prev_layer, ksize=[1, 3, 3, 3, 1], strides=[1, 2, 2, 2, 1], padding='SAME') | |
with tf.variable_scope('local3') as scope: | |
dim = np.prod(prev_layer.get_shape().as_list()[1:]) | |
prev_layer_flat = tf.reshape(prev_layer, [-1, dim]) | |
weights = _weight_variable('weights', [dim, FC_SIZE]) | |
biases = _bias_variable('biases', [FC_SIZE]) | |
local3 = tf.nn.relu(tf.matmul(prev_layer_flat, weights) + biases, name=scope.name) | |
prev_layer = local3 | |
with tf.variable_scope('local4') as scope: | |
dim = np.prod(prev_layer.get_shape().as_list()[1:]) | |
prev_layer_flat = tf.reshape(prev_layer, [-1, dim]) | |
weights = _weight_variable('weights', [dim, FC_SIZE]) | |
biases = _bias_variable('biases', [FC_SIZE]) | |
local4 = tf.nn.relu(tf.matmul(prev_layer_flat, weights) + biases, name=scope.name) | |
prev_layer = local4 | |
with tf.variable_scope('softmax_linear') as scope: | |
dim = np.prod(prev_layer.get_shape().as_list()[1:]) | |
weights = _weight_variable('weights', [dim, dataconfig.num_classes]) | |
biases = _bias_variable('biases', [dataconfig.num_classes]) | |
softmax_linear = tf.add(tf.matmul(prev_layer, weights), biases, name=scope.name) | |
return softmax_linear | |
def loss(logits, labels): | |
cross_entropy = tf.nn.softmax_cross_entropy_with_logits( | |
logits, labels, name='cross_entropy_per_example') | |
return tf.reduce_mean(cross_entropy, name='xentropy_mean') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment